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1 INTRODUCTION

Control of the chromaticity is important in order to avoid collective instabilities like the
head-tail effect and to avoid crossing resonances, This is specially so for the collider where the
linear chromaticity is spectacularly large, e.g reaching -470 units in the vertical plane at colli-
sion, for the design values of the luminosity at the four interaction points. Correcting the linear
chromaticity is relatively simple however, and does not require much discussion. In this paper,
we present the proposed scheme for reducing the non-linear chromaticity of the collider in the
collision mode. Section 2 discusses briefly the optics of the collider lattice with special empha-
sis on the Interaction Regions (IRs) which are the main sources of chromaticity. Section 3 is
devoted to a theoretical calculation of the second order chromaticity in a storage ring. Section
4 focuses on the second order tune shift due to the triplets, the dominant sources of chromatic-
ity in the IRs. Section 5 discusses, mostly in pictures, the theory behind our proposed scheme
for correcting higher order chromaticity. In Section 6 we evaluate the chromatic performance
of the proposed scheme and in Section 7 we discuss the effect of the chromaticity correcting
sextupoles on the dynamic aperture. We summarize our conclusions in Section 8.

2 THE COLLIDER LATTICE: SOURCES OF CHROMATICITY

The racetrack shaped collider lattice consists basically of 2 arcs located on the North and
South sides and 2 clusters placed on the West and on the East. Each arc contains 196 identical
FODO cells with the phase advance across a cell being 90 degrees and the length of each cell
is 180 m. The lattice of each cluster includes 2 Interaction Regions, the utility section and the
interconnect sections between them. It is intended that the IRs have similar configuration
except for the free space length reserved for the detectors.

The arcs occupy about 81% of the lattice and therefore provide a significant contribution to
the chromaticity of the machine. They mostly determine the collider chromaticity at injection
conditions. However. in the collision mode, the IRs have a larger chromaticity than the arcs.
This additional chromaticity comes from the final focussing quadrupoles which at collision are
located in the region of extremely high values of the beta functions. The locality of the chro-
maticity sources in the IRs makes them more dangerous than the chromaticity contributed by
the arcs.

The general scheme of an IR is shown on Figure 1. F and D quadrupoles are drawn above
and under the beam lines, and the vertical bends are centered on the beam lines. The two rings
are separated vertically by a distance of 90 cm everywhere except in the IRs. Within each IR,
the beams are brought into collision at the Interaction Point (IP) in two steps by a set of verti-
cal dipoles.

The optics of the IR consists of three main parts. The quadrupoles located in the region
where the separation is 90cm form the tuning section. These quadrupoles are used to match the
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Figure 1: Elevation View of Low Beta IR.
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Figure 2: Beta Functions in the Low Beta IRs.



optics and vary the ﬁ* at the IP. The second part consists of the vertical dipoles and the quadru-
poles located in the 45 ¢m separation region. The dipoles are used to bring the beams into col-
lision. The phase advance across the quadrupoles is 7t and collectively the quadrupoles form '
the M=—I section, whose role is to correct the vertical dispersion locally. The last part of the
optics includes the final triplet quadrupoles which focus the beams to the IP. These quads are
common to both rings and the beams share the same beam pipe inside them. At high luminos-
ity conditions the beta functions go up rapidly inside the triplets which become a source of a
large chromaticity. Figure 2 shows the particular beta functions in 2 IRs for the design value of
6 =0.5 m. Each IP is surrounded by 2 triplets where the beta function is 30 times larger than in
the arcs. The contribution to the 1st order chromaticity from major sources is listed in Table 1.
L* denotes the free space reserved on either side of each IP for the detectors.

SOURCE cll'llj?:nzl:gttﬁy chrv:nrgili:lity
2 arcs -124 -i23
1low B IR, L:=20.5m. 5:=o. 50m -51 -51
1 low B IR, L =20.5m, 8"=0.25m -101 -101
1 medium p IR, L"=90m, B *=1.95m -45 -45
Maximum allowed sextupole cotn- 160 -136

ponent in dipoles ( by=0.8*10* m?)

Complete collider lattice: -171 -469
2 low B IRs (B"=0.50m)
2 medium B IRs { B *=1.95m)
by=0.8*10"* m2 in dipoles

Table 1: Major sources of chromaticity in the collider lattice

3 TUNE SHIFT AND CHROMATICITY TO 2nd ORDER

Consider a storage ring and label two points on it as 1 and 2. Let [, be the global phase
advance around the ring and (B;, ¢;, v, ) the Twiss functions at point 1. The periodic transfer
matrix at point 1 is

M =MQ2->1)xM(1-2) @Gl

1= . .
Y, sinld cosy —ai,sinll

{cosuo-'ralsinuo B, siny,

where M (2 > 1) is the wansfer matrix from point 2 to 1 etc. Let |1, and L, be the phase
advances at points 1 and 2 respectively with respect to an arbitrary reference point and define
Wy;= | Up-H41. We now introduce two infinitesimally thin quads of strengths q;=k;As; and

q,=kpAs, at points 1 and 2 respectively. Their perturbations to the transfer matrix are
described by the matrices
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These quad errors change the cyclic transfer matrix at point 1 to M,
M = M2 1) XP,XxM(1—52)xP =M +AM, 3.3

The elements of AM (the change in the transfer matrix) are found using this equality. Let
A be the change in the global phase advance around the ring. We scale the quad errors by an
arbitrary parameter € i.¢.

kl - Ekl k2 - 81(2

and expand All as a power series in g,
Al = eAp, +€Ap, +... (3.4

In keeping with our declared aim, our calculation will be to second order in €. The new glo-
bal phase advance [l =1 +AU is to be found from

1

2Tr1\“4-’1 = cosi. + %TrAMl (3.5)

cospl, =
We also have

cosil, = cosp,CosAl ~ siny_sinAp

Substituting Equation (3.4) into the above and equarting it to the expression for cc:s_;:l.u0
given by Equation (3.5), we have

. . 1 -
~esinyl Ap,—e? (sinkl, AR, + 5 cosit, (AR,)2) +0 (¢%) = %TrAMl 3.6)

To obtain the corrections to W, order by order, we equate the coefficients of like powers of
€ on both sides of the above equation.



1
A, = 5 (kAsBy +kyAs,B,)

1 cot

K,
Ap, = 4sm|J. ———k,As, B kyAs,8, [cosp —cos (L ~2U, ) ] - — (Alil)z 3.7)

Generalizing to the case when there are N quad errors distributed around the ring,

¢ N
Ay = 5 Y kBas;

i=l

N-1 N
A, = —— T T (kBAs) (kBAs) [cosh,=cos (1,~21,)]

481nu0i=1j=i+1

cou

2 (Ap,)? (3.8)

We go now to the limit of infinitesimally thin quads distributed around the riné of circumfer-
ence C. In this limit,

C
= ; gk(s) B, (s) ds
C o
Ap, = 4sinlla.([k(s) B, (5) dSIk (s)B, (5') [cosp,—cos (W =2l (s) —P(s)!) ] ds”
-0 (apy? G9)

Here we have let B,(s) denote the unperturbed B function at the point s. In the equation for
Al, we convert the integral over part of the ring to one over the complete ring and obtain

s+C

SSmu. j'k(s)B (s)ds j' k(s)B,(s') cos [1, ~2|L (s) -1 (5)|] ds’

5

A|.L2 =

(3.10)
The gradient error changes not only the tune of the machine but also the p function around



the ring. We recall that the change in [3 to first order in the gradient errors is given by [1]:

A61 (.S') _ 1 s+C
B,(s)  Zsinp !

k(s’)B, (sycos [U,=2| (s) -1 (s)|]ds” (31D

Recognizing that the term on the right hand side occurs within Equation (3.10) we obtain
the rather simple expression

C
Au, = % [k() 8B, (s)ds (3.12)
0

This important relation tells us that the first order distortion in the 3 function propagating
around the machine gives rise to the second order tune shift. The total phase shift to second
order in the gradient errors is (after putting the arbitrary parameter € to unity),

c c
jk(s) B,(s) ds+ijk(s)Af5£(s) ds + 0 (F°) (3.13)
0 0

[T

Al =

The gradient perturbations of interest here are those seen only by particles off the design
momentum. The chromatic error introduced by the quads is corrected by placing sextupoles at
places of non-zero dispersion. Assurning that only the horizontal dispersion D, is non-zero,
the effective quadrupole strength in the horizontal plane for a particle with relative momentum
deviation & = Ap/p, is,

K% = K(s5,8) +5(58)D(s,8) 5 314
As functions of ,
K, (s) )
K(S,B) = m = KO(S) [1"6"]‘6 +...]
S(s,d ﬂS"(S)—S Y [1~5+82
(5,8 = 135 = () 1 +8+...] (3.15)

where K, and S, are the nominal quad and sextupole strengths experienced by a particle on
momentum. The gradient errors aiso change the dispersion function around the ring, making it
a function of d as well. We expand D as a power series in d,

D{s,8) = D,(s) +ADS (s)3+ADS (5) 8%+ ... (3.16)

and similarly the  function,



B(5,8) = B, (s) +APS (s)B+ABS (5)8%+... (3.17)

where the superscript C denotes a chromatic expansion. Hence the gradient error in the hori-
zontal plane for the off-momentum particles is

k(s) =K¥-K = [-K,+S,D,]5+ [K,+S,(~D,+AD$)]1 82+ 0 (5°)
(3.18)

Substtuting into Equation (3.13) and writing the tune shift in terms of the first and second
order chromaticity £; and &, respectively,

Ave Al = E3+E,82+0 (5) (3.19)
we obtain
C
& = 4 [Bo(0) [, 5, D, ()1
1S 1€
&, = g [ [Ko+5,(5) D, () 1A () ds + - [B, () §,, () ADS (s) ds =&,
0 0

(3.20)

We recall that the first order changes in  and D are given by

Aﬂg(“) - 5+C
B  Zemm, [ Byl [=K, () +5,(s) D, (s")] cos [, ~2[W (s') = (s} 1 ds
5

- lﬁa(“") 1+C

k,
m I JB, (5D, () [-K,(s") +5,(s)D,(5}] cos |:'2--|U~ (s -k (s) |:| ds’
°

2 (3.21)

aDt(s) =

2sin

Ignoring the phase factors for the moment, we see that Aﬁlc which contains factors of
Bo(s) rather than B.(s)”? (as occurs in AD,“(s)) will dominate the contribution to the second
order chromaticity, This situation can change if we choose the phase advances between the
major chromatic error sources appropriately. For example, two sources of equal strength /2
apart in phase will produce  waves exactly out of phase 50 there will be no resultant B wave.
The dispersion waves produced by the same two sources will add in quadrature. Alternatively,
if we want to cancel the net dispersion wave, the two sources should be 7 apart in phase. In
this case the B waves wiil add exactly in phase.

Returning to the issue of chromaticity correction, the sextupole strengths S,(s) are usually



chosen to make the linear chromaticity &; vanish. i.e. S4(s) is obtained by solving

¢ c
ISO ()B,(s)D,(s)ds = j[io (s)K,(s)ds (3.22)
0 0
and &, is then given by
c , €
£, = 517_[ [ (=K, +5,(5) D, () 1 ABE () ds + . [B, () S, (s) ADS (s) ds
0 0

(3.23)

Hence to reduce the second order chromaticity, the first order changes in B8 and also in the
dispersion D should be minimized. Conversely, the regions where A lc is large (e.g. the trip-
lets in the IRs) will contribute the most to the second order chromaticity. The above expression
also exhibits the variation of £, with the global tune. Since the first order 3 wave diverges at
integer and half-integer tunes, &, will be amplified as v, approaches O or 0.5 and will be a min-
imum at v,=0.25 .

4 BETA WAVE AND CHROMATICITY DUE TO IR TRIPLETS

The perturbation to the periodic B function from chromatic errors in the IR quads can be
calculated as a power series in 9,

AB(s) _ AB{ (s)6+Aﬁ§ (5)
B,(s) ~ B,() B, (s)

where 8,(s) is the unperturbed f function. Let

52+ 0(d%) 4.1)

QB = I KBds

Mtriplet

The first order change due solely to the IR triplets is,

ABS (s) 1 4 , _ .
60 (S) B ZSinuof;Qiﬁicos[ uis_p'o] 4.2)

where Li; is the phase advance from the point s to the ith triplet. i=1 !abels the first triplet after
the point of observation s when going along the ring in a specified direction.
From earlier considerations we have seen that the first order B wave (and hence the second
order chromaticity) from the IR quads is minimized when the phase advance between the IPs
is an odd multiple of 11/2. In what follows we will assume this choice of phase advance.

B wave within the triplets

We split the region between the 1st and 4th triplets into 3 regions, Let s denote the point of
observation and LL;; be the phase advance from the 1st triplet to this point.



Region [ : between the 1st and 2nd wiplets (0 < Ygy <70 )

ABS (s)
B_(s) = ZSlnu. {eo 18,08 [2"';1 B ] + [Qzﬁz (Q353+Q4B }1cos [2"'_,-1 +p ]}
0
(4.3)
Region I : between the 2nd and 3rd wiplets (7T < g, < 8.51)
ABy () oy em it
8, (s 2smu {(g,p, +0,8,) cos [2p ;= | —(@;B, +0,8,) cos [2n  +u_
4.4)
Region I1I : between the 3rd and 4th mriplets (8.5 < [, < 9.51)
Aﬁf(s) -
AONN 2smu {[(g,p, +02,8,)~0,8,} cos [2n_~n 1-0,6,c0s [2p  +1 ]}

(4.5)
B wave outside the triplets

Let 5 be an arbitrary point outside the region bounded by the 4 triplets and [l be the phase
advance from this point to the 1st triplet. The change in  to first order in d is

C

ap; (s) ;
5 () " zsina L2181 T 2B, ~ (8508, ) Tcos [n) ~p ] (4.6)
o o

Tune shift

Similarly we consider the tune shift due to the chromatic error of the 4 IR triplets only,
ignoring the effect of other quadrupoies and sextupoles. Then to 2ad order in the momentum
deviation , the phase shift due to these 4 triplets is

Al = ApTS +ApuSd? + 0 (5%) 4.7
where

AuC=—l4Q.[3
1 =73 9P

i=1

Aug = 4smu ): Z Q8,08 [cosp,~cos (2, ~41,) ]

Oi=1jmi+l

~ApC~3 coty, (AUS)> “8)

M;i is the phase advance from the ith triplet to the jth triplet and v, = [o/2% is the global
tune of the ring. The first order chromaticity is independent of phase advances between the



triplets. However the second order chromaticity depends crucially on the relative phase
advances between the triplets. If the phase advance between the IPs is (2n+1)r/2, then the rel-
ative phase advances have the following values,

Hyp =T, K1 = (2n+1)m/2 Hq; = (20+3)1/2
IJ,32 = (211' 1)7[,2 IJ-42 = (2“"‘1)1[,2
Hez=T

With these values, the second order contribution reduces to

1
AU = MG, +5(Q,B,+ 058, + Q85+ QB) (49
where Ap.ch is the contribution from terms second order in the quad strengths,
cotll !
apg, = —— [(0,B, +2,8,) (2;8,+2,8,) —; (2,8, + 0,8, + 0,8, +0,8,)%]

(4.10)
The large (3 functions in the miplets ensures that A[.LQQC completely dominates the contribu-
tion to Auzc.

4.1 Different configurations of IPs
A) Two IPs with equal B*

In the chosen design we have repetitive symmetry across the two IRs. Here this symmetry

implies
Q383=0Q; B1and Q4 B4 =Q, B>
In this configuration, the § wave in the three regions within the triplets is

ABS (s) ,
B, AP I
= (Q,B, +Q,6,) sin2p 1
= Q2[32 sin2p 111 (4.11)
and the beta wave outside the triplets is
ABS (9)

Figure 3 shows the first order chromatic beta wave from the triplets in this configuration.
The different contributions to the phase shift are

Auf = —(Q,8,+0Q,B,)

Augg =0 (4.13)
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The vanishing of Aucm is a consequence of the fact that the 5 wave is zero outside the
triplets. Hence the entire second order phase shift arises from the first order phase shift.

ALLE = (Qlﬁl +Q2ﬁ2) (4.14,
For this case A|L,C is independent of the global tne v,

B) Two unequal IPs with different

Consider the first IP at f=0.25 and the second IP at B*=0.50. With repetitive symmetry,
this implies

Q:B3=1/2Q; B1and Qs By = 112Q, B,

Within the triplets, the chromatic B wave is

Aﬁc (=) 1 0,8

1 1 2B,

B (s)  2sinp {o, |:°°S (2p,,—n,) =5 c0s (2n, + “o)] +—S—cos(2p, +u )}
o 0

ﬁﬁf (s) o

1
B,(s) ~ 2sinu (lel * Qzﬁz) {cos (zll“—llo) —z €08 (21151 + l-lo) }
o o

B () .08,
B, (s) _2sinuo 2

1
cos (2n,—1,) +Q,B, [cos (2n  —n ) —5;c0s (2n, +k )]}

(4.15)

for regions I, Il and HI respectively. The first order change in [ at an arbitrary point s out-
side the triplets is

Aﬁf(-") 1
B. () 4sinuo(Q151+Qzl32) cos (214, ~},) 4.16)

The propagation of the first order chromatic beta wave from the triplets into the arcs is
shown in Figure 4. The phase shift due to the triplets is, up to second order,

ApS = =2 (0,8, +2;8,)
c —cotll 3
Aps = T(QIBI+Q262)2+3(Q151+Qzl32) 4.17)

C) Only one IP (effectively)
Let " = 0.25m at the first IP and ﬁ*= 8 m at the second IP . Then
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Q3 B3 =(1/32) Q, By and Q4 B4 =(1/32) Q2 B2
Inside the region bounded by the triplets. the chromatic § wave (for regions I, I and III) is
aBT ()

B, Gy 2smu

1
{lel[cos (2u R )——cos (2u +u )]+32Q252008(2u +h, )}

BT ()

B, (s) ~ 2sinp

(Q 1B, +0,8,) {cos (2u —n) - 5008 (2n +) )

BEG
8,(s) ~ 2sinp {329 B cos (2p  —n ) +0,8, [cos (2n —r, )— > cos (2u, +1 )1}
O (4.18)
and outside the triplets
ABS () 31 \
B 1(5') B 64sinjl (Q,B, +Q,B,) cos (2, -1,) (4.19)
4]

which is nearly twice as large as the  wave at the same point with the two unequal IPs consid-
ered in Case B. This is evident in Figure 5.
The phase shifts are

A = -2 (0,8, +Q;8,)

ApS = B(ﬁ) 614j|cot|.t © 5,+Q262) +2(0.8,+0) @20

The contribution Auczq. of second order in the quad strengths, in this case is about 3.75
times larger than in the case with two unequai IPs.

These three cases show that if the IPs are (2n+1)11/2 apart in phase advance, then the triplets at
one IP wholly or partially cancel the contribution to the second order chromaticity from the trip-
lets at the other IP. For all cases. except the first with equally balanced IPs, the second order chro-
maticity will be significantly amplified as v, —> 0.5.

In the following table, we evaluate the tune shift due to the triplets in the three configurations
and at two choices of mines. The tune shift is,

1
Av = E5+8,8% = 5 (AUTS+AUTD)



Av at Av at
CASE & & & 5=5+10% | B=5*10"

V0285 | v,=04 | v,=0285 | =04

A) equal IPs
B*=0.25 -154.0 +154.0 +154.0 -0.07696 | -0.07696
B*=0.50 -77.0 +77.0 +77.0 -0.03848 | -0.03848

B) unequal IPs

B*=0.25, B"=0.5 -115.5 +1156.4 +6524.8 | -005746 | -0.05612
C) one IP

B=0.25, 3"=8.0 -79.4 +3977.5 | +241326 | -0.03871 | -0.03367
Table 2: Tune shift due to the triplets

The total tune shift is dominated by the linear contribution in any configuration. Removing
the linear tune shift is relatively simple, so our concern is with minimizing the higher order
contributions. Clearly the largest 2nd order chromaticity occurs for case C at v,=04.

The total chromaticity of an IR includes contributions from the triplets, the quadrupoles in
the M= -1 section and the variable strength quadrupoles in the tuning section. We concentrated
on the triplets in this section because at collision the contribution of the triplets is about 76%,
that of the M= -1 section about 19% and the remaining is due to the tuning section. At injec-
tion, where higher ordéer chromaticity is not an issue, all three sections contribute about
equally to the chromaticity which is now dominated by the contributions from the arc quadru-
poles.

5 THEORY OF 2nd ORDER CHROMATICITY CORRECTION

QOur aim is to correct the 2nd order chromaticity of the Interaction Regions. We assume that
the linear chromaticity is corrected for. We start with two facts derived in the previous sec-
tions.

a) The 2nd order chromaticity is driven by the 1st order chromatic beta wave, and

b) The beta wave propagates at twice the betatron frequency.

The 4 triplets at the two IPs contribute the most to the 2nd order chromaticity.

Figure 6 : The triplets at the two IPs

Since the triplets on either side of an IP are 7t apart in phase, the chromatic beta waves pro-
duced by them add in phase. Hence we can combine the two triplets into a composite lens at



each IP.

(2n+1)m/2
- —~

Figure 7 : Effective Super triplets at each IP

The beta waves produced by the two super triplets are exactly out of phase in the region
outside the triplets. If the two super triplets have the same strength i.e. ST; = ST

IP P

ST, © ST,
Figure 8 : Exact Cancellation with Equal IRs

then no beta wave gushes out from the IRs and the 2nd order chromaticity is a minimum.
Now turn off one of the IRs (with linear chromaticity still corrected). The chromatic beta
wave from the remaining IR now flows uncorrected into the arcs.

Figure 9 : Beta wave with 1 IR

Here we have drawn only the beta wave propagating out from the supertriplet ST, and not
the periodic 1st order beta wave in the ring. How do we stop this beta wave from ST; from
going all around the ring ?

Put another source of chromatic beta waves ( e.g. a sextupole) n/2 from the IP to interfere
destructively with the waves produced by ST, (i.e to do the same as the missing S75)

SX1

ST,

-t >
Figure 10 : Cancelling the beta wave from 1 IR
The SX1 sextupole produces a beta wave with the opposite phase. Hence the 2nd order

chromaticity should be 2 minimum. However there is an unwanted side effect. The SX1 sextu-
pole introduces linear chromaticity into the ring.



Put another sextupole S$X2 to cancel the linear chromaticity due to SX1.

ST,

$X2 8Xl
R RO {hne

nf2
Figure 11 : Correction of 1st and 2nd order chromaticity with 2 sextupoles

The beta functions and the dispersion at the locations of SX1 and SX2 are the same.
Zero linear chromaticity —> SX1 + SX2 = 0. Since these two sextupoles are 11:/’2 apart and
their strengths have the opposite signs, their beta waves add in phase.

Other details:

The beta wave has to be corrected in each plane. This requires 2 sextupoles SX1F and
SX2F to correct for the 1st and 2nd order chromaticity in the horizontal plane (primarily) and
sextupoles SX1D and SX2D to correct for the effects in the vertical plane (primarily). For each
sextupole to be at the proper phase with respect to the IP requires a specific choice of phase
advance across each IR,

Only 1 sextupole in each family would require too large a strength for each sextupole. With
24 members in a family, the required strength would be under the maximum allowed strength
for each sextupole. 12 of these are placed at the edge of the North Arc adjacent to the cluster
and the other 12 at the edge of the South Arc.

To have each member in a family produce a beta wave in phase with the other members of
the family, there must be a phase advance of 7t between the members of a family. This has the
additional advantage of removing the second order geometrical aberrations(2]. This is easily
achieved if the phase advance across each cell is 9C°.

The sextupole distribution over 1 betatron wavelength looks as follows.
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Figure 12 : Sextupole Distribution

The entire distribution spans 6 wavelengths on either side of the cluster.



Imperfections :

The contribution to the beta wave in the x plane from the sextupoles S$X1D and SX2D is
not cancelled and similarly for the y plane contributions from SX1F and SX2F. To see this, we
represent the beta waves from each source in a phasor diagram. The angle between any two
vectors in this diagram will be twice the phase advance between the corresponding sources.
We will refer to this as a 2\ diagram. Let the phase be measured from an arbitrary point in the
lattice.

IR quadrupoles

SXIF SX1D

SX2D

l"'.
.c'lh'

SX2F

Figure 13 : 2y Phasor Diagram for the beta waves

SXIF is at /2 phase from §7, while SX2F is at /2 phase from SX1F but has the opposite
sign to SX1F. Hence the vectors representing 1F and 2F are parallel and combine to cancel the
vector from the IR quads. However SXID is at n/4 phase from SXIF, hence its vector is
orthogonal to SX1F. $X2D is /2 away from SX1D but with the opposite strength so its vector
adds in phase to that of SX1D. The orthogonal contributions from SX1D and SX2D are not
removed by any source and remain as a residual beta wave. The relative amplitude of the beta
wave in the horizontal plane from the D sextupoles is Bpin/Bmax ~ 1/6 (for a FODO cell with
90 degrees phase advance per cell). With the scheme outlined above, the second order chroma-
ticity is thus reduced by a factor of 6.

6 PERFORMANCE OF THE CHROMATICITY CORRECTION
SYSTEM

We correct for the chromaticity of the collider ring by placing sextupoles next to each qua-
drupole in the two arcs of the collider. This amounts to 392 D and 392 F sextupoles. Of these,
96 sextupoles of each type are placed in the 24 cells at both ends of each arc for correcting the
non-linear chromaticity of both the interaction regions. In all, eight families of sextupoles
labelled SX1F, SX1D, ..., SX4F, SX4D are available for the non-linear correction. These will
be referred to as the local sextupoles. The families (SX1F, SX4F) are nt/2 (mod 27) in horizon-
tal phase away from the North IP and (SX1D, $X4D) are 1i/2 (mod 2m) in vertical phase from
this IP. The same statement can be made for the families (SX2F,SX3F) and (SX2D, SX3D)
with respect to the South IP. The 296 sextupoles in each of two families SXF, SXD correct for
the linear chromaticity of the total ring inctuding the interaction regions. These will be called
the global sextupoles.

The collider has two low-f (or high luminosity) interaction regions on the east side of the
ring and two medium-f} IRs on the west side. In what follows, the chromaticity of only the
low-f IRs has been corrected for. Consequently, for this report, we use 2x48 local sextupoles



and 2x344 global sextupoles. The optimization of the non-linear correction included the mini-
mization of the tune shift as a function of momenmum to the 2nd and 3rd order. It was done
using the module HARMON in MAD (3].

We have seen in earlier sections that the second order chromaticity is largest when the
fractional part of the global tune is close to 0.5 and one of the interaction regions in a cluster is
tuned to collision optics while the other is tuned to injection optics. For brevity, we will
present results for this “worst” case only. The tunes in the two planes are chosen to be
(0.435,0.415). An important advantage of correcting this configuration is that the phase
advances between the IPs becomes irrelevant and we do not need to rely on the chromatic can-
cellation of one IR by another. This is important in practice since the detectors at the two IPs
will possibly be operating at different luminosities and the phase advance between IPs may
not be an odd multiple of 7/2.

First we look at the chromatic behaviour with only the linear chromaticity corrected. This
will show if a) nonlinear chromaticity correction is needed and b) serve as a benchmark by
which to compare the improvement due to the nonlinear correction. All 392 sextupoles in each
of the D and F families are used for the correction in this case, Figure 14 shows the variation
of the mne shift with the relative momentum deviation d and Figure 15 shows how the relative
B at the IP varies with . The standard deviation G, for the relative momentum spread in the
beam is approximately 6 x107 at 20 TeV. For stable operation of the beam we require the tune
shift Av < 0.002. We find that the linear correction provides us with a momentum aperture of
approximately 2.5 o, which is inadequate. The relative variation in B* is also large, reaching
10% at 1o, Clearly, higher order chromaticity correction is needed under these conditions.-
Now we.examine the performance of the nonlinear chromaticity correction system. The local
sextupoles strengths were limited to be less than 0.25 T-m at Icm The following tables com-
pare the strengths of the sextupoles in the two cases. ( [3 = (.25 and 8m, v,=123.435,
vy=122.415)

Sextupole name Integrated Field Strength
T-m at lcm
Global F 0.068
Global D -0.136

Table 3: Linear chromaticity correction only ( “global’’)

Sextupole name | MBS FIE Sueneth
Global F 0.078
Global D 0.155
Local F1, F4 0.163
Local D1, D4 -0.250
Local F2, F3 -0.164
Local D2, D3 0.247

Table 4: Linear and nonlinear chromaticity correction (*“local™)
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We note that the strengths of F1 and F2 are approximately equal and opposite and similarly
for D1 and D2. This is required to cancel the net linear chromaticity of the local sextupoles.
For the correction of a single IR, only 4 families (F1,D1,F2,D2) of sextupoles are required.
When both IRs are mned to collision optics F1 and F4 are allowed to have different strengths
and so too for the other pairs of sextupoles which have been constrained to b equal above.

Figure 16 shows the variation of tune with 3 in the presence of the local sextupoles. The
tune variation is flat over 2 o, and the momentum aperture is increased to approximately 8o,
for Av < 0.002. The relative [3 variation (shown in Figure 17) is limited to 2.5% at 15,
These are definite improvements in the chromatic behaviour and may be adequate for the sta-
ble operation of the collider. The final check of the chromaticity correction system is to exam-
ine the effect of the local sextupoles on the dynamic aperture.

7 DYNAMIC AND MOMENTUM APERTURE

The dynamic and momentum aperture of the collider ring in the presence of the local sex-
tupole scheme has been studied in detail in order to establish the performance as well as the
feasibility of the scheme itself. Sextupoles, as nonlinear elements, can potentially reduce the
dynamic aperture of the machine, so the behaviour of the collider lattice has been checked
with a realistic simulaton model. For every configuration of the optics and setting of the local
sextupoles correction scheme we determined the dynamic aperture, identified with the largest
amplitude surviving 1024 turns. The choice of the short term dynamic aperture as a figure of
merit is justified by the fact that the main aim is to compare different machine configurations
and not to investigate its long term stability.

The behaviour of different configurations of the Interaction Region optics and of the sexw-
pole scheme has been studied first for the ideal lattice, i.e. the first order lattice plus the sextu-
poles as the only source of nonlinearity. The ideal lattice has then been compared with a
realistic model of the lattice where the effect of errors and their operational corrections is
taken into consideration. :

The initial conditions for the increasing amplitudes of the particles tracked have been
selected as follows:

X,=n*o, whereo,=(B, g )ma.nd&yax—lnunmrad
Ya=0*0y whereoy-(ﬁysy) and fye, = 1 mm mrad

_f.l: the beginning of the lattice B,~B,~ 460m, ay~ay~0 and Dy=0, so that o;~0y~ 1.47 *
107 m at 20 TeV.

7.1 Dynamic and momentum aperture of the ideal lattice

The ﬁ* at the collision point of the collider low-beta interaction regions can be tuned
between 0.25m and 8m, the latter value comresponding to the injection optics; the nominal
value at collision is 0.5m. Each interaction region, 2 in the East Cluster and 2 in the West Clus-
ter, can be tuned independently to a value of B* in this range. The optical configurations simu-
lated have the injection optics in the West Cluster and several combinations of §* in the East
Cluster, i.e. in the north low beta IR (ENLB) and in the south low beta IR (ESLB). The config-
uration studied are labeled as follows:



N50-850: baseline symmetric configuration, B*enLp=0.50m, B*ggr p=0.50m

N25-525: low B*symmetric configuration, B*eni.p=0.25m, B*gg g=0.25m
N25-550: low B*asymmetric configuration, B*gnLe=0.25m, B*gg; g=0.50m
N25-S800:asymmetric configuration, B*anLp=0.25m, f*gs g=8m

As previously discussed. the last configuration where one east IR is tuned for maximum
luminosity and the other is tuned to the injection optics, is expected to be the most sensitive to
chromatic effects. The first configuration is the baseline optics for the Collider and it is the
least sensitive to chromatic effects. In order to enhance the effect of higher order chromaticity,
the fractional mine of the lattice for this simulation has been chosen reasonably close to the
half integer (v,=123.435, v,=122.415). Studies of beam-beam effects also suggest a working
point close to 0.4.

M EEEBEEEEIEIE

global | local | giobal | local | global | local | global | Iocal
0.0000 100 70 100 40 100 50 100 50
0.0001 100 70 100 40 100 50 100 50
0.0002 100 70 100 40 100 50 100 50
0.0003 100 70 100 40 100 50 90 50
0.0004 100 70 100 40 100 40 S0 50
0.0005 100 70 100 40 20 40 20 50
0.0006 100 70 80 30 70 40 c 50
0.0007 100 70 70 30 50 40 0 50
0.0008 100 70 50 30 40 40 0 50
0.0009 100 70 o 30 20 40 0 50
0.0010 100 70 o 30 o 40 0 50
0.0011 100 70 0 30 0 40 o 40
0.0012 100 70 0 30 0 40 0 30
0.0013 100 70 0 30 0 40 0 30
0.0014 100 70 0 30 0 40 0 30

Table 5: Dynamic and momentum aperture (¢ ) for the ideal lattice

Table 5 summarizes the results for the ideal lattice: for each configuration described above,
the dynamic and momentum aperture for the lattice with the total linear chromaticity compen-
sated by the sextupoles in the arcs only (global), is compared to one (local) where the linear
and second order chromatic effects arising from the IRs are corrected by the local sextupole
scheme and the linear chromaticity from the rest of the machine is corrected by the arc sextu-
poles.

The local sextupoles cause a significant improvement of the momentum aperture, in partic-



ular for the asymmetric optics configurations. This confirms the improvement in machine per-
formance expected, given the better tune versus amplitude and beta beat in the presence of the
local scheme. The strong local sextupoles cause however a reduction of the dynamic aperture
on momentum. This effect. together with the strength requirement on the local sextupoles, led
us to limit the use of the local system only to compensating the higher order chromaticity of
the IRs and to correct the linear chromaticity, caused by both the arcs and the IRs, with the arc
sextupoles.

7.2 Dynamic and momentum aperture of the lattice with errors

The investigation of performance of the local sextupole scheme done for the ideal lattice
has been repeated and extended to a realistic model of the machine where the effect of errors
and their corrections are accurately simulated. This study allows us to establish whether the
benefits of the local scheme demonstrated for the ideal lattice still holds in the presence of
errors that could potentially mask the effectiveness of sextupoles, and to investigate more
thoroughly the issue of loss of dynamic aperture on momentum.

The model used for the simulation and implemented in the code TEAPOT [4] describes
realistically the single particle dynamics of the Collider as far as errors and corrections are
concerned. Collective and beam beam effects are not included in the model. Every relevant
element in the lattice such as a bend, quadrupole, sextupole, beam position monitor, etc., is
assigned random alignment errors and roll errors; main dipoles and quadrupoles also have sys-
tematic and random field errors associated with them, where normal and skew multipoles are
specified up to the order 9. The issue of the error specifications for the Coilider is a matter of
continuing study and will not be discussed here in detail: except where otherwise specified, the
assumptions for the alignment and field errors reflect the so called Collider 3B specifications
document [S5]. We did not include alignment errors in the IR triplets: the triplets are extremely
sensitive to these errors and the correction of their effects on the collider dynamics is the topic
of an ongoing independent study. Also, the effect of the crossing angle at the interaction point
is not generally included in the results that follow. Preliminary results on the effect of the
crossing angle on the baseline collider optics will however be discussed at the end.

The operational corrections necessary to operate the machine with imperfections are also
accurately described in the model: the closed orbit is found by a steering algorithm. the lattice
is retuned to the original fractional tune by means of trim quadrupoles and the local compensa-
tion of coupling is achieved by a set of 44 skew quadrupoles, 24 of them placed in the clusters
and 20 in the arcs,

Several configurations have been studied with the above described set of errors and correc-
tions: N25-S800, NS0-S800 and the baseline collider optics N50-S50. We will limit the
detailed discussion to the former one. :

7.3 N25-5800

As already remarked, this optical setting has been studied in more detail since it represents
a worst case scenario as far as chromatic effects from the IRs are concerned. The low beta IR
tuned at 0.25m contributes about 100 units of chromaticity. We compared the following sextu-
pole correction schemes: ’



global Linear chromaticity & from arcs and IRs corrected with the arc sextupoles

local 100 100 units of linear & corrected by the local system, the rest by the arc
sextupoles. The local system minimizes the 2™ and 3™ order tune shift with

momentum.

local_50 50 units of linear £ corrected by the local system, the rest by the arc
sextupoles. The local system minimizes the 2°¢ and 3" order mne
shift with momentum.

local_0 All the linear chromaticity & is corrected with the arc sextupoles. The local

system minimizes the 2" and 3™ order tune shift with momentum.

For every correction scheme the dynamic aperture as a function of momentum has been
determined for different error sets.The results are summarized in Figure 18.a-d..

Figure 18.a describes the ideal lattice, while in Figure 18.b-d are summarized the results
for the lattice with errors: they have the same set of alignment errors but differ in the assign-
ment of field errors. When field errors are added to the arc dipoles and quadrupoles, the
dynamic aperture obviously decreases, but there is a clear improvement in the momentum
aperture with the local schemes compared to the global scheme.
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Figure 18.a N25-S800: ideal lattice

The dynamic aperture of the global scheme on momentum is still larger than for the local
schemes. The assignment of field errors to the IR quadrupoles ( Figure 18.c) and successively
to the IR triplets (Figure 18.d) further reduces the dynamic aperture of the machine as
expected but the increase in momentum aperture over the global scheme is verified.
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Figure 18.c N25-S800: field errors in arc and IR quads (not in triplets)

Furthermore, the reduction of aperture for Ap/p=0 of the local schemes versus the global
one is no longer present, because the effect of the field errors in the IR quadrupoles dominates
the dynamics on momentum. Lautice performance in the presence of errors led us to select the
local_O scheme as the most effective way of correcting the chromatic effects of the IR. The
local_0 scheme is also preferred because of the minimum strength of the local sextupoles.



The dynamic aperture for this optics, without crossing angle and assuming the standard 3B
specifications for the IR quadrupoies, is described in Fig.19. The global sexmupole correction
scheme is used here since the optical symmetry makes this optics less sensitive to chromatic
effects.

A horizontal (vertical) crossing angle of 135 prad between the two beams at interaction
points is achieved with a system of 4 horizontal (vertical) kickers per IP. The residual horizon-
tal (vertical) dispersion produced by the system is matched with a set of 6 normal (skew) qua-
drupoles per IP. The effect of the crossing angle is to make the beam pass off axis through the
triplets, increasing the effect of the higher order multipoles in the quadrupoles. For a crossing
angle of 135 [rad the maximum closed orbit offset in the triplets is 5 mm: this effect has been
simulated and the reduction of the aperture at collision found to be at the 1-2 sigma level.

The multipoles assumed so far for the triplets have been derived from the specifications for
the 40mm aperture arc quadrupoles by appropriately rescaling the values to an aperture of
50mm in the IR quadrupoles. A study is now in progress towards the exact determination of
the field quality required for the IR triplets, in particular the higher order multipoles responsi-
ble for aperture reductions. Preliminary results show that the systematic bs multipole in the
triplets, the first multipole allowed by symmetry in a quadrupole, has a significant effect on the
aperture. Lowering bs from 0.534 * 10 4 (at 1cm) to 0.1 * 10  increases the dynamic aper-
ture by 3-4 sigma. A typical value for the dynamic aperture at collision, taking into consider-
ation the crossing angle and the bs multipole is 12 sigma.

8 Summary

Our scheme for correcting the nonlinear chromaticity of each IR consists of placing sextu-
poles in 4 families in the regular cells adjacent to the IRs and spread out over 6 betatron wave-
lengths into the arcs on each side of a cluster. These ‘local’ sextupoles correct primarily for the
second and to a lesser extent the third order chromaticity of the IRs while contributing net zero
linear chromaticity. The linear chromaticity of the entire collider ring is removed by two fami-
lies of sextupoles in the remaining cells in the arcs.

We have tested the above scheme with different configurations of IRs. It improves the
chromatic and dynamic behaviour for every configuration studied. Even for the worst case
with one IP at 3"=0.25m and the other at 3*=8m, the wne shift with momentum data show
that the nonlinear correction scheme increase the momentum aperture more than three times.
This increased momentum aperture is obtained at the expense of a slight reduction in the
dynamic aperture for particles on momentum, when no field errors in the magnets are
included. When we add a realistic set of errors, specially the field errors in the IR triplets, the
local sextupoles do not affect the dynamic aperture on momentum.
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Figure 18.d N25-S800: field errors in arcs, IR quads and triplets

7.4 Effect of the crossing angle and field quality in the IR triplets.

As previously remarked, the former results about the collider dynamic aperture at top
energy do not take into consideration the effect of the crossing angle and assume the 3B spec-
ifications for the field quality in the IR quadrupoles. Both assumptions have important conse-
quences as far as the effect of the IR triplets quadrupoles on the dynamics is concerned. Work
is presently in progress that specifically addresses IR triplet issues: some preliminary results
will be summarized here for the N50-S50 baseline optics configuration.
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Figure 19 Baseline configuration N50-S50



