SSCL-N-810

Comment on the Analysis of the Stability Domain
for a Single Sextupole Map

M. Carioli

Computational Physics Laboratory
Physics Department
University of North Texas
Denton, TX 76203-5368

G. Tsironis

Machine Simulation and Diagnostic Group
Superconducting Super Collider Laboratory”
2550 Beckleymeade Ave., M.S. 4011
Dallas, TX 75237

November 1992

*Operated by the Universities Research Association, Inc., for the U.S. Department of Energy under Contract
No. DE-AC35-89ER40486.



Abstract

We show that a simple and fast algorithm based on particle
tracking can determine the border of the central island of a
symplectic map modelling a single sextupole with desired ac-
curacy on a personal computer, whereas a recently proposed
?analytic” method requires the use of a Cray supercomputer.



The dynamic aperture can be defined as the maximum phase space area of
a beam up to which the motion of the particles of the beam remain bounded.
The standard method to determine this quantity is particle tracking. How-
ever, this method is purely numerical and does not give informations on the
actual process of transport in phase space. Recently, a new method has been
proposed [1], where the dynamic aperture is obtained by finding the minimal
distance between the origin and the invariant manifolds of the unstable fixed
point of the Hénon map [2],

# = cos(21Q)z — sin(27Q)(y — z%), (1)
Y = sin(27Q)y + cos(27Q)(y - 2?), (2)

where  denotes the tune parameter. This map models particle dynamics
through an individual sextupole. Recent experiments performed at Fermilab
shows that the kind of effects predicted by the study of the Henon map can
be reproduced in the real life [3-5].

To understand why this method works we must briefly review certain
facts of dynamical system theory [6]. Any symplectic map, including the
maps modelling particle dynamics in accelerators, have fixed points, that
is equilibrium points where a particle would remain forever if left unper-
turbed. The Hénon map, for example, has two fixed points. The stable
fixed point is the origin, and the unstable fixed point is known analytically:
X = (2tan(nQ), 2tan?(xQ)). The former one is at the center of the stability
domain of the map, where one should place the beam. The latter one lies in
the chaotic region of the phase space.

There is a set of points, the invariant manifold, associated to the unstable
fixed point. The invariant manifold of X is defined as the set of all points
going asymptotically to X as the number of turns of the map goes to +0o or
—00. The +o0 limit is the stable manifold of X, M,{X), and the —oo limit
is the unstable manifold of X, M,(X). It is clear that invariant manifolds
are fundamentally important in the understanding of transport processes
in symplectic maps, because they are defined in terms of time asymptotic
objects. Three examples are displayed in Fig. 1, 4 and 5, for different values
of Q. They are obtained by means of the following procedure. The map
is linearized at X, and the stable and unstable eigenvectors e, and e, of
the corresponding linear map are found. Starting from M initial conditions
distributed on e, and e,, within a short distance ¢ from X, one iterates the
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map N times, respectively forward and backward in time. Fig. 1, 4 and 5
have been made using € = 0.001, M = 4000 and N = 15. As it is possible to
see from the pictures, the stable and unstable manifolds intersect at points
called homoclinic points. Homoclinic points are points that converge to X in
both directions of time. A Beside the fixed point X, a symplectic map like
the Hénon map, has infinitely many periodic orbits. Each unstable periodic
orbit has stable and unstable manifolds associated with it. Fig. 2 shows
both invariant manifolds of the unstable fixed point and of the period five
orbit, obtained using M = 200 and N = 100. The invariant manifolds of
different periodic orbits in the chaotic region intersect each other at points
called heteroclinic points. Heteroclinic points are points that in the infinitely
remote past were very close to one periodic orbit and in the inifinitely far
future will be very close to another periodic orbit. In Fig. 3, one sees how
the invariant manifolds of X and of the period five orbit are interwoven in
a beautifully complex fashion. Fig. 2 does not show any intersection of the
two manifolds because we have not iterated for a sufficiently large number
of turns, in order to show that the two manifolds are indeed two distinct
objects, associated to different periodic orbits.

By heteroclinic intersections with successive periodic orbits, the invari-
ant manifold of the fixed point X can reach regions as close to the stability
domain of the map as one likes. Fig. 3 illustrates this concept. The stability
domain of Hénon’s map is the pentagonal region between the origin and the
invariant manifold. Fig. 5 shows a similar construction for a different tune.
Here the stability domain is the heart-shaped region close to the origin, com-
pletely surrounded by points of the invariant manifold of X. The conclusion
is that one can obtain an exact definition of the dynamic aperture of a map
by reconstructing the invariant manifolds associated to the unstable fixed
point of the map in the chaotic region.

Our comment concerns the following observation. The border of the sta-
bility region of the map is, in terms of map iterations, infinitely far from
the unstable fixed point both in the past and in the future. This is because
the points in the stability region are forever confined there and will never go
into the chaotic region. This means that the rate of filling of the invariant
manifold becomes extremely slow when the manifold gets sufficiently close
to the stability region. '

The practical consequence of this fact is that, in order to achieve suffi-
cient accuracy in the definition of the central region limited by the invariant
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manifold, one needs much more particles and iterations (typically M = 10°
and N = 10%), making this method extremely expensive. We must also
consider that calculations of the dynamic aperture for maps modelling ac-
celerator dynamics accounting for higher order non-linear terms and both
transversal and longitudinal oscillations, are bound to be even more time-
consuming, because of the higher complexity of the map. ©II We show here
that standard particle tracking, with minor modifications, can yield the same
degree of accuracy with affordable computational requirements. The idea is
very simple. Instead of reaching the stability region from the unstable fixed
point deep in the chaotic region, by means of the lengthy construction of the
associated invariant manifold, we find directly the border between chaotic
and regular region of phase space by a binary search algorithm, exactly as
we were looking for the zero of a function.

Basically, we identify the orbit at the border between the central stable
region and the surrounding chaotic region, by tracking a small number of
particle (typically 10), along the line joining the origin with the unstable
fixed point. The Lyapunov exponent or the escape time are calculated for
each particle. A new smaller interval is defined by the last stable particle and
the first unstable one. This procedure is repeated until the desired accuracy
is obtained. With this method we obtained the border between regular and
chaotic region plotted in Fig. 6, at the same value of the tune as in Fig. 5,
with 8 digits accuracy in the determination of the initial conditions, running
a simple Mathematica notebook on a NeXT station, for 155 sec. The method
requiring the calculation of the invariant manifolds to the same accuracy
requires on the same machine about 4.17 days. With a C or FORTRAN
program, the requested time is decreased to a few hours, which is still too
much, since the calculation must be repeated for a large number of values of
the parameter, which would force us to use a supercomputer.

Fig. 7 shows in the square [-1, 1] x{—1, 1] the orbits separating the central
regular region from the chaotic region, obtained with our method, at several
values of the tune parameter Q. The cases @ = 0.26 and Q@ = 0.35 are
close, respectively, to the 1/4 and 1/3 resonances. Fig. 8 shows the dynamic
aperture obtained by our fast tracking algorithm, plotted against Q. The
aperture is drastically reduced in the vicinity of the major resonances, as one
would expect.

We are presently implementing the same procedure in the case of a 12t
order six-dimensional symplectic map modelling beam dynamics in the SSC.
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Fig. 1: Stable and unstable manifolds of the unstable fixed point
of the Hénon map, at the tune Q = 0.2114.
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Fig. 2: Stable and unstable manifolds of the unstable fixed point
of the Hénon map, at the tune Q = 0.215.
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Fig. 3: Stable and unstable manifolds of the unstable fixed point
and of the unstable period five orbit of the Hénon map, at the tune
Q = 0.215. |
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Fig. 4: Stable and unstable manifolds of the unstable fixed point
of the Hénon map, at the tune Q = 0.255.
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Stable and unstable manifolds of the unstable fixed point

of the Hénon map, at the tune Q

Fig. 5
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Fig. 6: Orbit at the border separating the stable and the chaotic
regions of the phase space of Hénon’s map, at the tune Q = 0.38.
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Fig. 7: Orbits separating the stable and the chaotic regions of the
Hénon map, for Q = 0.205, 0.22, 0.235, 0.26, 0.285, 0.35, going from
the left to the right and from the top to the bottom.
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