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Abstract

We show that a simple andfastalgorithm basedon particle
tracking can determine the border of the central island of a
symplectic map modelling a single sextupole with desired at
curacy on a personal computer, whereas a recently proposed
"analytic" method requires the useof a Cray supercomputer.
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Thedynamicaperturecanbe definedasthe maximumphasespaceareaof
abeamup to which themotionof theparticlesof the beamremainbounded.
The standardmethodto determinethis quantity is particletracking. How
ever, this methodis purelynumericalanddoesnot give informationson the
actualprocessof transportin phasespace.Recently,anewmethodhasbeen
proposed[1], wherethedynamicapertureis obtainedby finding the minimal
distancebetweentheorigin andtheinvariant manifoldsof the unstablefixed
point of the Hénonmap [2],

I = cos2irQx- sin2rQy - z2, 1

I = sin2irQy+ cos2irQy- 2

whereQ denotesthe tuneparameter.This map modelsparticledynamics
throughan individual sextupole.Recentexperimentsperformedat Fermilab
showsthat the kind of effectspredictedby thestudy of the Henonmapcan
bereproducedin the real life [3-5].

To understandwhy this method works we must briefly review certain
facts of dynamical system theory [6]. Any symplecticmap, including the
mapsmodelling particle dynamicsin accelerators,have fixed points, that
is equilibrium points where a particlewould remain forever if left unper
turbed. The Hénon map, for example,has two fixed points. The stable
fixed point is the origin, and the unstablefixed point is known analytically:
X = 2 tanirQ,2 tan2frQ. The formeroneis at the centerof the stability
domainof the map,whereoneshouldplacethe beam.The latterone lies in
thechaoticregion of the phasespace.

Thereis asetof points,theinvariant manifold,associatedto theunstable
fixed point. The invariant manifold of X is definedasthe set of all points
goingasymptoticallyto X asthe numberof turnsof the map goesto +oo or
-cc. The +oo limit is thestablemanifold of X, M,X, andthe-cc limit
is the unstablemanifoldof X, 214X. It is clear that invariantmanifolds
are fundamentallyimportant in the understandingof transportprocesses
in symplecticmaps,becausethey are definedin termsof time asymptotic
objects.Threeexamplesaredisplayedin Fig. 1, 4 and5, for different values
of Q. They are obtainedby meansof the following procedure. The map
is linearizedat X, and the stable and unstableeigenvectorse, and e of
the correspondinglinear map arefound. Startingfrom M initial conditions
distributedon e.4 and e3, within a short distance from X, one iteratesthe
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map N times, respectivelyforward andbackwardin time. Fig. 1, 4 and 5
havebeenmadeusingE = 0.001,M = 4000 andN = 15. As it is possibleto
seefrom thepictures,the stableand unstablemanifolds intersectat points
calledhomocinicpoints. Homocinicpointsarepointsthat convergeto X in
both directionsof time. A Besidethe fixed point X, a symplecticmap like
the Hénonmap,hasinfinitely manyperiodicorbits. Eachunstableperiodic
orbit has stableand unstablemanifolds associatedwith it. Fig. 2 shows
both invariant manifoldsof the unstablefixed point and of the period five
orbit, obtainedusing M = 200 andN = 100. The invariant manifoldsof
different periodicorbits in the chaoticregion intersecteachotherat points
calledheteroclinicpoints. Heteroclinicpointsarepointsthat in theinfinitely
remote past were very close to oneperiodicorbit and in the inifinitely far
future will be very closeto anotherperiodiàorbit. In Fig. 3, oneseeshow
the invariant manifoldsof X andof the period five orbit areinterwoven in
abeautifully complexfashion. Fig. 2 doesnot show anyintersectionof the
two manifoldsbecausewe have not iteratedfor a sufficiently large number
of turns, in order to show that the two manifoldsare indeedtwo distinct
objects,associatedto different periodicorbits.

By heteroclinic intersectionswith successiveperiodicorbits, the invari
ant manifoldof the fixed point X canreach regionsascloseto the stability
domainof the mapasonelikes. Fig. 3 illustratesthis concept.The stability
domainof Hénon’smap is the pentagonalregionbetweenthe origin andthe
invariant manifold. Fig. 5 showsasimilar constructionfor a different tune.
Herethestabilitydomainis theheart-shapedregioncloseto the origin, com
pletelysurroundedby pointsof theinvariantmanifoldof X. Theconclusion
is that onecanobtainan exactdefinition of the dynamicapertureof a map
by reconstructingthe invariant manifolds associatedto the unstablefixed
point of the map in the chaoticregion.

Our commentconcernsthe following obèervation.Theborderof thesta
bility region of the map is, in termsof map iterations,infinitely far from
the unstablefixed point both in the pastandin the future. This is because
thepointsin thestability region areforeverconfinedthereandwill nevergo
into the chaoticregion. This meansthat therateof filling of the invariant
manifoldbecomesextremelyslow when the manifold getssufficiently close
to the stability region.

The practicalconsequenceof this fact is that, in order to achievesuffi
cient accuracyin thedefinition of the centralregion limited by the invariant
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manifold, one needsmuch moreparticlesanditerationstypically M = io
and N = iou, making this method extremelyexpensive. We must also
considerthat calculationsof the dynamicaperturefor mapsmodellingac
celeratordynamicsaccountingfor higher order non-linear termsand both
transversaland longitudinaloscillations,are bound to be even more time-
consuming,becauseof the highercomplexityof the map.enWe showhere
that standardparticletracking,with minormodifications,canyield thesame
degreeof accuracywith affordablecomputationalrequirements.The ideais
very simple.Insteadof reachingthe stability region from theunstablefixed
point deepin thechaoticregion, by meansof thelengthy constructionof the
associatedinvariant manifold, we find directly the borderbetweenchaotic
andregularregion of phasespaceby a binary searchalgorithm, exactly as
we werelooking for the zero of a function.

Basically,we identify the orbit at the borderbetweenthe central stable
region and the surroundingchaoticregion, by tracking a small numberof
particle typically 10, along the line joining the origin with the unstable
fixed point. The Lyapunovexponentor the escapetime arecalculatedfor
eachparticle.A new smallerinterval is definedby thelast stableparticleand
the first unstableone. This procedureis repeateduntil the desiredaccuracy
is obtained.With this methodwe obtainedthe borderbetweenregularand
chaoticregion plotted in Fig. 6, at the samevalue of the tuneasin Fig. 5,
with 8 digitsaccuracyin the determinationof the initial conditions,running
a simpleMathematica notebookon a NeXT station,for 155 sec.Themethod
requiring the calculation of the invariant manifolds to the sameaccuracy
requireson the samemachineabout 4.17 days. With a C or FORTRAN
program,the requestedtime is decreasedto a few hours, which is still too
much, sincethe calculationmustbe repeatedfor a largenumberof valuesof
the parameter,which would forceus to useasupercomputer.

Fig. 7 showsin thesquare[-1,1] x [-1,1] theorbitsseparatingthecentral
regularregion from thechaoticregion,obtainedwith our method,at several
values of the tune parameterQ. The casesQ = 0.26 and Q = 0.35 are
close,respectively,to the 1/4 and 1/3 resonances.Fig. 8 showsthe dynamic
apertureobtainedby our fast tracking algorithm, plotted againstQ. The
apertureis drasticallyreducedin thevicinity of themajor resonances,asone
would expect.

We arepresentlyimplementingthe sameprocedurein the caseof a l2

ordersix-dimensionalsymplecticmapmodellingbeamdynamicsin theSSC.
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Fig. 1: Stable and unstable manifolds of the unstable fixed point
of the Hénon map, at the tune 0=0.2114-
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Fig. 2: Stable and unstable manifolds of the unstable fixed point
of the Hénon map, at the tune Q = 0.215.
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Fig. 3: Stable and unstable manifolds of the unstable fixed point
and of the unstable period five orbit of the Hénon map, at the tune
0 = 0.215.
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FIg. 4: Stable and unstable manifolds of the unstable fixed point
of the Hénon map, at the tune 0=0.255.
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Fig. 5: Stable and unstable manifolds of the unstable fixed poInt
of the Hénon map, at the tune 0=0.38.
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1.

Fig. 6: OrbIt at the border separating the stable and the chaotic
regions of the phase space of Ilénon’s map, at the tune 0=0.38.
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Fig. 7: Orbits separating the stable and the chaotic regions of the
Hénon map, for 0= 0.205, 0.22,0.235, 0.26, 0.285, 0.35, going from
the left to the right and from the top to the bottom.

1:
A’IJI

N.

4

S

-I



A

0.1 0.2 0.3 0.4

5

4

3
1/5 1/4

2

1/3

m

1

0 0

Fig. 8: The dynamic aperture of the Hénon map plotted against the tune Q.


