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1. Introduction :

A measuring coil in practice may have several types of imperfections, which may affect
the accuracy of field measurements. One class of imperfections relates to coil fabrication.
Exampies in this class are a sag, bow, a twist in the tangential coil, and a mismatch, or
offset between the geometrical center of the coil and the rotation axis. Another class of
imperfections relates to placement of the coil during actual measurements. Examples in this
class are a displacement and a tilt of the coil axis with respect to the magnetic axis. Detailed
analytical formulations are available to deal with the problem of displacement' and sag?.
Out of all the imperfections listed above, the measured parameters are most dramatically
affected by displacement. As a result, centering of measured parameters to eliminate the
displacement effects is a routine feature in all data analysis. The other imperfections gener-
ally have negligible effects. Nevertheless, a quantitative estimate of the effects of other types
of imperfections will be quite useful, for example, in deciding upon machining tolerances.

The effects of other imperfections noted above are discussed in this note. Analytical
results are presented for each one of these, along with some typical numerical results. The
formalism for a displacement of axes is basic to all analysis. Some useful results are re-
produced here for ready reference. If C'(n) and a(n) are the amplitudes and phases of the
harmonic fields with respect to & given origin, then these parameters in a displaced reference
frame are given by?

Cmesplinam)} = 300 | =] (3) " emiittalg - - men

f=n

where C(n) and &(n) are the coefficients in the displaced reference frame having its origin at
polar co-ordinates (ro,o) in the undisplaced reference frame. Another useful result for this
note is the voltage induced in a tangential coil, which is given by®

V(t) = é C(n) (%_)n—l 2LR.Nwsin (%—A—) cosjn{wt — § + a(n)}] (2)

where R.=radius of coil, L=length of coil, N=number of turns, w =angular speed of clock-
wise rotation, A=angle subtended by the coil, and §=the coil center line angle at ¢ = 0.



2. A ‘Typical’ Dipole Magnet :

It is seen from Eq.(1) that the strengths of various terms in the expansion are propor-
tional to C({). Thus, apart from the amount of displacement, the effective coeflicients also
depend on the actual harmonic contents of the magnetic field. This is true for most of
the imperfections to be dealt with in this note. In order to obtain quantitative results in
a situation of practical interest, we shall consider a typical dipole magnet characterized by
harmonic contents measured in an actual dipole, DSA207, picked arbitrarily. This is a short,
50mm SSC magnet. The magnetic field parameters in this magnet are given in Table I. The
reference radius, R, is taken to be 1.0cm. The normal (¥,) and skew (a!,) coefficients are av-
erages of up and down ramp measurements in a cold run. All the harmonic field parameters
are calculated from these coefficients, assuming a dipole field of 2.5 Tesla. The reiationship
between (b, a,) and [C(n), x(n)] is given by

bt = Gdeontna(nll, oy = — G snina(e) 3)

Table I. Magnetic Field Parameters
of a ‘T'ypical’ Dipole Magnet

3.34 x 1074 .
4.20 x 10~ 1468 || 1.674
6.93 x 10~ 28.910 H -0.012
9.08 x 10~3 71.747 | 0.363
4.51 x 10~ 48.240 | 0.006
4,78 x 107 24.856 H -0.019

Qo =3 ]| on) il D] -

250 x 10-7| 11.250 || 0.000
99.76 x 105 | 39.674 | 0.039
10| 250 x 10~7 | 9.000 IPLOOO

11 [ 3.01 x 10~% 32.294 || 0.012
12 0.0000 0.000 || 0.000
13 | 2.50 x 10~7 13.846 || -0.001

The coefficients as measured by an imperfect coil may be in large error, but it may be
possible to get rid of most of the error by centering, as we shall see in later sections. This,
however, requires that a reliable criterion for centering be available. In Table I, the field
parameters for n = 12 are made zero, and terms higher than n = 13 are also assumed to
be zero. Though artificial, this provides a very reliable means of centering the numerically
calculated data for the purpose of this note. In practice, high order terms may not always
be so reliable. In particular, later coil cross sections are expected to give much smaller high
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order terms. It may be pointed out here that recent resulta* on a gquadrupole configured
dipole suggest interesting possibilities for reliable centering in actual measurements of dipole

magnets.

3. Effect of Sag in the Coil :

Although the effect of sag has been formulated earlie??, it is included here mainly for the
sake of completeness. A sag results from finite rigidity of the coil form, and is aggravated
by the need to have a long coil with a small diameter. In analysis of sag, it is assumed that
the coil has a curved shape due to its own weight. This means that as the coil rotates, the
shape of the coil along its length does not change. At each axial position, the rotation axis
coincides with the local geometrical axis of the coil form, but is different in terms of a space
fized reference frame. This is a valid assumption, specially in view of rather low rotation
speeds. Sag is therefore a complex form of displacement, where the displacement parameter
o depends on axial position and o is —90° (vertically downward displacement). It should
be pointed out here that a bow in the coil is different from sag, as discussed later in Sec.9.

If the transverse profile of the sagging coil is known, the effective coefficients, C.g(n) and
a.y(n) may be obtained by integration along the length of the coil. Assuming a parabolic
profile with zero dispiacement at the ends and a maximum displacement of & at the center
of the coil, it has been shown? that

: o= (£—1) R\ [2(2 - )
Calmemplinaqg(m} = 200 [(t—n)!(n—z)!] (3) sl

x expli{(£ - n)g + La(O)} (4)

where (2m)!! = 2.4.6...2m, (2m + 1)!! = 1.3.5...(2m + 1) and 0! = 1, The differences
between effective and real harmonic field amplitudes and phases are given in Tables IT and III.
Two different values of & are considered. One is a rather large sag of 0.030", and the other
one is & ‘moderate’ sag of 0.010". The valuesin Tables IT and III thus represent the worst case
values, rather than typical values. The reference radius R was taken as 1.0cm. Amplitude
errors in excess of 100% are also shown as 100% in Table II. As expected, the uncentered
parameters have large errors, particularly for the unallowed n = even terms. However, after
a centering correction is applied using b; — b,; feed down, the errors are dramatically
reduced. Even for the large sag of 0.030", almost all the amplitude and phase errors become
negligible. The situation is evidently very comfortable with the ‘moderate’ sag of 0.010".
The centering radius obtained in each case is very close to (2k/3), which is the average
displacement for a parabolic sag.

It can therefore be concluded that a sagging coil (within easily achievable limits) can be
considered merely as a displaced coil with an average displacement of (25/3). This is not a
serious problem in field measurements, provided a reliable means of centering is available.
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Table II. Amplitude Errors due to Sag

in a ‘Typical’ Dipole Magnet

AC(n) (%) for 0.030" Sag [| AC(n) (%) for 0.010" Sag

Before After Before After
Centering Centering || Centering Centering

1 -0.001 0.000 0.000
2 12.653 -0.002 4.226 0.000
3 -0.637 -0.067 -0.123 -0.007
4| 100.000 0.322 ] 83.760 0.034
5 1.436 0.041 0.431 0.005 u

6 32.505 -0.028 9.943 0.003
“ 7 19.285 2.946 2.578 0.328
8 | 100.000 -0.779 || 100.000 —0.168
9 -5.481 0717 -0.867 -0.080
10 || 100.000 -0.166 | 100.000 -0.007
11 1.692 o.2sf“ 0.188 0.031
12 | 100.000 0.000 | 100.000 0.000
(13 0.000 0.000 H 0.000 0.000

Table ITI. Phase Errors due to Sag
in a ‘Typical’ Dipole Magnet

Aa(n) (mrad) for 0.030" Sag | Aa(n) (mrad) for 0.010" Sag

Before After Betore After
Centering Centering || Centering Centering
1 0.000 0.000 0.000 0.000
2 5.869 -0.009 2.124 -0.002
3 —0.174 0.022 —0.087 0.002 |
4 -85.431 -0.088 ~55.079 -0.021 |
5 “> 0.839 -0.007 || 0.291 ~0.001
8 “ -18.799 0.023 ~7.088 -0.003 H
7 1.356 0.220 u 0.237 0.025
8 -5.989 -0.152 -5.389 -0.043
9 _0.090 0.026 u -0.005 0.003
10 -7.102 -0.012 -5.576 -0.012
11 0.126 0.021 0.014 0.002 ||
12 392.701 0.000 392.704 0.000 ||
13 0.000 0.000 0.000 0.000 ||



4. Effect of Twist in the Coil :

The wires of the coil are placed inside machined grooves in the coil form. The angular
location of the coil is characterized by the parameter § in Eq.(2). Inaccuracies in the groove
locations along the length of the coil would mean a varying §. It is assumed that the two
grooves remain parallel to each other, so that A does not change. This imperfection will be
referred to as a fwisi. Effect of errors in A will be discussed later in Sec.6.

Let us consider a general case where § changes randomly along the length of the coil
around a mean value, §. It can be shown® that for small variations, the cosine term in Eq.(2)
should be replaced by

cos[n{wt ~ § + a(n)}] — [1 - (g) o'g] cos[n{wt - & + a(n)}] (5)

where o5 is the RMS variation in §. Eq.(5) shows that the phases of the multipole fields,
a(n}, can still be obtained correctly if one uses the average value of § in the calculations. The
routine coil-calibration procedure should readily yield this average §. On the other hand,
the amplitudes are affected by a harmonic dependant factor. This result is opposite of what
one might intuitively expect. The errors are larger for higher harmonics. If we set an upper
limit on the allowable error in the highest harmonic of interest, Eq.(5) can be used to specify
the RMS variation in §. Assuming a maximum error of 1% for n = 15, &5 should be less
than 9.4 mrad (0.54%), which should be readily achievable in practice.

A special case is that of a uniform twist, where the grooves are straight and parallel to
each other, but do not run parallel to axis of the coil. The angle § in this case varies linearly
from one end to the other. The twist angle, © is given by difference between § values at the
two ends of the coil. It can be shown® that o5 in this case is ©/4/12. Thus, the imit on a
uniform twist angle © for 1% accuracy in C(15)} is even more comfortable at 32.7 mrad or
1.9%. With this limit, the amplitude errors up to 20-pole (n = 10) are less than 0.5%.

5. Systematic Error in § :

It was shown in the previous section that random errors in § are not too serious, as
long as the average § is accurately known. In practice, there may be calibration errors in
determining this §. The effect of this systematic error is to change all phase angles by a
fixed amount. This is the same -as & rotation of reference frame. If the normal and skew
coefficients are calculated in a space fized reference frame, the errors can be calculated by
differentiating Eq.(3) :

Ab, = [(n+1)ar]es, Aa, = [(n+1)b]es (6)
where € is the systematic error in §. Assuming {¥,,a.} ~ 0.5 unit, and permissible errors

of 0.01 unit for n ~ 10, we get a limit of ¢ ~ 1 mrad. In practice, these coefficients are
calculated in a frame where a(l) = 0, and not in a space fixed frame. In this case, there is
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no error at all, since all phase angles, including a(1) are changed by the same amount, and
phase angles relative to a(l) remain unaffected.

6. Random and Systematic Errors in A :

The treatment of random variation in A slong the length of the coil is identical to the
case of §. Corresponding to Eq.(5), we have in this case® :

. (nA n? . {nlA

(F) =~ (5)4] = (F) g
It can be seen that the tolerance on the RMS variation of A can be a factor of two larger
than for §, and should be easily achieved in practice.

A systematic error in A affects the amplitude differently. From Eq.(2), we get

T = =P ®

where €, is systematic errorin A. The fractional amplitude error reduces with n in this case.
For a 1% accuracy in C'(1) with a A = 12° coil, €5 should be less than 2.1 mrad (0.12%).

7. Random and Systematic errors in the Coil Radius :

Random errors in the coil radius are a result of machining errors - both in the coil form
outer surface, as well as in the wire groove depths. Also, a typical multiturn coil, such as
the tangential coil, has several layers. The different layers can be viewed as coils of different
radii. The effect of these multiple layers is the same as a coil of varying radius. Once again,
a calculation similar to that in the previous sections shows® that

- G "

where the average radius R. is assumed to be known accurately. To keep this n dependant
correction below 1% up to n = 15, we should have the RMS variation og, < 0.005" in a coil

of 0.5" radius.

Let us apply the result.in Eq.(9) to the special case of a multilayered coil, where the
only variation in R, is assumed to be due to different layers. All other fabrication errors
are neglected. Let there be N layers of a wire of diameter d. If R, is the radius of the
innermost layer, subsequent layers will have radii R, + d, R, + 2d,.... The mean, R, and
RMS variation in this case are®

(N-1)
2

R=m+ e o o E vy (10)



The fractional errors in various amplitudes are given by

AC(n) _n(n~—1) d\’
C(‘l:; NS 1) (_R:) (1)

As expected, the errors given by Eq.(11) vanish if the coil has only one layer (N = 1). To
obtain some numerical estimates, let us consider the tangential coil in the F-mole. This has
five layers of a 0.006" diameter wire, and R. = 0.482%. The amplitude errors in this case are
0.3% for n = 5 and 1.4% for n = 10.

If there is an error in knowing A., then the fractional errors in the amplitudes sre given
by ~ n(AR./R.). This error could be significant for large n. For example, an error of 0.001"
in a coil of 0.5" radius would give a 3% error in n = 15.

8. Offset in Rotation Axis :

If the rotation axis of the coil does not coincide with the geometrical axis of the coil
form, then Eq.(2) no longer correctly gives the voltage induced in the coil. Let (rg, o) be
the polar co-ordinates of the geometrical center of the coil form at time ¢t = 0, measured in a
reference frame having origin at the center of rolation. The parameters (rg, Yo) are assumed
to be constant along the length of the coil. In other words, the coil is perfectly straight, and
not bowed.

Fig.1 illustrates & cross section of the coil where the locations of the wires are shown at
various instants in one rotation. The triangles are formed by joining the rotation center, the
coil form center and the center of the coil. The invariant vertex is obviously the rotation
center. The small dashed circle is the path traced by the geometric center of the coil form.

The instantaneous flux through the coil can be easily calculated by transforming the
field parameters to the geometrical center. The only complication in this is that the angular
position, ¥ of the coil form center changes with time as the coil rotates. Nevertheless, the
transformation given in Eq.(1) remains valid at all instants. The expression for induced
voltage can be obtained by differentiation. After some simple algebra, and a rearrangement
of terms, it can be shown® that the effective coeflicients in this case are given by :

C.g(n) exp{inacg(n)} sin (1‘.2‘3) -

3 ()R [T o= () =tat) - (- 0= (2

where § is once again the angular position of the coil at ¢ == 0, measured in a reference frame
with origin at the geometrical center of the coil, and not at the rotation center.
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Some interesting features of the summation in Eq.(12) should be noted. First of all, the
effective coeflicients for a given harmonic do not depend on other harmonics. In other words,
there is no feed down due to this offset. Secondly, the offset r; is scaled by the radius of the
coil, R., rather than the reference radius R. Finally, the summation goes from 1 to n, rather
than from n to 0o. Thus, for the case of dipole field, n = 1, only one term contributes, and
the summation reduces to the usual expression for the case without offset. The dipole field
amplitude and phase are therefore not affected at all by offset. Another interesting feature is
that a harmonic voltage does not vanish even if sin(nA/2) is zero. As an example, a dipole
buck winding (A = 180°) will also see a quadrupole field. Without an offset in rotation, a
dipole buck winding would be insensitive to the quadrupolar field [see Eq.(2)]. This result
can in fact be utilized to actually measure the amount of offset in a given coil.

Figs.2 and 3 show the effect of a 0.005" offset in rotation axis on the harmonic amplitudes
and phases. The radius of the coil was assumed to be 15mm. Once again, this offset is perhaps
larger than what can be easily accomplished. Typical amplitude errors are of the order of
a few percent. The phase errors are typically about 1 mrad and do not depend much on
the harmonic number. If terms corresponding to £ = n and £ = (n — 1) only are considered
in Eq.(12), then the errors are proportional to the offset. In order to keep the amplitude
errors to below 1%, the offset should be less than 0.001". However, one can probably tolerate
much more than 1%, since typical overall measurement accuracy may approach only a few
percent in most cases. It may be a worthwhile idea to obtain the offset parameters as part
of routine coil calibration procedure by using the dipole buck winding in a quadrupolar field,
as explained earlier. These parameters can then be used to correct the measured field in any
magnet, if at all necessary.

9. Bow in the coil :

The coil form in practice may not turn out to be perfectly straight. An arched coil may
result, for example, due to stresses on the large outer machined surface of the coil form. As
opposed to a sagging coil, which is flexible, a bowed coil is rigid. If we consider a transverse
section of the bowed coil, it would rotate about a space fized rotation axis, rather than
the local geometrical center of the coil form. This is opposite of what happens in sag, as
explained earlier in Sec.3.

Just as the formalism for a displacement of axes can be used to analyze the problem of
sag (see reference 2), the formalism presented in Sec.8 for offset of rotation axis can be used
to analyze the problem of bow. Such a detailed calculation, however, appears unnecessary
in view of the small errors caused by these imperfections. For a given amount of bow, the
effects will be smaller than those caused by the same amount of offset, for which estimates
were presented in the previous section. In analogy with the case of sag, a bow of magnitude
h may be considered as an offset of roughly 2h/3 (see Sec.3). If measurement of offset is
made a part of coil calibration procedure as suggested in Sec.8, the measurement would
reflect overall offset parameters encompassing the effects due to an offset, as well as due to

a bow in the coil.



10. Tilt in Placement of the coil :

The imperfections discussed so far in the earlier sections were essentially fabrication
errors. Even with an otherwise perfect coil, the rotation axis in actual measurements may
not coincide with the magnetic axis. In general, the coil rotation axis can have a displacement
and a #it with respect to the magnetic axis. The problem of displacement is well known
and measured data are routinely centered. The tilt of rotation axis is generally neglected
because long coils placed in small bore magnets with small radial clearance do not allow
for any significant tilt. Once again, a quantitative treatment is still useful in deciding upon
tolerances, particulacly in dealing with large aperture magnets.

Let us consider a coil placed in & magnet such that the rotation axis is not parallel to the
magnetic axis. We shall consider the simple case of pure tilt, where the average displacement
of the coil is zero. Any general coil placement can be considered as a combination of pure tilt,
and a pure displacement. If we look at a transverse section of the coil, the rotation axis will
be displaced (and not offset) from the magnetic axis by (7, #), which vary along the length
of the coil. This is the same as in sag, discussed earlier. The difference lies in the manner in
which (r, o) vary along the length. In the case of tilt, the displacement r varies linearly. It
is zero in the middle of the coil, and is maximum (say, rp) at the two ends. The parameter
o can take any value, but is fixed for the first half of the coil (say, 0o), and is og & 7 for the
other half. Integration along the length of the coil gives” the effective parameters as seen by
the coil :

e, (=1 ] [y expliftald) - (£ = mov)]
Cam)explina(ol} = 3000 [ S22 o] () (13)

L~n+1

The prime in the summation in Eq.(13) denotes that the summation is to be carried out
only for values of £ such that ({ — n} = even. As defined earlier, (rg, 7} are the displacement
parameters at the ends of the coil. The unusual summation in Eq.(13) has interesting
consequences as discussed in the following paragraphs.

Let us consider the case of a dipole magnet first. The symmetry of a dipole makes
n = 2,4,6,... unallowed terms. These terms in an actual magnet will therefore be small,
and thus most likely to be aflected by feed down from higher harmonics. If we consider
effect of tilt on an unallowed term, then Eq.(13) says that only unallowed terms contribute
to the feed down. This, coupled with the fact that the feed down terms are at least of
second order in (ro/ R), shows that one can neglect the effects of a modest tilt on unallowed
harmonics. Similar arguments hold for the allowed terms, where feed down is from only the
allowed terms. Numerical calculations for the ‘typical’ dipole with a ~ 0.005" displacement
of the coil at the ends gives amplitude ecrors of less than 0.1% and phase errors of less than
0.1 mrad for almost all the harmonics.

In the case of a quadrupole, the allowed terms from symmetry are only n = 2,6,10,....
The only harmonics which are likely to be seriously affected by tilt are thereforen = 4,8,...
where we shall have an allowed term feeding down to an unallowed term, aithough only in
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second order. Numerical calculations for the calibration “air magnet” confirm this. The
effect is most prominent on n = 4, where a tilt of less than 0.5° can give rise to a measured
amplitude of a few units, even if no octupole component is actually present.

11. Conclusions :

Various types of possible imperfections in a measuring coil have been studied in this note.
The analytical results presented in Eqs.(4) to (13) can be used to estimate the measurement
errors for a given imperfection, or to specify mechanical tolerances for a given accuracy. Nu-
merical calculations for typical magnets of interest show that the errors should be negligible
even with modest tolerances. The errors due to moderate sag can be corrected by centering.
The most significant errors are due to use of a multilayered coil (Sec.7) , and offset in rotation
axis (Sec.8) or a bow in the coil (Sec.9). Although very little could be done to rednce the
construction errors beyond certain practical limits, the results from this work could be used
to correct the data for most of the errors.
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EFFECT OF ROTATION AXIS OFFSET BY 0.006"
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Figure 2: Amplitude errors due to a 0.005" offset in the rotation aris of a tangential cosl.
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Figure 3: Phase errors due to a 0.005" offset in the rotation azis of a tangential coil.
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