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Abstract

Thesenotes do not pretendto say somethingnew about the betatron function, but

ratherthey discussthe Courant-Snyder’sparametersfrom a different point of view. In

this approach,a constantof motion is associatedto the beta differential equationwhen

the gradientof the magneticfield is constant,and the explicit solutionsarefound for a

FODO periodof a lattice andfor the triplet structurein the InteractionRegion IR.

It’



SSCL-N-783

Notes About the Beta Function

C. López

AcceleratorDesignand OperationsDivision
SuperconductingSuperCollider Laboratory

2550 BeckleymeadeAvenue
Dallas, Texas75237

December1991

Operatedby the UniversitiesResearchAssociation,Inc., for the U.S. Departmentof EnergyunderContract
No. DE-AC35-89ER41J486.



1.0 INTRODUCTION
The Courant-Snyder’sparameters1havebeenvery useful for lattice designof collider

ring accelerators.Theseparameters,a, /3, bphaseadvance,vQ tune, eemittance,and

‘y, appearfrom a particulartransformationof the Hill’s equation.They arenormally cal

culatedthroughcomputermappingprogramsof thelattice, usingthe periodicity property

of the solution. Of all of theseparameters,the most important is the /3 function sincethe

othersdependon this one. Thus, knowing the /3 function all over the accelerator,it means

knowing all its linear properties.The nonlinearitiesthat appearin the acceleratormag

netic field multipoles,multipoles elements,misalignment,etc. producea perturbation

on theseparameters.The main goal in acceleratordesignis to keep thesenonlinearities

small enoughso that thebeta-theoryremainsessentiallyvalid. Oneof the most important

derivedparametersfrom the betafunction is the emittance,e. This is a constantof motion

of the systemand defines the areaof the beamparticlesin the phasespace. In addition,

becauseof this constant,it is possibleto know theevolution of the wholebeamof charged

particlesin the accelerator. Hence,the constantsof motion are particularly valuablein

acceleratorphysics.

The following approachis basedin theconstantsof motion associatedto the betadiffer
ential equation. Firstly, the transformationis madein the Hill’s equationto bring about
the differential equationfor the betaor w2 function. The constantof motion is deduced
whenthemagneticfield gradientis constant.Using this constantof motion, the examples
of the FODO lattice andIR sectionaregiven.

2.0 HILL’S EQUATION AND ITS TRANSFORMATION

The Hill’s equationgovernsthe linearbehaviorof a particlein a collider accelerator,and
it is givenby

.v"+Ksz=O, 1

wherex1 = dx/ds, andKs is a periodic function. Proposinga solutionof the form

xs = Awscosi,b.s , 2

the derivativesof this expressionare

= Au cos - A4" sint,b , 3

and

= Au" cos’ - 2Aw’t,b’ sin, - Awt/’ sin, - Awi,b’2 cos’ . 4



Substitutingthesein Eq. 1, it follows

[ui’ - w,’2 + Ksw} A cos’ - [2cfØ’ + sn,b"] A sinØ = 0 . 5

Since "cos" and "sin" are independentfunctions,two differentialequationsareobtained,

- wi,b’2 + Ksw = 0 6a

and

6b

Now, multiplying Eq. Gb by w, the following relationappears

W2LJ?/’ + c&n,b" = w2W = 0 6c

which brings aboutthe constantof motion

Ic = w2st/is
. 7

Usingthis constantof motion in Eq. Ga, an uncoupledifferentialequationis obtainedfor

the w function,

Ic2
w"+Ksw---=0. 8

The constantA, in Eq. 2, is anotherconstantof motion of the system. Substituting

"A cos’" from Eq. 2 in the first term of the right handsideof Eq. 3 andsubstituting

"u"" from Eq. 7 in the secondterm of the right handside of Eq. 3, the following two

relationsareobtained

Acos’=1 9

Derivating Eq. 8 again and using the definition of the beta function, jI = w2, a third order linear
differential equationcan be obtained,d/ds3 + 4Ks d/3/ds + 2dKsfds j3 = 0, but doing this,
some information may be lost, and solutionsmust be substitutedin the non linear differential equation,
Eq. 8, to’check that they are alsosolutionsof this one. This process,even for K equalconstant,is quite
complicated.Therefore,insteadof using theseexplicit solutions,it is common to find the solution from a
mappingtransformationwhich resultsfrom the Eqs. 2 and 3, the initial conditions,andthe periodicity
statement.
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and

Asin
= ux-x’w

10

Taking the squareand addingboth relations, the next expressionis obtained,

j ! 2 22WXXW X
IllI-a- 12 2Sc W

From this expression,it is clear that the constant Ic can never be zerohere since A is

a finite constantof motion. The case Ic = 0 can be analyzedstarting from Eq. 7 and

Eq. 8 bringing about the identity transformationfor Eq. 1.

3.0 CONSTANT OF MOTION ASSOCIATED TO THE w FUNCTION
Using the definition

dw
12a

Eq. 8 is transformedinto a nonautonomousdynamicalsystemgiven by equations

dv Ic2
= - Ksu 12b

and

12c

A constantof motion of this system,E = Es,w,v, satisfiesthe equation

dE
13

i.e., E satisfiesthe following partial differential equation

BE BE Ic2 BE
a++ -5-Ksw -=Q. 14

However, only the case "K = constant" will be considered.In this case, the system
Eqs. 12a, b, c is autonomous,and the term BE/Os in Eq. 14 can be ignoredbringing
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about the following equation

BE 1k2 1OE
15Ow jOy

Thesolutionof theprecedingequationcanbe obtainedthroughthe characteristicsmethod

wherethe equationsfor the characteristicsare

dw dv dE

vk2/w3-KwO
16

Using the first two terms, the following equationis obtained

dv k2
v=-1-Kw, 17

and its solutionbrings aboutthe constantof motion,

E=v2+Kw2+c. 18

In termsof the Courant-Snyderparameters,

/3s = w2s 19

and

1 d/3
as = -- 20

This constantis expressedas

a2+ K/32 + Ic2
/3

21a

wherethe relation

dw±1 d/3
2b

ds /71ds
1

hasbeenused. Notice that the function w2s can never be equal to zerohere since E is

a finite constantof motion.
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Given the initial conditions,x0 = x0 and x’O = z,, relationsEqs. 2, 3, 7, 11,

and18 form a set of five algebraicrelations,

= Au.’0 cos
Ak

= Aw0cost’0 - -sin0

A2 = + w,xo -

and

Ic2

where w0 = u.’0, cd0 = w,, O = , and ‘0 = . However, the number of

unknownparametersis six, x0, x, w0, w, Ø,and Consequently,it is possibleto choose

one of theseparametersfreely, say sb,. The commonselectionis

22

which makesIc = 1. Hence,the function b is given by

23

4.0 IMPLICATIONS OF THE CONSTANT OF MOTION E

The constantof motion Eq. 18 can be written in terms of the betafunction in the

following way

E=ó +Vfl 24

wherethe function V is definedas

1
Vf3=K/3+.. 25

The first term on the right hand side of Eq. 24 representthe "Kinetic" contribution

to the constantof motion and the secondone representsthe "Potential" contribution.

The potential is plotted in Figure 1. The trajectoriesin the space/3, if areplotted in

Figure 2. This constantof motion will be used to obtain someexplicit solutionsfor the

betafunction.

5



V

kds

30-

20-

0

-10 -

Figure 1. PotentialTerm in the Constantof Motion.

- - - - - - - - - -

Eu.-j_.
+KP+r

Ic > 0 ElIflical
k -0 Parabolic
k c 0 HyperbOlIc

Figure 2. Curves in the Beta PhaseSpacefor Constant"Energies."

N

V03-=K13+ 1

1.0

0.75

0.5

0.25

0

0.25

0.5

k>0

100

TIP-02390

6



4.1 Solution for the CaseK = 0
From Eqs. 24 and25, the constantof motion hasthe expression

E0=.+1 26

The rateof changeof the betafunction is expressedin the following form

= th2/-l + EO/3 27

which canbe transformedin the integral

1fd$
28

where is an arbitrary constant.Solving Eq. 28, the betafunction is given by

/3s
=

+ Eo±s+ A2 , 29a

and its derivative is

9s = 2E0s ± 2E0A0 . 29b

TheconstantsE0 and A0 are determinateby the initial conditions,

/30 = /3o 30a

and

/3’O = , 30b

and they have the following expressions

31a

and

A0 = ±- . 3Th
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Thenthe relationsEqs. 29a, b can be written as

32a

and

9s = 2E0s+ /3, . 32b

4.2 Solution for the CaseK > 0
The constantof motion is given by

E1=oc+Kfl+ 33

and the integralobtainedfrom this expressionis

1 1 d/3
- I =±s+Ai , 34
2 /-1+Eifi-K/32

where A1 is an arbitraryconstant.SolvingEq. 34, the solutioncan be written as

fls = - + /Ei2 - 4K sin 2v"k±s + Ai 35a

and

9s
=

-4 cos2v±s + A1 . 35b

AssumingEqs. 30a, b, the constantsE1 and A1 aregiven by

Ei=-fl?+Kfl0+I 36a

and -

A1 = 2arcc05 fl
- 36b
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4.3 Solution for the CaseK -<0
Defining K = -K, the constantof motion is given by

E2=_Kfl ‘. 37

The integralobtainedfrom this expressionis clearly

1 1 dfl
- / - =±s+A2 , 38
2 _1+E2fi+Kfi2

where A2 is an arbitrary constant.Again, solving the aboveintegrationand making some

rearrangements,the following solution is obtained

fls

= 4K + E2 - Qoexp2
2

39a
4K1Z0exp 2V7

and

fl’s
= 4K E

exp .-2/K s +
0,._

exp 2v’7 , 39b
21KQ0 2/

wherethe constantsE2 and Q0 aregiven by

40a

and

40b

5.0 APPLICATION TO A FODO CELL

AssumeKs hasa typical FODOlattice periodicitywhereonecell of the lattice is made

up of alternatedfocusingdefocusingquadrupoleswith dipolesor drift spacein between.

K is constantper section,and the only placeswhere thereis a changeis at the boundary

of eachelement. Figure 3 shows an exampleof this particular case. At the boundaries,

= 1,.5, the functions xs,x’s,ws, and w’s are all continuous. However, the

secondderivatives,x"s andw"s havea jump which can be calculatedstraightforward
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from Eqs. 1 and8. Taking their limit valuesfrom the left and the right handsides of

the boundaries,thesejumpsaregiven by

= Kg xj , i = 1,..,5

wherex = xs andw = WsI i = 1,., 5.

Ks

Figure 3. FODO Cell Lattice.

The above solution can be usedin eachsectionindependently,and then they can be

matchedat the boundaries.But there is somethingelsethat is necessaryto consider. If

a periodic betasolution is required, the length of the quadrupoles,1, the length of the

drift space,L, and the strengthof the quadrupoles,Kq, must be correlated. Suppose

that at s = 0, the conditionsare /30 = fl and 90 = fl. So at the point s = .s see

Figure 3, the final valuesmust be, j3s = fl and955 = fl,. Applying theseconditions

to Eq. 39a and Eq. 39b, it follows

and

41a

41b

2/2 L

Kq

2/2L

Si S2 55

- Kq ‘ - -

53 54
S

£ =4.66m
L =80m
Kq= 3.125 x tm3 m2

TIP.02392
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4k+ E2_cz0exPvT1D2

fl° - 42
4KQ,exp 1k ID

and

9
= 4K+E

exp -v’ ZD + exp/ ID , 43

2VIf20 21k
where 1D is the length of the defocusingquadrupolemagnet. The constantsE2 and ST20

arecalculatedwith the valueof the functions,/3 and /3’, at the point s = .54. Any of these

relations can be usedto calculatethe length 1D since their equivalencyis given through

the two constantof motion E2 and Q,. Using Eq. 43, the length is given by

ID
=

log { v’cz0fl + /kcz$,2 + 4K+ E } 44

Applying thesamecriterion to the focusingmagnet,/383 = /382 andfl’s3 = -952,
andusingthe final conditionsin Eqs. 35a and35b, the following relationsareobtained

$2
=

+ ff - 4K sin2Vk±IF + A1 45

and

cos2V±lF+AJ, 46

where 1F is the length of the focusingquadrupolemagnet. The constantsE1 and A1 are

calculatedwith the valueof the functions,/3 and /3’, at thepoint s = 2- Again, the length

of the focusingquadrupole,1F, canbecalculatedwith eitherof the aboveexpression.Using

Eq. 46, this length is given by

1FA1+ arccos - /32 47
21k iJE/K-4J

Now, the lengthandthe strengthofthe quadrupolesarethe same. Thus,from Eqs. 44

and 47, the following relationshipbetweenthe the dimensionand variablesappears

= log fkcio + JkQs2
+ 4Ei
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48= A1 + arccos
JE22/K 4

Noticethat E1, E2, %, and ul, dependon the lengthof the drift space,L, and lengthof the

quadrupolemagnets,1. Thus, given the strengthof the quadrupolesand the separation

betweenthem, Eq. 48 can be solved numerically to find its fixed point. This relation

gives the periodicity condition in the particle motion. This fixed point as a function of

K9 = K = k is shown in Figure 4, wherethe distancefrom the centerof one magnetto

anotheris always90 m. This figure showsthat for K9 = 0.00308m2 nominal parameter

for the SSCquadrupoles,the length of the quadrupolemagnetmust be 5.2 m in order to

havea periodic solutionalso in agreementwith its nominal value.3

6

Kq

TIP-02393

Figure 4. Relationbetweenthe Length of the Quadrupoleand its Strengthfor a Periodic FODO Structure.

Using the above 1 = 5.2 m, K9 = 0.00308 m2, separationbetweencentersof magnets

of 90 m, and a small computerprogram,E-BETA-2, it is possibleto carry out the beta

function calculationsfor this lattice. The resultscan be seenfrom Figure 5 to Figure 9.
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1.5

6.0 APPLICATION TO THE TRIPLET STRUCTURE

The triplet structureis the basic elementfor a. collider acceleratorin the Interaction

Region lB., and it is thought that it could becomean important elementfor the de

sign of synchrotronradiation sources.4This structureis madeessentiallyof threestrong

quadrupoleswith the configurationDefocusing-Focusing-Defocusing,DFD, for the hori

zontal planeFDF for the vertical plane. However,eachquadrupolecouldbe subdivided

accordingto somemechanicalconstraints.Figure 10 shows threeIR triplet designs.The

first one correspondsto the nominal configurationfor the SSC.3 The secondcorresponds

to a possibleconfigurationfor a reducedmaximumbetafunction in the triplet.5 The last

one correspondsto anotherpossibleconfigurationfor a reducedmaximum betafunction

and for a drasticincreasingin the quadrupolelifetime due to radiation damage,6if colli

matorsareusedin the big gaps.In fact, this last examplewasmadefixing the quadrupole

gradientsaswell as the gapsbetweenthem 2.3 m, 1 m, and 0.8 m, and looking for the

quadrupolelengthswhich havethe optimumsolution.

Given the free spacebetweenthe InteractionPoint IP and the first magnet,the gaps

betweenmagnets,the quadrupolelengths,and their strengthsasit is shownin Figure10,

the betafunction can be found by using the solutionsof the beta function in the corre

spondingregion Section3. A uniquesolution is obtainedwith the initial conditions
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0
0 50 100 150

sm
T7P02308

Figure 9. PhaseAdvanceBehavior in the FODO Cell.
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/90 = 0.5 m 49a

and

/9’O = 0 , 49b

and matchingthe solutions of different regionsat theboundarieswherea changein Ks

occurs the continuity of /9 and /9’ is usedhere. Using a short computer algorithm,

E-BETA, the solution for the threecasesin Figure 10 is shown in Figures11 and 12.
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Figure 10. Three 11% Triplet Designs. 1 Nominal Low-a SSC Design,2 and 3 are PossibleDifferent
Examples.
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