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Notes About the Beta Function
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Abstract

These notes do not pretend to say something new about the betatron function, but
rather they discuss the Courant-Snyder’s parameters from a different point of view. In
this approach, a constant of motion is associated to the beta differential equation when
the gradient of the magnetic field is constant, and the explicit solutions are found for a
FODO period of a lattice and for the triplet structure in the Interaction Region (IR).
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1.0 INTRODUCTION

The Courant-Snyder’s parameters’ have been very useful for lattice design of collider
ring accelerators. These parameters, a, §, ¥ (phase advance), ¥(Q tune), e(emittance}, and
~, appear from a particular transformation of the Hill's equation. They are normally cal-
culated through computer mapping programs of the lattice, using the periodicity property
of the solution. Of all of these parameters, the most important is the § function since the
others depend on this one. Thus, knowing the 8 function all over the accelerator, it means
knowing all its linear properties. The nonlinearities that appear in the accelerator (mag-
netic field multipoles, multipoles elements, misalignment, etc.) produce a perturbation
on these parameters. The main goal in accelerator design is to keep these nonlinearities
small enough so that the beta-theory remains essentially valid. One of the most important
derived parameters from the beta function is the emittance, e. This is a constant of motion
of the system and defines the area of the beam particles in the phase space. In addition,
because of this constant, it is possible to know the evolution of the whole beam of charged
particles in the accelerator. Hence, the constants of motion are particularly valuable in
accelerator physics.

The following approach is based in the constants of motion associated to the beta differ-
ential equation. Firstly, the transformation is made in the Hill’s equation to bring about
the differential equation for the beta {or w?) function. The constant of motion is deduced
when the magnetic field gradient is constant. Using this constant of motion, the examples
of the FODQ lattice and IR section are given.

2.0 HILL’S EQUATION AND ITS TRANSFORMATION

The Hill’s equation governs the linear behavior of a particle in a collider accelerator, and
it is given by

'+ K(s)z=0, (1)
where ' = dz/ds, and K(s) is a periodic function. Proposing a solution of the form?
z(s) = Aw(s)cos(i(s)) , (2)
the derivatives of this expression are
' = Aw' cos(yp) — Awy' sin(v) , (3)

and

2" = Aw"” cos(yp) — 24w’y sin(¥) — Awy” sin(¥) — Aw(®')? cos(zp) . (4)



Substituting these in Eq. (1), it follows
[ — w(@)? + K(s)] Acos() — [20'9' +wip’] Asin($) =0 . (5)
Since “cos” and “sin” are independent functions, two differential equations are obtained,
W' —w(@ P+ K(s)w =0 (6a)

and

2w'Y +wip” =0 . (65)

Now, multiplying Eq. (6b) by w, the following relation appears
W'y + ") = S () = 0 (6¢)
which brings about the constant of motion
EROMOR (7)

Using this constant of motion in Eq. (6}, an uncouple differential equation is obtained for

the w function,*
" k?
w +K(s)w—5=0. (8)

The constant A4, in Eq. (2), is another constant of motion of the system. Substituting
“Acos()” from Eq. (2) in the first term of the right hand side of Eq. (3) and substituting
“¢'” from Eq. (7) in the second term of the right hand side of Eq. (3), the following two

relations are obtained

Acos(y) = = (9)

* Derivating Eq. (8) again and using the definition of the beta function, § = w?, a third order linear
differential equation can be obtained, d®8/ds® + 4K(s) (df/ds) + 2(dK(s)/ds) # = 0, but doing this,
some information may be lost, and solutions must be substituted in the non linear differential equation,
Eq. (8), to’check that they are also solutions of this one. This process, even for K equal constant, is quite
complicated. Therefore, instead of using these explicit solutions, it is common to find the solution from a
mapping transformation which results from the Eqs. (2) and (3), the initial conditions, and the periodicity
statement.



and

Asin(y) = Q‘i'f—gi’-“ﬂ . (10)

Taking the square and adding both relations, the next expression is obtained,

(W'z ~z'w)?  z?

Al .
w2

(11)

From this expression, it is clear that the constant k can never be zero here since A is
a finite constant of motion. The case k = 0 can be analyzed starting from Eq. (7) and
Eq. (8) bringing about the identity transformation for Eq. (1).

3.0 CONSTANT OF MOTION ASSOCIATED TO THE w FUNCTION
Using the definition

V= — (12a)

Eq. (8) is transformed into a nonautonomous dynamical system given by equations

dv k?
P K(s)w (125)
and
dw
:i; =9v. (12(:)

A comstant of motion of this system, E = E(s,w,v), satisfies the equation

dE
ds 0, (13)

i.e., E satisfies the following partial differential equation

——-{-v-:-l- ZE_K(S)“" —=0. (14}

oF 8E k? OF
Os 0 v

However, only the case “K = constant” will be considered. In this case, the system
Egs. (12a, b, ¢) is autonomous, and the term 8E/8s in Eq. (14) can be ignored bringing
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about the following equation

v o=+ | =~ Kw| = =0. (15)

OFE [k? 8E
Ow w3 v

The solution of the preceding equation can be obtained through the characteristics method

where the equations for the characteristics are

Using the first two terms, the following equation is obtained

2
vjw—":%—fm, (17)

and its solution brings about the constant of motion,

k2

— 2 2, =
E=v"+Kuw +w2. (18)
In terms of the Courant-Snyder parameters,
B(s) = w(s) (19)
and
1dp
0{(8) = —-2-5 . (20)
This constant is expressed as
2 2 2
p=2TEOAE (21a)
B
where the relation
dw 1
do_ 1 48 (215)

ds VB ds

has been used. Notice that the function w?(s) can never be equal to zero here since E is

a finite constant of motion.



Given the initial conditions, z(0) = z, and z'(0) = =}, relations Eqgs. (2), (3), (7), (11),
and (18) form a set of five algebraic relations,

To = Awo (0] 'l,bo 4

Ak
! ! .
z, = Aw, costh, — —wa siny, ,
2
I 1, ' 2
A =22 L e, — 2w
wg k( 3 o 0) ]
2,1
k=uwy,,

and

72 2 k?
E =uw, +Kwo+;—2-,

o
where w(0) = w,, w'(0) = w), P(0) = 1, and ¢'(0) = #,. However, the number of
unknown parameters is six, Zo, T),Ws, Wy, ¥, and 1),. Consequently, it is possible to choose

one of these parameters freely, say ¢,. The common selection is

1
! —
W= (22)
which makes k = 1. Hence, the function v is given by

8
dr

P(s) = tho + J 'ﬂ—(-a . (23)

4.0 IMPLICATIONS OF THE CONSTANT OF MOTION FE
The constant of motion Eq. (18) can be written in terms of the beta function in the

following way

1 [dB\?
E= Y] (E) +V{(8), (24)
where the function V" is defined as

V()= KB+ % . (25)

The first term on the right hand side of Eq. (24) represent the “Kinetic” contribution
to the constant of motion and the second one represents the “Potential” contribution.
The potential is plotted in Figure 1. The trajectories in the space (3, 8') are plotted in
Figure 2. This constant of motion will be used to obtain some explicit solutions for the

beta function.
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Figure 1. Potential Term in the Constant of Motion.
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Figure 2. Curves in the Beta Phase Space for Constant “Energies.”



4.1 Solution for the Case K =0
From Eqgs. (24) and (25), the constant of motion has the expression

1 (dp
5= 35 (% ) t5
The rate of change of the beta function is expressed in the following form
ap TR

which can be transformed in the integral

_:i:3+AO3
/.V_1+E0E

where ), is an arbitrary constant. Solving Eq. (28), the beta function is given by
1 2
Bls) = 5+ Eo(Es + Xo)”
o

and its derivative is

B'(s) = 2Eos + 2E,), .

The constants E, and A, are determinate by the initial conditions,

ﬁ(O) = Bo

B(0) =B, ,

and they have the following expressions

[+]
and
!
Ao = :1:2—E0' .

(26)

(27)

(28)

(29a)

(295)

(30a)

(30b)

(31la)

(318)



Then the relations Eqs. (29a, b) can be written as

B(s) = -—+E ( +2E:’o)2 , (32a)

B'(s) =2E,s + B, . (32b)

4.2 Solution for the Case K >0
The constant of motion is given by

B = 4lﬁ (-‘33) +Kﬁ+-;- , (33)

and the integral obtained from this expression is

1 ____
2/\/_1+E1ﬂ_Kﬂz—:|:s+/\1, (34)

where A; is an arbitrary constant. Solving Eq. (34), the solution can be written as

Bls) = o + ﬁ E? - 4K sin (N}?(:ts + Al)) (35a)

B'(s) = ‘\/—2—4 cos (2\/1_((ﬂ:s+)\1)) . (355)

Assuming Eqs. (30a, b), the constants E; and A are given by

and

2, 1
By = g PR+ Kb+ o (36a)
and
1 !
)\1 = 2\/I_{a.rccos _E';"D_; . (365)
o



4.3 Solution for the Case K <0
Defining K = — K, the constant of motion is given by

1 /d8\* =, 1
=—|-—} ~K8+=. 37
P2= 15 ( ds) ’*5 4D
The integral obtained from this expression is clearly
=+s+ Az, (38)

1w
2 \[-1+E2ﬂ+f?ﬂ2

where Az is an arbitrary constant. Again, solving the above integration and making some

rearrangements, the following solution is obtained

4K + (Eg -, exp(?\/}? s)>2

B(s) = ~ = (39a)
4KQ,exp (2\/1—{ s)
and
4K 4 E} = =
Bs)= 1B (—zx/E s)+ L. (2\/}5 5) (395)
2VEQ, 2K
where the constants E; and {2, are given by
_ Bz 1
E2 = 4’30 Kﬂo + ﬁo (400.)
and
Q= B2VE 4+ 2KB, + Ez . (40b)

5.0 APPLICATION TO A FODO CELL

Assume K(s) has a typical FODO lattice periodicity where one cell of the lattice is made
up of alternated focusing defocusing quadrupoles with dipoles (or drift space) in between.
K is constant per section, and the only places where there is a change is at the boundary
of each element. Figure 3 shows an example of this particular case. At the boundaries,

s;, 1 = 1,..5, the functions z(s),z'(s),w(s), and w'(s) are all continuous. However, the

'x
second derivatives, z"(s) and w"(s) have a jump which can be calculated straightforward
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from Eqgs. (1) and (8). Taking their limit values from the left and the right hand sides of
the boundaries, these jumnps are given by

|6z (si)l = Ky zi ,i=1,...,5 (41a)

6w (si)| = Kgwi , i=1,..,5, (418)

where z; = z(s;) and w; = w(s;) 1 = 1,..,5.

K(s)
A
L2 L : | : L ~ {2 :
b
S S S S, S
\ 1 2 3 4, 5 ; »s
: :
. :
' 1
[ ] [}
: 1
: R =466m i
-K_ t--- L =80m )
9 Kq=3.125x 103 m2
TIP-02392

Figure 3. FODOQ Cell Lattice.

The above solution can be used in each section independently, and then they can be
matched at the boundaries. But there is something else that is necessary to consider. If
a periodic beta solution is required, the length of the quadrupoles, {, the length of the
drift space, L, and the strength of the quadrupoles, K¢, must be correlated. Suppose
that at s = 0, the conditions are §(0) = 8, and #'(0) = B,. So at the point s = s5 (see
Figure 3), the final values must be, (s5) = 8, and f(s5) = B!. Applying these conditions
to Eq. (39a) and Eq. (39b), it follows
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4K + (E2 —Qoexp(\/ﬁ ID))2

- 4K, exp (\/I? ID) (“2)
and _
g = -4:{-71—*”1?% exp (—x/}? Ip) + 2?/"3_:- exp (\/}f Ip) , (43)

where Ip is the length of the defocusing quadrupole magnet. The constants Ez and Q,
are calculated with the value of the functions, 8 and A, at the point s = s4. Any of these
relations can be used to calculate the length Ip since their equivalency is given through
the two constant of motion By and €,. Using Eq. (43), the length is given by

1 = - 4K + B}
ID = ﬁ log { KQoﬁ’o + \/Kﬂgﬂ‘? + _S_;i_;—"'l} . (44)
0

Applying the same criterion to the focusing magnet, 8(s3) = S(s2) and #'(s3) = —F'(s2),

and using the final conditions in Eqs. (35a) and (35b), the following relations are obtained

E 1 )
ﬂ2=§—;{- 3% Ef—4K sm2\/?(_(:i:lp+)\1) (45)

—f = 1/%—4 cosQ\/I?(:l:lF-l-Al) ) (46)

where Ir is the length of the focusing quadrupole magnet. The constants E; and A; are
calculated with the value of the functions, 8 and f', at the point s = s2. Again, the length
of the focusing quadrupole, If, can be calculated with either of the above expression. Using
Eq. (46), this length is given by

lp=ﬂ-)\1+-1—arccos N S . (47)
2\/?(7 /Eg/K—‘l

Now, the length and the strength of the quadrupoles are the same. Thus, from Eqs. (44)
and (47), the following relationship between the the dimension and variables appears

= ~ 4K + E?
I =1log (\/Egoﬁ{, + \/ KQ2p2 ¢ —-u)

'93

1



B

1
= —\}] + —= arccos | ———=——
2\/!? /EE/K—LI

Notice that Ej, E3, §5, and 2, depend on the length of the drift space, L, and length of the
quadrupole magnets, I. Thus, given the strength of the quadrupoles and the separation

(48)

between them, Eq. (48) can be solved numerically to find its fixed point. This relation
gives the periodicity condition in the particle motion. This fixed point as a function of
K, =K = K is shown in Figure 4, where the distance from the center of one magnet to
another is always 90 m. This figure shows that for K; = 0.00308 m~? (nominal parameter
for the SSC quadrupoles), the length of the quadrupole magnet must be 5.2 m in order to
have a periodic solution (also in agreement with its nominal value).®

La

R N & ~4 K
0.0025 0.003 0.003 0.004 9

TIP-02303

Figure 4. Relation between the Length of the Quadrupole and its Strength for a Periodic FODO Structure.

Using the above ! = 5.2 m, K, = 0.00308 m~2, separation between centers of magnets
of 90 m, and a small computer program, E-BETA-2, it is possible to carry out the beta

function calculations for this lattice. The results can be seen from Figure 5 to Figure 9.
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6.0 APPLICATION TO THE TRIPLET STRUCTURE

The triplet structure is the basic element for a collider accelerator in the Interaction
Region (IR), and it is thought that it could become an important element for the de-
sign of synchrotron radiation sources.* This structure is made essentially of three strong
quadrupoles with the configuration Defocusing-Focusing-Defocusing, DFD, for the hori-
zontal plane (FDF for the vertical plane). However, each quadrupole could be subdivided
according to some mechanical constraints. Figure 10 shows three IR triplet designs. The
first one corresponds to the nominal configuration for the SSC.® The second corresponds
to a possible configuration for a reduced maximum beta function in the triplet.> The last
one corresponds to another possible configuration for a reduced maximum beta function
and for a drastic increasing in the quadrupole lifetime due to radiation damage,’ if colli-
mators are used in the big gaps. In fact, this last example was made fixing the quadrupole
gradients as well as the gaps between them (2.3 m, 1 m, and 0.8 m), and looking for the
quadrupole lengths which have the optimum solution.

Given the free space between the Interaction Point (IP) and the first magnet, the gaps
between magnets, the quadrupole lengths, and their strengths (as it is shown in Figure 10),
the beta function can be found by using the solutions of the beta function in the corre-

sponding region (Section 3). A unique solution is obtained with the initial conditions
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A(0) = 0.5 m (49a)

and

A0)=0, (495)

and matching the solutions of different regions at the boundaries where a change in K(s)
occurs (the continuity of 8 and B’ is used here). Using a short computer algorithm,
E-BETA, the solution for the three cases in Figure 10 is shown in Figures 11 and 12,

»>

(B(‘;;_)K(s) 223.4 I 223.9 I
/mj} |
21074 | [ zisaz ] T o™
(1
e Om__
P
08m 1.0m 08m
15.14m 11.22 m 1t.22m 12986 m
(Bp)K(s) 4 333.56 333,56
(Tim) [ ml ! s
()
P 08m 1.0m 08m
108 m 89m 89m 10.é m
(Bp)K(s) A& 333.56 333.56
(rm) I I ] P s (m)
-333.56 | |_-33356 |
(3}
IP 23m 1.0m 08m
1092 m 955 m 955 m 884 m
TIP-02368

Figure 10. Three IR Triplet Designs. (1) Nominal Low-8 SSC Design, (2) and (3) are Possible Different

Examples.
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Figure 12. Vertical Beta Function for the Examples of Figure 10.
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