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This paper contains basic data for calculation of the elements

of constructions that operate under conditions of heat loads.

Methods of calculation of heat release for various forms of heat

sources and heat removal under various conditions of cooling are

given. Special characteristics of calculation for pulsed heat

effects are discussed, as well as calculation of elements that

operate in a nonsteady-state heat regime. All of the calculation

formulas are given in a form that is convenient for design

calculations and their use is illustrated by detailed examples of

calculation.

Introduction

The serviceability of any device, i.e., the performance by a

device of its functions, is determined first by properly completed
design calculation. In the process of this calculation the
strength of the parts of the device, the accuracy of performance of
assigned movementsor retention of assigned geometry, the capacity
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of the device to complete assigned functions in the course of a

required period of time, and so forth, and analyzed.

However, even a completely properly completed calculation of

all these parameters for normal conditions still does not assure

serviceability of a device, if the release of some amount of heat

occurs in it during operation.

The fact is that in the process of the heating of parts the

limits of strength and flow and the modulus of elasticity of

materials become lower. Allowances for stresses decrease by

comparison with those calculated for normal conditions, while

strains of parts increase. In addition, because of the

temperature-related changes of the dimensions of parts gaps in

joints change, which may cause, for example, individual parts to

become jammed or to stick.

Moreover, if the heating of individual parts is not uniform

through the cross section, in these parts additional temperature

stresses and strains arise.

Many electrophysical devices also make specific demandson the

heatup of parts during operation. Thus, parts that are located in

a vacuum must not heat up above a certain temperature, if such

heatup will cause an unacceptable increase of gas emission.

Excessive heatup of parts in a high-voltage device may lead to

electrical breakdown. It is quite obvious that to assure the

serviceability of a device all of these factors must be taken into

account by the designer in designing it.

Necessary conditions for solving this problem are:

1 ability to find the actual sources of heat in a design and

to evaluate amounts of heat being produced;

2 ability to calculate the process of heat removal so as to

maintain working temperatures at a permissible level according to

calculation results.

Basic questions connectedwith calculation of heat release and

heat removal in the elements of constructions are discussed in this

handbook.
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1.. Heat release in Darts

Sourcesof heat can be quite varied: passageof an electrical

current through parts, radiation on the part of some heated body,

bombardment by charged particles, and so forth. Let us consider

the main sources of heat, in order to understand the basic

principles of calculation of these factors.

1.1 Passageof a current through a conductor

i.i.i continuous regime

It is well known that the power generated in a conductor when

a constant electrical current passes through it is

P = I2R

1

or P=U2/R

where I is the current flowing through the conductor, A;

U is the voltage across the ends of the conductor, B;

R is the resistance of the conductor, ohm;

P is the power generated in the conductor, W.

However, the situation is this simple only when a direct

current passes through the conductor. If the current is

alternating, expression 1 becomes:

P = I2ffR

2

or P = U2eff’R

where 1eff is the effective value of current, i.e., the value of

direct current which, flowing through the conductor, would lead to

the generation of the same power P as it is generated in the

passageof the given alternating current;

Ueff is the effective value of voltage, i.e., the value of

direct voltage, which, being applied to the conductor, would lead
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to the generation of the same power P as it is generated in the

passage of the given alternating current.

The effective values of currents and voltages for the case of

periodically varying current 1r and voltage Ur are given by the

expressions:

_________

3effnVcjt 1
J

where 1r is the dependenceof the change of current on time;

Ur is the dependenceof the change of voltage on time;

T is the period of change of the current and voltage Figure

1

Figure 1

For a sinusoidally varying current it is easy to find that

3cr! *Mo4erf4#

from whence follow the well-known expressions:

p
sin 2 4

sin 2R



5

In the case of an alternating current a different approach is

also needed with regard to the resistance of the conductor.

The interaction of an alternating current flowing through a

conductor with the magnetic field created by this current leads to

the so-called skin effect, which consists of the displacement of

current onto the surface of the conductor. As a result, with

distance from the surface of the conductor deeper into the material

of the conductor the current decreases exponentially. For

calculation of the power generated in the conductor one can use

expressions 2, if one provisionally considers that a direct

current with magnitude 1eff flows through some surface layer of the

conductor, which is called the skin layer.

The magnitude of the skin layer is determined by the

expression:

I tin/_i- *M 5yak Yxp,p’f

where is the resistivity of the material, ohrnm;

= 0.4 ,r x io H/rn is the absolute magnetic permeability of

vacuum;

M’ is the relative magnetic permeability of the conductor

material;

f is the frequency of the change of the current, Hz

Naturally, the skin effect leads to an increase of the

resistance of the conductor and to an increase of the power

generated in the conductor.

Thus, for copper at f = 50 Hz, 6 9.4 mm, while at f =

100,000 Hz is only 0.21 mm.

Thus, if the diameter of the conductor is 15 mm, one can

consider that at a frequency of 50 Hz current flows through the

entire cross section of the conductor and then the resistance of a

conductor 1 m long will be

PS0
- I’ - 1.75.10-8

176.10-S- IO’ ohm
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On the other hand, at a frequency of 100,000 Hz current flows

only in a surface layer 0.21 mm thick, i.e., through an area

io5 m2 10 mm2 . In this case, the resistance of the conductor

and, therefore, the power generated in it at a frequency of 100,000
Hz will be Zl8 times more than at a frequency of 50 Hz.

One further special property must be discussed.

Figure 1 shows a dependenceof current on time where the

processes of the increase and decrease of current have different

slopes. In this case one cannot calculate power in the conductor

from the skin layer that corresponds to the frequency of the

increase or frequency of the decrease of current. The function

1r must be expanded into a Fourier series, the skin layer and the

power must be determined from the frequency and amplitudes of the

individual harmonics and the resulting powers added together. In

some specific cases this laborious, although more accurate, method

can be replaced by an analysis of some sine wave that is similar to

the actual function 1r.

1.1.2 Pulsed regime

All that we have discussed relates to currents flowing through

conductors continuously. However, in a large number of problems we

must deal with pulsed processes, where the current passesthrough

Figure 2
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the conductor in pulses of duration r,,, which repeat with some

frequency f Figure 3.

If the law of the change of current through time r is known, 1r,

then the power evolved in the conductor during this time can be

found from equation 2. Heat removal, however, must be calculated

from the average power, which is equal to

6

where v = T/r is the duty factor.

Two points here are important.

First, the depth of the skin layer in this case is calculated

not from frequency f, but rather from the frequency that

corresponds to the change of current during time ri,.

Second, when there are solitary current pulses i.e., when

<< T the energy produced in the conductor during time r,, proves

to be smaller than during the same time for pulses that

continuously follow one another. In particular, for sinusoidal

pulses this decrease is 1.5 E. A. Abramyan and S. B. Vasserman,

"Magnet of a air-core accelerator with opposing beams," IPN SD AS

USSR Report No. 250, 1963. Therefore, when finding the power in

the conductor from 1eff and 6,, one can provisionally consider that

[Translator’s note: the Russian word for duty factor is used
here, although the equation is that of the reciprocal duty factor.

3

Figure 3
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in the caseof single sinusoidal pulses the depth of the skin layer

5 will be l.5 times greater than when there is a continuous

succession of pulses.

1.2 conductor in an alternating variable] magnetic field

We will consider the generation of heat in a tube of a

conducting material placed in a magnetic field which changes

according to the law

H "H.StnWt

and which is directed along the axis of the tube Figure 4.

As in any turn of a coil penetrated by a variable field, an

emf equal to

will be induced in the tube.

Then

The magnetic flux will be

here p - P0P’

Coson
dr 4

hccd

Figure 4

ii d..b
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p,td
* where

In correspondence with expression 4, since the field changes

sinusoidally, we have:

Finally, we obtain the power in a tube that is in an axial

sinusoidally varying magnetic field in the form:

r2Hw2d3tkPro,4
P

7

and

If this field H is also pulsed, i.e., it varies in
correspondencewith Figure 5, then the denominator of expression

7 must also contain the duty factor ii = T/r.

H

II.

We have considered the case where the field changes

sinusoidally. However, if the relationship is different, then the

power must be determined from expression 2 and U from expression
3

cif

1.3 Bombardment of a body by charged particles 1,2,3]

When a body is bombarded by a beam of charged particles, the
kinetic energy of the particle beam or a share of this energy is
released in the form of heat. How does one evaluate the amount of
heat that is released in the bombarded body? Here two questions
must be answered:

Figure 5
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1 What is the power of the particle beam?

2 What part of this power heats the bombardedbody?

1.3.1 Power of beam of charged particles

If each particle in the beam has charge q C and kinetic

energy T J, then if the current in the beam is I A, the power

of this beam can be found from the expression:

= TI/qv, W 8

where v is the duty factor.

However, as a rule, we do not know the kinetic energy of the

particles either in joules or electron volts. In this case the

power in the beam is

= TI/i’, W 8’

1.3.2 Power going to heat the body

For this reason there arises the question, is the power that

heats the bombardedbody not always equal to the power of the beam?

The fact is that the particles, upon striking a solid body, do

not immediately give up their energy to this body, but rather lose

it gradually, penetrating to a certain depth into the body and

encountering particles of matter in this path. Dependencesof the

loss of energy on the path traversed by a particle in the body

differ for different particles, and the character is connectedwith

the nature and parameters of the particles.

In particular, for electrons with kinetic energies above

several hundreds of keV one can consider with accuracy that is

sufficient for thermal design calculations that an electron, on

passing through a substance, loses energy uniformly over the entire

path.

Having given up all of its kinetic energy in collisions, the

electron stops and "hangs up" in the body. However, if the

bombarded body is a wall of finite thickness, then it is possible
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for the electron to reach the second surface of this wall without

having given up all of its store of kinetic energy and to leave the

body with the remaining energy. In this case the energy given up

to the body by the particle and going to heat the body proves to

be less than the kinetic energy of the particle, i.e.,

Q = Q,,K, where K S 1 9

The path in which a particle penetrating a material gives up

all of its kinetic energy to the material, is called the

penetration depth.

The penetration depth is dependent on the type of the

particle, its kinetic energy and on the material of the body.

Here one should keep in mind that the particle does not move

in the body on a linear trajectory, but rather on a complex

trajectory that is determined by random collisions with the

particles of the material Figure 6.

Figure 6

In connection with this, the penetration depth is understood

to be some statistically average depth 6, to which a sufficiently

large number of particles penetrate into the material. Of course,

formulas that describe these processesare approximate. However,

their accuracy is quite satisfactory for design calculations.

Returning to electrons, for which, as was already noted, the

losses of energy are proportional to the path traversed in the

material, we can say that the coefficient in expression 9 will be

K = h/S 10
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where ft is the thickness of the part penetrated by the beamin the

direction of particle flight;

6 is the penetration depth of electrons with given kinetic

energy into a given material.

Expression 10 is valid for ft 6, while h > S K is always equal

to 1.

If thickness h is a design parameter, known in each specific

case, then the penetration depth of electrons into a material

should be determined for each case.

Thus, for electrons with kinetic energy

500 < T keV S 3000

the penetration depth is described well by the following

expression:

_____

II

where
‘‘

is the density of the material, kg/rn3

T is kinetic energy, keV;

6 is the penetration depth, m.

Here we will make one comment:

For electrons with T = 2 MeV = 2000 keV and copper with

= 8.9 x io kg/ni3 we obtain

Icr3g -las

A "tablet" of copper with area 1 cm2 and thickness 1 mm Figure

7 weighs 0.89 g. As we saw, the entire electron beam at P = 2 MeV

will "settle" in this thickness. However, the electrons give up

their energy in proportion to the path traversed in the material.

Therefore, if this path is measured in terms of the weight of
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material "traversed" by an electron, for an area of 1 cm2, we obtain

the rate of loss of energy by electrons in this case

.I_ 2B MeV
agO,89g2’g

It turns out that at energies above 500 keV electrons in all

materials give up energy at a rate approximately equal to

2 MeV/g.

This figure then can be used in preliminary estimates.

For example, if there is a wall of stainless steel ‘y = 7.85

x io kg/m3 = 7.85 g/cm3 2 mm thick bombarded by electrons, there

will "remain" in it an energy

= 7.85 x 0.2 x 2 x 1 3.14 MeV

Thus, particles with energy of t3 MeV will give up all of

their energy to the body, heating throughout its entire thickness.

Particles with energy above 3 MeV will pass through the wall,

"leaving" in it a power proportional to an energy of

3 MeV. On the other hand, particles with energy less than 3 MeV

will "stick" in the wall without reaching the opposite surface, and

will heat only that part of the thickness of the wall equal to S.

Figure 7

2. Heat removal and distribution of tanratures

Thus, we have found--basically--what sources of heat there are

in constructions and how to evaluate the released heat power in

various cases.
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What then happens with this power?

Next this heat is spontaneously transferred in the direction

of decreasing temperature. This transfer is accomplished in

correspondence with the laws of heat transfer, which, generally

speaking, is a very complex process.

This process is usually analyzed by separating it into three

elementary methods of the transfer of heat--heat conduction,

convection and heat radiation.

HEAT CONDUCTION is the transfer of heat by direct contact of

bodies or parts of the same body that have different

temperatures.

The phenomenonof CONVECTION is observed in moving liquids or

gases. The transfer of heat here occurs simply because of the

migration of material in space.

HEAT RADIATION is the phenomenonof the transfer of heat in

the form of electromagnetic waves with initial conversion of heat

energy to radiant energy and then back from radiant energy to heat

energy.

Although each of these forms of heat exchange in pure form is

rarely encountered, it is convenient to study them separately,

after first establishing a number of necessary concepts.

A TEMPERATURE FIELD is the set of values of temperature at all

points of a body at a given moment of time.

Mathematically, a temperature field is described by the

equation

t = tx, y, z, r 12

If temperature is dependent on time r, the temperature field

is UNSTEADY-STATE, while if it is not dependent on time it is

steady state. In space a temperature field can be one-, two- or

three-dimensional. Equation 12 is the equation of a three

dimensional field. The simplest is a one-dimensional steady-state

temperature field, which is described by the expression

t = tx 12’

TEMPERATURE GRADIENT. In a body for any temperature field

there are points that have the same temperature. Their geometric
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locus is called an isothermal surface. A change of temperature in

a body is observed only in directions that intersect isothermal

surfaces for example, x in Figure 8. Temperature changes the

most sharply in the direction normal to an isothermal surface

tmM-=dLgzadt 13
4fl.efl art dn

A TEMPERATURE GRADIENT is a vector directed along the normal

to an isothermal surface in the direction of increasing

temperature.

HEAT FLUX. Heat is transferred spontaneously in the direction

of decreasing temperature. The amount of heat that is transferred

across some surface per unit of time is called the HEAT FLUX P W.

The heat flux through a unit of surface is called the SPECIFIC

or UNIT] HEAT FLUX, or the HEAT FLUX DENSITY, or the HEAT LOAD OF

A SURFACE q W/m2.

The specific heat flux is a vector, the direction of which

coincides with the direction of the spread of heat at a given point

and is opposite to the temperature gradient vector.

2.1 Heat conduction 4,5]

This is the transfer of heat within a solid body from points

at higher temperature to points at lower temperature. The

mechanismof heat conduction consists of the transfer of energy due

to thermal motion and energetic interaction among the molecules,

atoms and electrons of which the body consists.

Figure 8
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Fourier’s law

In studying the process of heat conduction in solid bodies,

Fourier established that the amount of heat that is transferred is

proportional to the decrease of temperature, the time and the

cross-sectional area perpendicular to the direction of propagation

of heat.

Mathematically, this looks like:

= -Xgrad t 14

This equation is the Fourier law - the basic law of heat

conduction.

Coefficient of heat conduction

The proportionality factor in equation 14 is called the HEAT

CONDUCTION COEFFICIENT. This is a physical property of a material,
the meaning of which can be understood from the equation:

W/mdeg 15

The value of the heat conduction coefficient is the amount of

heat transmitted through a unit of area per unit of time at a

temperature gradient equal to unity.

The solution of all specific problems of heat conduction

consists of writing and solving the Fourier equation for the given

case. Let us look at a few examples of how this is done.

2.1.1 Heat conduction of a flat wall

2.1.1.1 Concentrated power Figure 9
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qa.: zodti1

From the Fourier equation we have:

F 4g

dtx
-

dx

If x = h, t = t0, from which

tx -t.+ftk_xct,,+1_t; L,-t*teft 1
&tWi4t-t..’ff1-.; atmactoktc. J16

The notion of heat resistance is very convenient for practical

calculations; this can be illustrated using an example of

Figure 9

electricity-heat analogy Figure 10.
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Figure 10

If current I passes through the segment of the circuit with

resistance R, in this segment there will be a drop of voltage

= I*R. If the potential of point A is U1, then the potential of

point B will be

U2 = U1 + I*R

This is the universally known Ohm’s law for an electrical circuit.

By analogy one can write this same law for a heat circuit, making

the following substitutions:

U-.t

I-’P 17

R-R,.

We find:

t2 = t1 + PRT

18

= t2 - t1 = PR..

Comparing 18 and 16, we see that the heat resistance of a

flat wall for concentrated heat power P is:

= h/XF, deg/W 19

If one knows the heat resistance Pr, one can always easily obtain

the drop of temperature through the wall by multiplying the power

passing through it by RT.

2.1.1.2 Distributed power

A possible case is where the heat does not arrive at the plate

from an external source on one side, but rather is released within

the plate itself. For example, if a direct current passesthrough
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the plate, heat will be released in it uniformly throughout its

volume with intensity qy W/m3.

In correspondencewith Figure 9 the heat power released in a

layer of thickness x will be:

POt -

q. Pjxqvx; 9tOd "
dt6

From the Fourier equation:

-

___

qx- dx

dtx--..xdx; tx-2+c

If x = h, t = t0, from which Cat.+!%eji

L+*[i-cr1; trt.+ "f
Atx-tx-t.-

h1%yJt%th I
We will transform the last expression somewhat:

atmat 2A F 2Ar 2AF

In correspondencewith 18, we see that the heat resistance of a
plate for distributed power is

= h/2XF 21
i.e., it is half that of the resistance when there is concentrated
power.

2.1.2 Heat conduction of a cylindrical wall Figure 11
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2srzL
p __Mt’2; dt?J=- Pdz

LsrzL dz êrAt.2
p

= 2JrAL
If r = r, t = t0, from which

aex

2rAL

Making substitutions, we have:
D

- 2SAL T
tmax ‘I a 22P p,Lex

2fl1 t
P

atflmriiAl "j
In correspondence with 18 we find the heat resistance of a

cylindrical wall for concentrated power:

p
2tAL z

One should note that the temperature parameters expression 22

and heat resistance of a cylindrical wall are dependent on the

ratio of radii and rm, but not on their absolute values.
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2.1.3 contact heat conduction [5]

A very common case is the case of heat transfer across the

contact of two surfaces. In the general case this contact has the

form shown in Figure 12.

Figure 12

In correspondencewith this, the transfer of heat is accomplished

both across surface roughnesses and through the medium between

roughnesses.

The question of contact heat exchange is very complicated, a

great deal of research has been devoted to it, and there are many

varying recommendationsfor calculation of this process.

The following is a convenient method of calculation. The heat

resistances of the contact and the interlayer "medium" are

calculated separately by the formulas:

-4
p ,38slO

" 2,INX } 23

where R is the heat resistance of the contact, deg/W;
R is the heat resistance of the interlayer betweensurfaces,

deg/W;

havi and hav2 are the average values of the heights of the

microroughnesses on the contacting surfaces, which are determined

by the roughness class of the surfaces, m;
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Snom is the nominal contact surface area, m2

is the tensile strength of the less plastic material of
the contacting parts, kg/rn2 a9 can be used in kg/cm2 and then one
can omit the factor l0;

N is the total force at the contact, kg;

X = 2X1X2/X1 + X2 is the reduced coefficient of heat
conduction of the contact, W/mdeg A1 and A2 are the coefficients

of heat conduction of each of the contacting materials;

X is the coefficient of heat conduction of the medium in the

interlayer, W/nrdeg.

Since these two resistances are "connected" in parallel, then

one obtains not the resistances, but rather the inverse quantities-

-conductances. Then the total heat resistance of the contact P1

can be found from the expression:

£LJ_,.2.lMA 2Ae5n
R R sç.g-4 haCIIav2

This method gives values of R1 that are somewhat too low in

the case of the contact of large surfaces that have significant

waviness. The "guilty party" in this is the second term of
expression 24, since for wavy parts the value of the interlayer

in fact proves to be greater than havi + hav2/2 The way out

here is either to consider the actual waviness in the calculation

or to assure that the flatness error of the parts does not exceed

h.

It should be noted that even in this case the first term of
the formula gives a quite reliable result, in spite of waviness.

The fact is that the contact of the surfaces is actually
accomplished at individual points -contact spots that form as the
ridges of the microroughnessesare compressedunder the effect of
force N. Here the actual area of contact, which then determines
its resistance, is always determined by the ratio:
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5act = N/acom acom is the strength of

material in compression

if a part is wavy, there will be fewer contact points, but then

each of them will be "mashed" to a greater area and the total

actual area of contact will again prove to be equal to

Incidentally, this also explains the fact that the heat resistance

of the metal part of the contact is not dependent on the nominal

contact surface Snomi as can be seen from 23 and 24.

Very often one must have some heat contact between parts in a

vacuum, where X = 0. In this case only the first term of

expression 24 remains and

deq/w 25

In completing this section, a number of commentsmust be made.

First, in books that are devoted to contact heat exchange, the

dimension of P1 is assumed to be not deg/W, but rather m2.deg/W.

In correspondencewith this, the nominal surface of contact Snom
will appear in the numerator of the first expressions 23 and will

vanish in the denominator of the second of these expressions. The

fact is that in the literature the discussion concerns the specific

heat resistance of the contact i.e., the heat resistance of a unit

of area of contact. Here, however, we give expressions for the

total heat resistance of contact, which is more convenient for use

in practice. Returning to the electricity-heat analogy, we see

that according to Ohm’s law

u=rp

where R is the total electrical resistance.

Using the notion of total electrical resistance, one can use a

completely analogous Ohm’s law for a heat circuit with

substitutions as in expression 17:
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At = PR1

If, however, one uses the notion of the specific heat resistance,

in the last expression one would have to introduce the term 5nom
again, which seems less convenient.

Second, expression 25 can also be used for evaluation of the

electrical resistance_of a flat contact. For this one need only

replace the quantity ,A in it by

4 2

where Pi and p2 are the resistivities of the materials of the

contacting parts, ohmm.

2.2 convective heat exchange 4,6]

This is the transfer of heat between the surface of a solid

body and a liquid or gaseousmedium.

The amount of transferred heat P is proportional to the

surface area of heat exchange F and the difference of temperatures

of the wall and liquid t - t in correspondencewith Newton’s

law:

P = aFt,, - t4 26

The proportionality factor is a, which is called COEFFICIENT OF

CONVECTIVE HEAT TRANSFER and is equal to the amount of heat
transmitted through a unit of surface for a one degree difference

of temperatures between the surface and the liquid:

2W/m deg 27
W].q

The heat resistance in the process of convective heat exchange is

determined by the expression

= l/aF 28
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The process of convective heat transfer is linked with the

conditions of motion of the liquid. As is well known, there are

two basic types of motion of a liquid: laminar stream-like,

quiescent motion and turbulent vortex-like, unordered motion.

Processesof heat removal occur differently in these forms of flow

and, naturally, there immediately arises the question: when is a

flow which kind?

Reynolds established, as a result of special studies that an

indicator of one or another flow regime is a particular

dimensionless complex

wl / p

where w is the velocity of motion of the liquid, m/sec; z’ is the

kinematic viscosity of the liquid, m2/sec; 1 is a characteristic

linear dimension of the swept body, m. This complex was later

named the REYNOLD’S CRITERION or REYNOLD’S NUMBER

29

where ‘y is the density of the liquid, kg/m3

g = 9.81 m/sec2 is gravitational acceleration;

M is the coefficient of dynamic viscosity of the liquid,

kgsec/m2.

The transition of laminar flow to turbulent flow occurs at

some value of Re, which is called the critical value Recr. If Re

C Recr the flow is laminar, while if Re > Recr it is turbulent.

The value of Recr is dependent on specific conditions. Thus, for

the flow of a liquid or gas in tubes and channels

Recr 2300

The characteristic dimension of the swept body 1 is also dependent

on the specific conditions of the process. For example, for the

flow of a liquid in tubes and channels this dimension is the so-

called HYDRAULIC DIAMETER, which is defined by the expression:
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dh = 4F/U

where F is the cross-sectional area of the channel, m2

U is the parameter of the channel, m.

It is easy to see that for a round tube dh = d.

A second serious question that arises in the use of expression

26 is the question of finding the coefficient of convective heat

transfer a.

The process of convective heat transfer is a very complex

process, and a is a function of a very large number of quantities

that characterize this process: the shape and dimensions of the

swept body, :its surface temperature, the temperature of the liquid,

the velocity of motion and the physical properties of the liquid,

and so forth. A rigorous mathematical description of this process

is very difficult. In connection with this, SIMILARITY THEORY is

used to determine the coefficient of convective heat transfer.

The essence of this theory is that under similar conditions

similar processes proceed in a similar way. This means that to

determine some quantity ØA in process A it is sufficient to take

the same quantity in process B, Ø, and multiply it by a

"similarity factor" C:

= øBc
The similarity factors for different quantities in similar

processes cannot be arbitrarily prescribed, but rather must be

quite specific. They are complexes of certain specific physical

quantities and are called SIMILARITY NUMBERS. They are usually

named for scientists who did successful work in this field:

Reynolds Re, Nusselt flu, Fourier Fo, and so forth. A

characteristic property of similarity numbers is their

dimensionlessness.

The existence of similarity numbers makes it possible to

simplify the calculation of heat processes substantially. Thus,

the intensity of convective heat exchange is always characterized

by the NUSSELT NUMBER.
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= al/A 30

where 1 is a characteristic linear dimension, m;

A is the coefficient of heat conduction of the heat carrier

[heat transfer agent], W/nrdeg;

a is the coefficient of convective heat transfer, W/m2deg.

Expression 30 is the basic expression for determination of

the coefficient of convective heat transfer a:

a = NuX/l 30’

The value of the Nu number is determined as a function of the

specific process of heat exchange being analyzed. Thus, for the

motion of a liquid in tubes and channels for the turbulent regime

the following criterional expression is recommended for the

determination of Nu

flu4 0.023Re°’8Pr°’46k 3i

where flu4 is the Nusselt number for determination of the average

coefficient of convective heat transfer over the length; the

coefficient of convective heat exchange over the length is used
becausethe liquid gradually becomesheated as it moves along the
body being cooled, the properties of the liquid change and a
changes;

Re4 and Pr4 are the Reynolds and Prandtl numbers for the

average temperature of the liquid this is indicated by subscript

"lq"

R is a coefficient that takes into consideration the

curvature of the tube and is equal to

= 1 + 1.77d/R 32

where d is the diameter of the tube and R is the average radius of
curvature.
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Formulas for calculation of similarity numbers and

coefficients of convective heat transfer under various conditions

of convective heat exchange are given in Table I.

If heat is being removed with water, the coefficient of

convective heat transfer can be determined from the graphs in

Figure 13.

Di
0
‘0
.

N
H

a

Figure 13. Coefficient of convective heat
transfer for the removal of heat with water

corresponds to the relationship

= °° r°"}

Key:
1 - Average temperature of water tay, C

‘- ,. IsS.. nnawpana ‘ tcab
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Key:
1 - Convective heat exchange
2 - Transferred power
3 - Coefficient of convective heat transfer

1 -determining dimension
4 - Process
5 - Regime
6 - Criterional equation
7 - Determining dimension
8 - Determining temperature
9 - Flow in tubes and channels

d -diameter of tube; l -length
10 - Turbulent
11 - Laminar
12 - Liquids:
13 - Air:
14 - Round tubes - diameter d

Nonround channels - hydraulic diameter
= 4F/U

F - cross section of channel
U -perimeter of channel

15 - For parameters with subscript "lq" "liquid" -average
temperature of heat carrier; for parameters with subscript
"w" "wall" -temperature of surface being cooled

16 - Natural convection
17 - Sphere and horizontal tube - diameter

Vertical tube and vertical plate -height of cooled heated
segment
Horizontal plate - smaller dimension in olan view
hot side up, increase C by 30%;
hot side down, decrease C by 30%

18 - Heat removal in interlayers
19 - Heat conduction with equivalent coefficient of heat

conduction is calculated
A - coefficient of heat conduction of medium
at determining temperature

20 - Thickness of interlayer
21 - Arithmetic mean temperature of walls of interlayer
22 - Similarity numbers
23 - Notations
24 - Name
25 - Formula
26 - Which determines
27 - Reynolds
28 - Nusselt
29 - Grashof
30 - Fourier
31 - Prandtl
32 - Hydrodynamic regime of flow of heat carrier
33 - Intensity of convective heat exchange
34 - Relative effective free convective heat exchange
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35 - Unsteady-state heat conduction
36 - Thermophysical characteristic of heat carrier
37 - 1 - determining linear dimension, m

‘yr - characteristic difference of temperatures,deg
r - time, sec
g = 9.81 m/sec2
a - coefficient of convective heat transfer,

W/ m2deg
HEAT CARRIER

w - velocity of motion, m/sec
y - density, kg/m3
p - coefficient of kinematic viscosity, m2/sec
p - coefficient of dynamic viscosity, kgsec/m2
A - coefficient of heat conduction, W/mdeg

- specific heat capacity per unit of weight,
Wsec/kgdeg

B - coefficient of volumetric expansion, 1/deg
a = X/CA - coefficient of thermal diffusivity, m2/sec

2.3 Heat radiation [4,7,8]

The carriers of the energy of radiation are electromagnetic

vibrations in the wavelength range from fractions of a micrometer

to several kilometers. In processes of heat transfer we are

interested in those forms of radiation that are determined by the

temperature and optical properties of bodies, i.e., the visible

light and heat infrared waves with wavelengths from 0.4 to 800

pm.

The nature of light and heat rays are the same and, therefore,

the laws of their propagation refraction, reflection, and so

forth are also the same.

Every body radiates energy into space. Upon striking another

body, this energy is partially absorbed, partially reflected, and

partially passedthrough the body. The absorbed part of the energy

is converted to heat, while the reflected energy and the energy

that is passedthrough the body reach other bodies and the process

repeats.

Thus, every body is continuously radiating and absorbing

energy. The result of these conversions of heat energy to radiant

energy and back is heat exchange by radiation.



32

The amount of heat given off or taken up by a body is the

difference between the heat absorbed and radiated by it. This

difference will exist only when the temperatures of the bodies in

a system are different. Bodies with the same temperature form a

system that is in thermal equilibrium; in this case all of the

bodies radiate and absorb energy, but the incoming energy is equal

to the outgoing energy for each body.

2.3.1 Radiant flux

The total radiation that passes per unit of time through

surface F is called the RADIANT FLUX P W.

The RADIANT FLUX DENSITY E = dP/dF W/m2.

If out of the total radiant flux P a part A is absorbed by

tke body, a part R is reflected, and a part P0 passes through the

body, then

+ Pit + Po = P

from which

j

or:

A+R+D=1 33

where A, R and D respectively characterize the absorbing,

reflecting and transmitting capacities of the body.

A = 1, R = D = 0 -all of the energy is absorbed by the body.

Such a body is called an ADSOLUTELY BLACK BODY or, simply, a BLACK

BODY.

R = 1, A = 0 = 0 - all arriving energy is reflected by the

body. This is an ABSOLUTELY WHITE body;

D = 1, A = R = 0 -all of the incoming energy passes through

the body. This is an ABSOLUTELY TRANSPARENT diathermic body.
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All solid bodies and some liquids water, alcohols, and so

forth are practically nontransparent for heat rays are athermic

i.e., 0 = 0. Then for nontransparent bodies

A+R1 34

From this it follows that if a body absorbs energy well, then it

reflects it poorly, and vice versa.

In nature there are no absolutely black or absolutely white

bodies. All bodies both radiate and absorb energy, and in this

sense they are not completely black, but rather GRAY bodies. The

degree of brightness of a body c also: "COEFFICIENT OF

BLACKNESS", "COEFFICIENT OP GRAYNESS" is numerically equal to the

absorbing capacity of the body A:

35

The degree of blackness [emissivity is a characteristic of a

material that is dependent on the temperature of the body and the

status of the surface. Values for various conditions and materials

are given in the literature.

2.3.2 Heat exchange by radiation between bodies

According to the Stefan-Boltzman law the radiant flux density

of an absolutely blackbody is

r .rti4 20 LWUJ W/

where T is the temperature of the body, K,

C0 is the coefficient of radiation of an absolutely blackbody,

which is equal to

Cr5.67 W/ni2jc
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For a not absolutely blackbody the radiant flux is

PaC.1&]4F

where is the degree of blackness of the body and

F is the surface of radiation, m2.

Radiant flux between two bodies is calculated as

P-&C.H [j4-j14} 39

where T, and T2 are the temperatures of the bodies, K;

- I
treaIt * -‘‘q2t4-i’

That is the reduced coefficient of blackness of the system, in

which j and 2 are the degrees of blackness of the bodies, W12 and

2I are the surface-average coefficients of irradiance of body 1 on

body 2 and of body 2 on body 1;

H = w12F1 = w21F2 is the mutual surface of irradiation,

m2 F1 and F2 are the surfaces of radiation of the bodies.

Coefficients of irradiance I2 and W21 are dependent on the

shape, dimensions and mutual positions of the bodies and are given

in the literature for various cases for example, [8.

We will consider individual simple, but typical, cases.

2.3.2.1 Two parallel walls at a distance that is small by

comparison with their dimensions Figure 14

- I’

I t

______

40
41’

tjfrr. redftk...i

P=it C.FE4_iLi
red 100

Figure 14
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2.3.2.2 Two surfaces that form a closed system Figure 15

Figure 15

P,c1 "r H"F1

£: ______i_____- 4’

redt+ kt_1
rP-E ‘-&ILP°OI MOO

red

For

P-c C,F4 g-anre
41’

Equations 41 and 41’ are valid for the case where the

inner surface does not have concavities. However, they can also be

used if there are concavities, but in this case F, should be

understood as the surface not of body 1 itself, but of an

infinitely thin film surrounding the body Figure 16.

2.3.3 Heat screens

Figure 16

If a screen of a material that is not transparent for heat rays is
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placed between two bodies, then the heat flux between the bodies

will change.

For simplicity we will consider the casewith absolutely black
flat surfaces, between which a flat, likewise absolutely black,

screen is placed.

Without the screen the density of the heat flux between the

bodies was

= C0v, - v2 where

VsiY,fld 1 = R’i4
tWO, 2 Uoo/ are the temperature factors of

bodies 1 and 2. After installing the screen it is only known that

heat radiation from body 1 onto the screen is equal to the heat

radiation from the screen onto body 2, i.e.,

q2 = C0v,
- vscr = Covscr - v2

from which and

___

Thus, the installation of one absolutely black screen reduces the

heat flux twofold. It can be shown that two screens will reduce it

threefold, three screens fourfold and, in general, n screensreduce

heat radiation by a factor of n + 1 times.

If, however, the screens have high reflecting capacity i.e.,

low degree of blackness, their efficiency increases significantly,

and the screens become a radical means of reducing the heat flux.

The heat flux of radiation across a closed system of two

bodies and n "gray" screens will be:

p= Co 1iWGA’si -

- +_I_-+.. + I 42

where F1, 1 and T, are the surface, degree of blackness and

temperature of the radiating body;
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F2, 2 are the surface and degree of blackness of the first

screen;

F3, 3 are the surface and degree of blackness of the second

screen;

Fn+i n+1 are the surface and degree of blackness of the n-

th screen;

Fn+2s n+2 and Tn+2 are the surface, degree of blackness and

temperature of the heat receiving body.

EI2 23, En+l n+2 are the reduced degreesof blackness

in the systems of the first and second, second and third, and so

forth up to the n + 1-th and n + 2-th bodies.

H,2, ‘23’ *, Hn+l n+2 are the mutual surfaces of

irradiance in these systems of bodies.

2.4 Complex heat transfer

Under real conditions there are always several kinds of heat

transfer participating in a process of heat exchange-sometimes in

succession, sometimes in parallel.

Thus, for example, in the case of the transfer of heat from

one liquid to another through a wall Figure 17 the heat is first

transferred by convection to the wall with coefficient of

convective heat transfer a1, then through the wall with coefficient

of heat conduction A, and, finally, from the wall to the other

liquid with coefficient of convective heat transfer a2.

11
Figure 17
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Since the heat fluxes from the first liquid to the wall and

from the wall to the second liquid are equal, then:

Pu0hiFtiqrtt
P=’A-t, -t2
PcgFt2 tlq2

Finding from the second expression

.
pg

‘2’f iF

and substituting this into the third expression, we find:

4 t .J2_+2L p
4 1q2 d2F AF t1qft4

Addition of the last expression gives

t1qrt1qcP[&]

from which the heat flux from one liquid to the other proves to be

equal: om tlql-tiq2
U

d,F o!2F &F

The denominator contains the total overall heat resistance of the

system, i.e., the last expression can be rewritten in the form

p ttqlt3q2
43

This expression is valid for any system, no matter what forms of

heat transfer there were in succession "in passing".

This was a case of the successive action of different types of

heat transfer. An example of parallel action is, in particular,

convective heat transfer from a body to the surrounding medium

under ordinary conditions.

As a rule, heat is given up in parallel by convection and by

radiation.
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The power given up by convection is:

= aFt, - t2

where a is the coefficient of convective heat transfer, W/m2deg;

F is the surface area of cooling, m2

t1 and t2 are the temperatures of the body and the surrounding

medium, °C.

The power given off by radiation is:

5, C.F 16I-t-6b11
where c is the degree of blackness of the body;

C0 = 5.67 W/m2K4;

F is the surface area of radiation, m2

T3 and T2 are the temperatures of the body and the medium, K.

The total heat flux from the heated body to the surrounding

medium is:

-÷&- i1t,- t+c,CF[Gr-Gr}
It is more convenient to write the last expression via the

overall coefficient of convective heat transfer aE in a simpler

form:

P-dFt- t, 1

_______________

45
en ft

The literature [7,9] gives tables and curves for determination

of at in dependenceon t, and t2. The degree of blackness of the

body here is assumed to be z 0.8, which is valid for normal

exposed surfaces for an average level of dustiness.
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On a preliminary basis, in initial estimates one can assume

for bodies with temperature no higher than 100°C

10-20 W/m2deg.

Unsteady-state Drocesses

We have considered all forms of heat transfer in a steady-

state regime, i.e., when the temperature field of the body does not

change with time. However, cases where one must analyze the

operation of a part or item in the process of heating or cooling,

i.e., in an unsteady-state regime, are encountered fairly often in

practice. -

Here there are usually two possible questions:

1 by what law does the temperature of a body increase or

decrease?

2 what is the time that we require to reach a steady-state

temperature what will be the time for "coming up to

regime"?

We will discuss using simple examples how the dependenceof

temperature t on time r is derived.

3.1 Heating of a body

Let some body of mass m at the initial moment of time

r = 0 have temperature t0 equal to the temperature of the

surrounding medium. At this moment power P W, begins to be

released in the body uniformly throughout its volume. The specific

heat capacity per unit weight of the material is

C,, Wsec/kgdeg.

At time r the body will have temperature t and in the interval

of time dr it will change by dt. Let us write the equation of heat

balance for this process.

Energy mC,,dt Wsec, is expended in heating the body by dt.



41

During time dt at temperature t the following energy is given

off from the body

t047 Wsec

R is the heat resistance deg/W, between the body and the

surrounding medium.

However, energy Pdr Wsec, is also released during time dr,

i.e.,

Pdr- edt

rnC,R1 PPj-t-t.Y Jç,=tnIPR.vtt.1tC
Ppr t"O t"toandCafnPQ

, Q1fl ;e4ur=PRtC, PR.1-btJ fly-t-U

t-t0tPRAI- eL 46

It is known that PRT= t - to, from which

t" tot L01-.tafl - e In4R s’

tmax is the temperature of the body in a steady-state regime.

The curve of the change of temperature through time has the

form shown in Figure 18.

Figure 18
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The temperature of the body continuously approaches the
steady-state temperature tmaxl reaching this value at r =

3.2 Cooling of a body

A body with mass m and specific heat capacity C,, at the initial

moment of time has temperature tmax and begins to cool across heat
resistance RT.

At time r the body has temperature t and in time segment di

changes its temperature by dt.

Here the store of energy of the body changes by -mCdt and

energy

RI.

is given off from the body, where t0 is the temperature of the

surrounding medium. Thus, the equation of the heat balance has the

form:

tOdtmC4t
dt - cit . - I.

inC9Q,.
For t-O tet,nu,niC--tnt,vnu-t.

t -4 t-t. -

mC,R1 "t.nalrte’

1:- t.÷t0-tJe

The curve corresponding to equation 47 is shown in Figure 19.

Ifr=t=t0.
t.

Figure 19
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3.3 Time required to come up to regime

It can be seen from equations 46’ and 47 that the quantity

mC,,R1 must have the dimension of time. This is indeed so:

kW-secdeg
= seckgdegW

The segment of time defined by this quantity is called the TIME

CONSTANT of the process that is described by equations 46’ and

47
We will use the notation mC,,R1 = o and rewrite equations 46’

and 47 in the form:

r
ttotmax_t0jec

k-ttmax_j0 ei jr 48

It can be seen from equations 48 and Figures 18 and 19 that if r

= r the quantity tmax - tr differs from the quantity

tmax - t0 by a factor of e for heating and quantity tr -

differs from tmax - t0 also by a factor of e during cooling, while

if r = 21o these quantities differ by a factor of e2, if
T = 3t they differ by a factor of e3, and so forth.

However, e3 20 and the difference of temperature from the
steady-state temperature at r = 3r is only about 5%, which in most
cases can be neglected in any case, if r 4r0 the disagreement
will be z1.8%, which is always insignificant.

Thus, with accuracy that is sufficient for design calculations

one can consider that the time for the system to come up to regime
will be

tregime 3-4i- = 3-4mC,,RT 49

One more method of calculating the time for the system to
reach steady-state regime can be shown.
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t

Let us plot the graph of some process, in which a body of mass

m is heated by power P with heat resistance between the body and

the surrounding medium RT. The specific weight heat capacity of

the material is C,, and the temperature of the medium, which is equal

to the initial temperature of the body, is to.

As is known, the temperature of a body in such a process

changes according to an exponential law Figure 20, which is

described by the first of equations 48.

If the length of segment BC is calculated on the scale of time

r, it turns out that, first,

BC =

and, second, quantity BC is not dependent on the coordinate of

point A. BC is a "subtangent" of the exponential curve, the

constancy of which is one of the properties of an exponential

curve.

But if quantity BC is not dependent on the coordinate of point

A, then
MN = BC = r.

On the other hand,

MN- 0-’t = tart. - tmartt
tgoC fi.Jtt,, -

Figure 20
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After this, we can write that

50
/mC

where tmax - t0 is the difference of temperatures of the body and

the surrounding medium in a steady-state regime.

3.4 unsteady-state heat conduction [10]

Often in designing various devices the designer runs up

against the need to use parts that experience heating from one

side, with propagation of heat into the material. Examples include

parts through which high-frequency currents flow in the skin

layer as well as various collectors, radiation receivers, and so

forth.

For all of these parts the temperature field is variable

through time, and the heat spreads in them by means of heat

conduction, i.e., they operate under conditions of UNSTEADY-STATE

HEAT CONDUCTION.

How does one calculate the distribution of temperatures in

such a part at a given moment of time?

A rigorous mathematical solution of such problems is very

difficult and, as a rule, leads to a solution in the form of the

sum of the terms of an infinite series, which is not very

convenient for practice.

To make practical calculations easier, graphs are plotted

using these formulas and these graphs make it possible to do these

calculations fairly easily and simply. The solution of a number of
such problems in graphic form is given in [10].

In order to become acquainted with the technique of using

these solutions we will consider one very typical problem,

one-sided heating of an infinite plate.

A plate of thickness h infinite in area is heated on one
side by a specific heat flux q W/m2, which is constant through
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time. The initial temperature of the plate is t0, and heat removal

from the "cold" side is absent Figure 21.

In correspondence with the recommendations of [10] the

temperature of any point on such a plate can be determined from the

expression:

t = to + eqh/X 51

where X is the coefficient of heat conduction of the material,

W/m-deg;

8 is a parameterthat is a function of the coordinate through

the thickness of the material, in which the temperature, properties

of the material plate and time of heating are determined.

Parameter 8 is determined from graphs, which are given, for

example, in 10]. For our problem this graph has the form Figure

22:

*
Figure 22
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8 = fFo, ‘i Fo = ar/h2

where a = X/C,,’-y is the coefficient of temperature diffusivity of the

material, m2/sec.

For known given r and x one finds Fo and tj, and then from

them 8, after which the temperature at this point of the plate at

time r is determined from equation 512.

However, besides solving the question of the temperature of a

given point on the plate at a given moment of time, this graph

makes it possible to answer a number of other interesting

questions.

The first question is: in what amount of time will a plate of

thickness h be heated over its entire thickness i.e., how long

will it take for the heat front to reach the "cold" surface?

It can be seen from the graph that this moment corresponds to

the quantity

Fo = arheat/h = 0.1 52

from which the time of heating is

7- = 0.1h2/a 53

A second question is: to what depth hheat has the heat front

penetrated into the body in time r?

From the same equation 52 we have:

hheat = Vioar 54

A third question is: what is the average temperature of the

plate at time r?

The average temperature is determined from the parameter 0=
Fo, i.e., it is equal to

heat
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56

If, however, we wish to find the average temperature of the

plate at time theat or the average temperature of the layer heat

that has been heated in time 7- -naturally for hheat C h, then for

this case, as can be seen from the graph, Fo = 0.1 and

theat = t0 ÷ 0.1qh/X 56

Finally, a fourth question: how does the temperature of the

"hot" surface of the plate differ from the average temperature of

the heated layer?

As we already know, for the heated layer

Fo = 0.1

and the average heating of the heated layer at this time is

t - to = 0.1qh/X 57

It follows from the graph that the heating of the hot surface of

the plate at this moment will be

thot - to = 0.35qh/X 58

Thus, for one-sided heating of a plate that is uniform over

its area the increase of the temperature of its "hot" surface will

be 3.5 times higher than the increase of the average temperature of

the layer that has been heated in the same time if hheat S h.

This simple example clearly shows what broad possibilities are
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offered to the developer by ready-made general solutions of

problems in graphic form such as are contained in [10].

3.5 Heating of a body by a beam of charged particles [3

Let us consider the heating of a plate by an electron beamof

power P, W, which falls uniformly on area F, m2.

Transforming expression 58, one can obtain the increase of

the temperature of the "hot" surface in a time equal to a pulse

length Ip:

at 0,35fr bhlOOtp. 454P.54 or

t 411RC_
iurf

‘ Fjc,A;

However, as experiments show, the temperature of heating of

the surface of the body when it is bombardedby electrons actually

proves to be lower than that calculated by expression 59. This

is due to the fact that the power of the electron beam is released

not on the very surface of the plate, but rather in some layer that

is equal in thickness to the penetration depth of electrons into

the material expression 11. This decrease is considered by

introducing an additional factor G6/Vai-,, into expression 59 in

the case of heating by an electron beam:

LI! C’4aç

The function G6/Var is described by complex expressions, but in

calculations one can use the following simplified formulas:



50

for
. -

61
ror:L...5 f

Substituting 61 into 60, we obtain:

for L5 £LJ;7P!cvf÷øfrp2sJ 1 62
for ..L.,5 ,t S,25.IO4PNTp

surf C,FT"

Expressions 61 and 62 make it possible to calculate the

heatup temperature of the surface of the body when it is bombarded

by electrons. In correspondencewith this, if the curve of the

distribution of temperatures for ordinary surface heating of a

plate has the form of 1 Figure 23, then when it is heated by a

beamof electrons with the same specific heat flux, this curve will

have the form of 2.

h

Here the following ratio will be valid:

t:-: -ik

0 Figure 23
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IS. Thermoelastic stresses in the elements of constructions

The heating of the parts of constructions, as a rule, causes

in them the appearanceof mechanical stresses, which in this case

are called thermoelastic stresses. Exact calculation of

thermoelastic stresses is a very difficult problem, and the

engineer in practical reality must always seek reasonable

hypotheses that are aimed at simplifying the calculation scheme

with the goal of reducing it to one that is amenable to

mathematical investigation.

Just to get a sense of the approachto solving such problems,

we will discuss very briefly a technique for determining stresses

in systems of uniformly heated rods.

The elongation of a rod when heated is, as is well known,

defined as

Al = alAt

where 1 is the length, m;

At is the temperature of heatup, deg;

a is the coefficient of linear expansion of the material,

1/deg.

If the rod is fixed in place and cannot buckle, then the following

stress will arise in it

C = -aEAt 63

where E is the modulus of elasticity of the material the "-" sign

indicates that compressive stresses develop upon heating

At > 0.

Now we will discuss two rigidly fastened bars of the same
length, which are made of different materials Figure 24.

P
Figure 24
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Assume the rods were fastened at temperature T0, and then one

of them has been heated to a temperature of T1 and the other to T2.

Naturally, there will begin a redistribution of heat in the

direction of lower temperature, but in the calculation we will

consider that this redistribution does not exist. This is the

assumption that immediately makes the problem "doable," with the

error going into the calculation allowance.

Since the rods by definition do not bend and do not buckle,

then, being rigidly joined to each other, they obtain the same

resulting elongations Al1 and Al2, each of which has thermal and

force components. By using expression 63, we can write the

equality of these elongations in the form:

In addition, we have from the static equilibrium the system:

a1F1 = -c2F2

Simultaneous solution of the last two expressions makes it possible

to find the stresses in the form:

6-xcC,E/1-T5 1
I,

-

___

where Ks .L WI fl..T.

E1F,

If the rods are joined so that some axial shift of one

relative to the other is possible before the beginning of the

interaction, then

A
t TiT. d,tTrT,L C
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These and an even larger number of other cases have been
examined in the corresponding literature [11,12,13,14], but the

approach to solving the problem is always the sameand is analogous

to this one.

We should discuss separately the stresses that arise when

bodies are bombarded by charged particles. With ordinary pulsed

operation of the beamsource, the part is subject to cyclic heating

during the time of passageof the beam. This heating causes in the

material mechanical stresses, the magnitude of which will be the

greater, the greater the amplitude of the pulse temperature. At

some temperature these stresses become sufficient to create

microfailures in the metal, which, accumulating as the number of

cycles increases, lead to failure of the material in the end.

At the same time, for each material there is a critical

temperature, at which the stresses that arise in the material are

elastic and do not lead to failure for any number of cycles.

According to the data of [3], these "safe" temperatures are, for

example:

for tungsten AT&W = 8430

for molybdenum ATSM0 =

for copper ATscu = 1100

If, however, the heatup temperature exceeds the "safe"

temperature, the useful life of the part will be limited to a

certain number of heating cycles N, which can be calculated by the

formula 3]:

AIU5OTa U.
iv

147U e6T.t4T 66

where N is the permissible number of cycles of operation of the
device;

U is the heat of evaporation of the material, cal/mole;

T0 is the steady-state temperature before the beginning of the
pulse, K;
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AT is the amplitude of pulsed heating, deg.

We give data on the heat of evaporation for a number of

frequently encounteredmaterials cal/mole, which are difficult to

find in the literature:

Tungsten 175,270

Molybdenum 140,460

Aluminum 60,000

Graphite 120,000

Copper 76,320

5. Example of calculation

A copper plate 0.5 m long and 0.1 m wide with thickness

h = 0.01 m is heated on one side by a pulsed electron beam that is

uniformly distributed over the area and that has current

I = 12.5 A at a kinetic electron energy T = 106 eV. The current

pulse duration r, = 4 x io3 sec and the pulse repetition period Trep
= 1 sec.

On the opposite side the plate has a channel for cooling by

water with cross-sectional dimensions 0.1 m x 0.01 m; the velocity

of the water w = 8 m/sec and the temperature of the water at the

inlet t1 = 20°C.

We will define the distribution of temperatures in the plate

in a steady-state regime before the next pulse and after it; to

determine the time for the system to reach a steady-state regime,

and to determine the useful life of the construction.

5.1 Calculation scheme and additional parameters

Duty factor v = 7-rep7- = 1/4 x 10 = 250

Pulse power P, = TI = 1.25 x 10 W

Average power expression 8’ P = T1/v = 1.25 x 10/250 =

5xl0W. I I hI I III I 11 III
k&tkkk

w Cold
51 SSS$SS

Sw

Uk.
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It is necessary to explain precisely what is meant by

"distribution of temperatures in a steady-state regime before the

next pulse and after it."

A steady-state regime is determined by the average power P,

and the distribution of temperatures in the plate will be linear

through the thickness with a difference t"hot - tcoldl which is

proportional to this power.

However, at the moment of passageof the beam a thin surface

layer of the plate its thickness is the sum of the depth of the

penetration of electrons and the depth of heating of the material

in r will be heated to thot* The temperature of the surface

after a pulse will exceed its temperature before a pulse by this

"surge" thot - t°hot. This same quantity thot - t°hot will be

then the amplitude of the pulse temperature, which affects the

useful life of the item. Mere the quantity thot - t°hOt is

determined by the pulse power of the beam P,,.

5.2 The heatup of water during cooling of the Dlate

At - 5xt04 1r5°R x xo x.s x o.ot x 0.1 x to3 -

Here G is the flow rate of water, kg/sec

The average temperature of the water is:

ti!0 = t + 0.5At,,, 21°C
The parameters of the water at t = 21°C are:

X = 0.6 W/mdeg; p = 10 kg-sec/in2 P = 6.87

5.3 Temperature of "cold" surface of elate

The "wall-water" difference of temperatures expression 27

is:
4. p

A
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The temperature of the "cold" surface tcold = tHO + Xtw_Ho*
For determination of the coefficient of convective heat transfer a

we find from expression 30’ the Reynolds number Re expression

29

d - 4.0.1.0.01 -0,018wr 20,1+0,01

w4L, 8. 0,018. 1o3
- 1,472 . Io

/‘S Icr4. 9,sz
Mu - o,o23Re 0’8Pt0’4 .0,023.1,472.1050,8.6,870,4=

- 677

= MI,, sn.o,e *
d, I,8.I0

W/m2.deg according to the graph

in Figure 13, a23,000,

after which the difference of temperatures between the wall and

water proves to be:

5.I0 _440v-H30 2,257.I0.0,5.0,I

and the temperature of the "cold" surface of the plate in steady-

state regime will be

tcold = tHO + AtHO = 21 + 44 = 65°C

5 * 4 Teperature of the "hot" surface of the olate before the next

u1se

This temperature, as was already noted, is determined by the

difference of temperatures through the thickness of the plate that

corresponds to average power P

t’1 hot = tcold + At,,1
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The difference of temperatures through thickness in correspondence

with 16 is: -

_Ph - 5*104.io-2
A pr r-ij0

after which t°hot = 65 + 25 = 90°C.

5 * 5 Tesperature of the "hot" surface of the plate after the next
pulse

* t’ = + At
-i hot hot surf

where Atsurf is the amplitude of pulsed heating of the surface by

the beam in time ri,, which is determined by the pulse power of the

beam P,,.

To find Atsurf we find from one of expressions 62 the value

of parameter SfVar,, 6 from expression 11:

S - xo- rI,5
-

_______________________

i6F gia; - 8.9.103%ft,II.IO4.4.ur3
- 0,53

Since 6/VAar,, < 5, we obtain from the first of expression 62:

atr 1÷

- o,022.I,25.1o7161r0-3.41,6 -

0, 400.389.8,9.IO3

After this:

thot = 90 + 388 = 478°C.

At what material thickness will this "surge" of temperature begin

to be felt?
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This thickness is equal to the sum of the penetration depth of

electrons and the depth of heating of the material in time

T 1,5 +yxoaç_ r4.tooot’5 -+ -

3 - 8,9.I0

+ V’Io.I,n.xo-4.4.1o4 - 3,55.Icø+ 2,II.Io=

= 2,5.IO x

5.6 Time to cone up to reaime

In correspondencewith expressions 50 we have:

- s% 5tn -M = f- t.l = 190-20 = 73simcc.. P/mcp P/mC,

2’
,rO ,

tZr ‘U ‘C±!! 10 sac
/mC

5.7 Useful life

The useful life in numbers of cycles of heating in

correspondencewith 66 is:

U SOT. 76320 -5WcO.2?4
16,7U 16,7-76520 e

- I,04.I0 cycin

If trep = 1 sec the time of operation will be =290 hours.

It is interesting to evaluate how significant consideration of
the penetration depth of electrons into the plate is in this case.

The pulsed heating of the surface Atsurf without consideration

of the penetration of particles into the plate is given by

expression 59 and in our case is

AttirrMtRtbC_ i,n - I,25,I0 y’Zio* fJ*’****l - 4fl0act 0,%14O0.389.8,9.IO3

-
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The value Aturf that was obtained exceeds the actual value

i.e., that calculated with consideration of the actual penetration

of electrons into the material only by z20% it was Atsurf =

388°. However, in this case the useful life of the construction

falls off sharply, since for Atsurf = 472°C it will be only

76320-5090p273 76O -

1.88 x i.o5 cycles,N I6,7.763 e . CSOiv3+02

i.e., 5.5 times less than at At = 388°C.surf
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