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This book begins the series "Recommendations for designers,"
which is devoted to various aspects of the design of
electrophysical installations.

This paper contains basic data for calculation of the elements
of constructions that operate under conditions of heat loads.
Methods of calculation of heat release for various forms of heat
sources and heat removal under various conditions of cooling are
given. Special characteristics of calculation for pulsed heat
effects are discussed, as well as calculation of elements that
operate in a nonsteady-state heat regime. All of the calculation
formulas are given in a form that is convenient for design
calculations and their use is illustrated by detailed examples of
calculation.

Introduction

The serviceability of any device, i.e,, the performance by a
device of its functions, is determined first by properly completed
design calculation. In the process of this calculation the
strength of the parts of the device, the accuracy of performance of
assigned movements or retention of assigned geometry, the capacity
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of the device to complete assigned functions in the course of a
required period of time, and so forth, and analyzed.

However, even a completely properly completed calculation of
all these parameters for normal conditions still does not assure
serviceability of a device, if the release of some amount of heat
occurs in it during operation.

The fact is that in the process of the heating of parts the
limits of strength and flow and the modulus of elasticity of
materials become lower. Allowances for stresses decrease by
comparison with those calculated for normal conditions, while
strains of parts increase. In addition, because of the
temperature~related changes of the dimensions of parts gaps in
joints change, which may cause, for example, individual parts to
become jammed or to stick.

Moreover, if the heating of individual parts is not uniform
through the cross section, in these parts additional temperature
stresses and strains arise.

Many electrophysical devices also make specific demands on the
heatup of parts during operation. Thus, parts that are located in
a vacuum must not heat up above a certain temperature, if such
heatup will cause an unacceptable increase of gas emission.
Excessive heatup of parts in a high-voltage device may lead to
electrical breakdown. It is dquite obvious that to assure the
serviceability of a device all of these factors must be taken into
account by the designer in designing it.

Necessary conditions for solving this problem are:

1) ability to find the actual sources of heat in a design and
to evaluate amounts of heat being produced;

2) ability to calculate the process of heat removal so as to
maintain working temperatures at a permissible level according to
calculation results.

Basic questions connected with calculation of heat release and
heat removal in the elements of constructions are discussed in this
handbook.
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Sources of heat can be quite varied: passage of an electrical
current through parts, radiation on the part of some heated body,
bombardment by charged particles, and so forth. Let us consider
the main sources of heat, in order to understand the basic
principles of calculation of these factors.

1.1 Passage of a current through a conductor
1.1.1 Continuous regime

It is well known that the power generated in a conductor when
a constant electrical current passes through it is
P = I'R
(1)
or P = U?/R
where I is the current flowing through the conductor, A;
U is the voltage across the ends of the conductor, B;
R is the resistance of the conductor, ohm;
P is the power generated in the conductor, W.
However, the situation is this simple only when a direct

current passes through the conductor. If the current is
alternating, expression (1) becomes:
— 2
P =13 effR

(2)
_ 2
or P = Ueff/R

where Ieff is the effective value of current, i.e., the value of
direct current which, flowing through the conductor, would lead to
the generation of the same power P as it is generated in the
passage of the given alternating current;

Uass is the effective value of voltage, i.e., the value of
direct voltage, which, being applied to the conductor, would lead
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to the generation of the same power P as it is generated in the
passage of the given alternating current.

The effective values of currents and voltages for the case of
periodically varying current I(r) and voltage U(7) are given by the

Jare™ VT'"L:’%)‘” (3)
JLCude
.ueff-: ‘fLu (r)dt

where I(1) is the dependence of the change of current on time;
U(7r) is the dependence of the change of voltage on time;
T is the period of change of the current and voltage (Figure

expressions:

1).
J
Ja
< T,
B /2\/?-{
Figure 1

For a sinusoidally varying current it is easy to find that

Ua
Jerf 7=- and Ugppn 75

from whence follow the well-known expressions:

P,

JE
(4)
2R
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In the case of an alternating current a different approach is
also needed with regard to the resistance of the conductor.

The interaction of an alternating current flowing through a
conductor with the magnetic field created by this current leads to
the so-called skin effect, which consists of the displacement of
current onto the surface of the conductor. As a result, with
distance from the surface of the conductor deeper into the material
of the conductor the current decreases exponentially. For
calculation of the power generated in the conductor one can use
expressions (2), if one provisionally considers that a direct
current with magnitude Iers flows through some surface layer of the
conductor, which is called the skin layer.

The magnitude of the skin layer is determined by the

Y A S
S o Vipepis (%)

where L is the resistivity of the material, ohmm;

expression:

o = 0.4 m x 10° H/m is the absolute magnetic permeability of
vacuum;

4’ is the relative magnetic permeability of the conductor
material;

f is the frequency of the change of the current, Hz

Naturally, the skin effect leads to an increase of the
resistance of the conductor and to an increase of the power
generated in the conductor.

Thus, for copper at f = 50 Hz, §, = 9.4 mm, while at f =
100,000 Hz 6§, is only 0.21 mm.

Thus, if the diameter of the conductor is 15 mm, one can
consider that at a frequency of 50 Hz current flows through the
entire cross section of the conductor and then the resistance of a
conductor 1 m long will be

Qs‘o = f%" II.%.IﬁﬁchIT‘ ohm



Figure 2

On the other hand, at a frequency of 100,000 Hz current flows
only in a surface layer 0.21 mm thick, i.e., through an area
S = 10° m?® (10 mm?). 1In this case, the resistance of the conductor
and, therefore, the power generated in it at a frequency of 100,000
Hz will be =18 times more than at a frequency of 50 Hz.

One further special property must be discussed.

Figure 1 shows a dependence of current on time where the
processes of the increase and decrease of current have different
slopes. In this case one cannot calculate power in the conductor
from the skin layer that corresponds to the frequency of the
increase or frequency of the decrease of current. The function
I(1) must be expanded into a Fourier series, the skin layer and the
power must be determined from the frequency and amplitudes of the
individual harmonics and the resulting powers added together. In
some specific cases this laborious, although more accurate, method

can be replaced by an analysis of some sine wave that is similar to
the actual function I(7).

1.1.2 Pulsed regine

All that we have discussed relates to currents flowing through
conductors continuously. However, in a large number of problems we
must deal with pulsed processes, where the current passes through
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the conductor in pulses of duration 71,, which repeat with some
frequency f, (Figure 3).

J
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Figure 3

If the law of the change of current through time 7, is known, I(7),
then the power evolved in the conductor during this time can be
found from egquation (2). Heat removal, however, must be calculated
from the average power, which is equal to

pi..‘;_ (6)

where v = T,/1, is the duty factor’.

Two points here are important.

First, the depth of the skin layer in this case is calculated
not from frequency f£f,, but rather from the frequency that
corresponds to the change of current during time 7,.

Second, when there are solitary current pulses (i.e., when

7, << T,) the energy produced in the conductor during time 7, proves
to be smaller than during the same time for pulses that
continuously follow one another. 1In particular, for sinusoidal
pulses this decrease is 1.5 (E. A. Abramyan and S. B. Vasserman,
"Magnet of a air-core accelerator with opposing beams," IPN SD AS
USSR Report No. 250, 1963). Therefore, when finding the power in
the conductor from Ieff and §, one can provisionally consider that

‘[Translator’s note: the Russian word for duty factor is used
here, although the equation is that of the reciprocal duty factor.]
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in the case of single sinusoidal pulses the depth of the skin layer
5§, wWill be =1.5 times greater than when there is a continuous

succession of pulses.
1.2 Conductor in an alternating [variable] magnetic field

We will consider the generation of heat in a tube of a
conducting material placed in a magnetic field which changes

according to the law
H = HQSU\ WwT

and which is directed along the axis of the tube (Figure 4).

W—“ J h<<d

d = — ) h"zs_sk

h_-**_tr—-'—""

Figure 4

As in any turn of a coil penetrated by a variable field, an

enf equal to
Us- 32
will be induced in the tube. The magnetic flux will be
2 .
@-BS-#HS-%d-ﬂH.binw't (here u = ug-p’)
Then

=—_d_'$--jr_d_2£'_l;[ﬁ e
u e yA Coswt
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In correspondence with expression (4), since the field changes
sinusoidally, we have:

2 ' 2
p‘:.__,u—,;" » where U,--M—-g——m and R-f%-=-i—£f—c-l-

Finally, we obtain the power in a tube that is in an axial

sinusoidally varying magnetic field in the form:

MEHEWX5th
P

P=0,1 (7)

If this field H is also pulsed, i.e., it varies in
correspondence with Figure 5, then the denominator of expression
(7) must also contain the duty factor » = T,/7,.

H
H,

| LY
'\
T

Figure 5

tA

p

We have considered the case where the field changes
sinuscidally. However, if the relationship is different, then the
power must be determined from expression (2) and Um.from expression

(3).
1.3 Bombardment of a body by charged particles [1,2,3]

When a body is bombarded by a beam of charged particles, the
kinetic energy of the particle beam or a share of this energy is
released in the form of heat. How does one evaluate the amount of
heat that is released in the bombarded body? Here two questions
must be answered:
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1) What is the power of the particle beam?
2) What part of this power heats the bombarded body?

1.3.1 Power of beam of charged particles

If each particle in the beam has charge q (C) and kinetic
energy T (J), then if the current in the beam is I (A), the power
of this beam can be found from the expression:

P, = TI/qv, W (8)
where ¢ is the duty factor.

However, as a rule, we do not know the kinetic energy of the

particles either in joules or electron volts. In this case the
power in the beam is

P, = TI/v, W (87)
1.3.2 Power going to heat the body

For this reason there arises the question, is the power that
heats the bombarded body not always equal to the power of the beam?

The fact is that the particles, upon striking a solid body, do
not immediately give up their energy to this body, but rather lose
it gradually, penetrating to a certain depth into the body and
encountering particles of matter in this path. Dependences of the
loss of energy on the path traversed by a particle in the body
differ for different particles, and the character is connected with
the nature and parameters of the particles.

In particular, for electrons with kinetic energies above
several hundreds of keV one can consider with accuracy that is
sufficient for thermal design calculations that an electron, on
passing through a substance, loses energy uniformly over the entire
path.

Having given up all of its kinetic energy in collisions, the
electron stops and "hangs up" in the body. However, if the
bombarded body is a wall of finite thickness, then it is possible
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for the electron to reach the second surface of this wall without
having given up all of its store of kinetic energy and to leave the
body with the remaining energy. In this case the energy given up
to the body by the particle (and going to heat the body) proves to
be less than the kinetic energy of the particle, i.e.,

Q = QK, where K < 1 (9)

The path in which a particle penetrating a material gives up
all of its kinetic energy to the material, is called the
penetration depth.

The penetration depth is dependent on the type of the
particle, its kinetic energy and on the material of the body.

Here one should keep in mind that the particle does not move
in the body on a linear trajectory, but rather on a complex
trajectory that is determined by random collisions with the
particles of the material (Figure 6).

Figure 6

In connection with this, the penetration depth is understood
to be some statistically average depth §, to which a sufficiently
large number of particles penetrate into the material. Of course,
formulas that describe these processes are approximate. However,
their accuracy is quite satisfactory for design calculations.

Returning to electrons, for which, as was already noted, the
losses of energy are proportional to the path traversed in the
material, we can say that the coefficient in expression (9) will be

K = h/é (10)
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where h is the thickness of the part penetrated by the beam in the

direction of particle flight;
§ is the penetration depth of electrons with given kinetic

energy into a given material.
(Expression (10) is valid for h < §, while h > § K is always equal

to 1).
If thickness h is a design parameter, known in each specific

case, then the penetration depth of electrons into a material

should be determined for each case.
Thus, for electrons with kinetic energy

500 < T (keV) < 3000

the penetration depth 1is described well by the following

expression:

8:h££%1:f (Ix)

where v is the density of the material, kg/m’;
T is kinetic energy, kev;
§ is the penetration depth, m.

Here we will make one comment:
For electrons with T = 2 MeV = 2000 keV and copper with

vy = 8.9 x 10° kg/m’ we obtain

1074, 20001 ¢ —y

e,9.10 3

=1 s

A "tablet" of copper with area 1 cm’ and thickness 1 mm (Figure
7) weighs 0.89 g. As we saw, the entire electron beam at T = 2 MeV
will "settle" in this thickness. However, the electrons give up
their energy in proportion to the path traversed in the material.
Therefore, if this path is measured in terms of the weight of
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material "traversed" by an electron, for an area of 1 cm?, we obtain
the rate of loss of energy by electrons in this case

AT - 2B _, o MeV
a¢ 089g ' g

It turns out that at energies above 500 keV electrons in all
materials give up energy at a rate approximately equal to
2 MeV/g.

This figure then can be used in preliminary estimates.

For example, if there is a wall of stainless steel (y = 7.85
x 10° kg/m* = 7.85 g/cm’) 2 mm thick bombarded by electrons, there
will "remain" in it an energy

AT = 7.85 X 0.2 x 2 x 1 = 3.14 MeV

Thus, particles with energy of =3 MeV will give up all of
their energy to the body, heating throughout its entire thickness.
Particles with energy above 3 MeV will pass through the wall,
"leaving" in it a power proportional to an energy of
3 MeV. On the other hand, particles with energy less than 3 MeV
will "stick" in the wall without reaching the opposite surface, and
will heat only that part of the thickness of the wall equal to §.

Figure 7

2. ea QEOV a distribution of t eratures

Thus, we have found--basically~-what sources of heat there are
in constructions and how to evaluate the released heat power in

various cases.
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What then happens with this power?

Next this heat is spontaneously transferred in the direction
of decreasing temperature. This transfer is accomplished in
correspondence with the laws of heat transfer, which, generally
speaking, is a very complex process.

This process is usually analyzed by separating it into three
elementary methods of the transfer of heat-~-heat conduction,
convection and heat radiation.

HEAT CONDUCTION is the transfer of heat by direct contact of
bodies (or parts of the same body) that have different
temperatures.

The phenomenon of CONVECTION is observed in moving liquids or
gases. The transfer of heat here occurs simply because of the
migration of material in space.

HEAT RADIATION is the phenomenon of the transfer of heat in
the form of electromagnetic waves with initial conversion of heat
energy to radiant energy and then back from radiant energy to heat
energy.

Although each of these forms of heat exchange in pure form is
rarely encountered, it is convenient to study them separately,
after first establishing a number of necessary concepts.

A TEMPERATURE FIELD is the set of values of temperature at all
points of a body at a given moment of time.

Mathematically, a temperature field is described by the
equation

t=¢t(x, y, 2, 1) {12)

If temperature is dependent on time 7, the temperature field
is UNBTEADY-BTATE, while if it is not dependent on time it is
steady state., In space a temperature field can be one-, two- or
three-dimensional. Equation (12) is the equation of a three-
dimensional field. The simplest is a one-dimensional steady-state
temperature field, which is described by the expression

t = t(x) (127)

TEMPERATURE GRADIENT. In a bhody for any temperature field

there are points that have the same temperature. Their geometric
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locus is called an isothermal surface. A change of temperature in
a body is observed only in directions that intersect isothermal

surfaces (for example, x in Figure 8). Temperature changes the
most sharply in the direction normal to an isothermal surface
at _ dt
= qgzadt
,,‘L':,‘ an~dn=9 (13)

/

\

L+at

Figure 8

A TEMPERATURE GRADIENT is a vector directed along the normal
to an isothermal surface 1in the direction of increasing
temperature.

HEAT FLUX. Heat is transferred spontaneously in the direction
of decreasing temperature. The amount of heat that is transferred
across some surface per unit of time is called the HEAT FLUX P (W).

The heat flux through a unit of surface is called the SPECIFIC
[or UNIT] HEAT FLUX, or the HEAT FLUX DENSITY, or the HEAT LOAD OF
A SURFACE g (W/m?).

The specific heat flux is a vector, the direction of which
coincides with the direction of the spread of heat at a given point
and is opposite to the temperature gradient vector.

2.1 Heat conduction [4,5]

This is the transfer of heat within a solid body from points
at higher temperature to points at lower temperature. The
mechanism of heat conduction consists of the transfer of energy due
to thermal motion and energetic interaction among the molecules,
atoms and electrons of which the body consists.
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Fourier’s law

In studying the process of heat conduction in solid bodies,
Fourier established that the amount of heat that is transferred is
proportional to the decrease of temperature, the time and the
cross~sectional area perpendicular to the direction of propagation
of heat.

Mathematically, this looks like:

q = -Agrad t (14)
This equation is the Fourier law - the basic law of heat

conduction. -
Coefficiant of heat conduction

The proportionality factor in equation (14) is called the HEAT
CONDUCTION COBPFICIENT. This is a physical property of a material,
the meaning of which can be understood from the equation:

B-—q Q-p [}
A I &;ETFFEEE E%; (W/m-deg) 05?

The value of the heat conduction coefficient is the amount of
heat transmitted through a unit of area per unit of time at a
temperature gradient equal to unity.

The solution of all specific problems of heat conduction
consists of writing and solving the Fourier equation for the given
case. Let us look at a few examples of how this is done.

2.1.1 Heat conduction of a flat wall

2.1.1.1 Concentrated power (Figure 9)
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From the Fourier equation we have:

P _)dtx)
F d x

dt(x)--)%dx
=-P
-I:(x)-—M__x-i-C

If x = h, t = t;,, from which

Ph
c=t, o+ 3E

t)=t,+ AF(h-X)ﬂt.-fEh({-_) t": ”t.“' &
sttt B4 X):ub, b0 e ED }us)

The notion of heat resistance is very convenient for practical
calculations; this can be illustrated using an example of

electricity-heat analogy (Figure 10).
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Figure 10

If current I passes through the segment of the circuit with
resistance R, in this segment there will be a drop of voltage
AU = I*R. If the potential of point A is U,, then the potential of
point B will be
U, = U + I*R
This is the universally known Ohm’s law for an electrical circuit.
By analogy cne can write this same law for a heat circuit, making
the following substitutions:
U-—-t
I-+P (17)
R - Ry
We find:
t, = t, + PR;
(18)
At = t, - t, = PR,
Comparing (18) and (16), we see that the heat resistance of a
flat wall for concentrated heat power P is:
Ry = h/AF, deg/W (19)
If one knows the heat resistance R;, one can always easily obtain
the drop of temperature through the wall by multiplying the power
passing through it by R;.

2.1.1.2 Distributed power
A possible case is where the heat does not arrive at the plate

from an external source on one side, but rather is released within

the plate itself. For example, if a direct current passes through
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the plate, heat will be released in it uniformly throughout its

volume with intensity g, (W/m’).
In correspondence with Figure 9 the heat power released in a

layer of thickness x will be:
P(x)= g, Fx
- P(x - . dt(l
q —F‘(_z-,qui gzadt-—cﬁ-_’

From the Fourier equation:
Gurm-ALE
9. . _
dt@)=-~=xdx; t()=-EL+c

. iR
If x=h, t = t,, from which C-t,+95h

b o B [ P b ter S
st =t (9-t = S (s otz 35

We will transform the last expression somewhat:

{0)

ﬂs"_h‘.f-_gq'h’:'h Ph

Atmas 3N FTTZAF “arF

In correspondence with (18), we see that the heat resistance of a

plate for distributed power is
Ry = h/2AF (21)
i.e., it is half that of the resistance when there is concentrated

power.

2.1.2 Heat conduction of a cylindrical wall (Figure 11)
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Figure 11

q-—ELt'qzadLmiﬁﬂ
P Adf(z) difz)=— sz

2rzl
(): a_',\Lfl‘t.'Z'l'c
Ifr=r, t=+t;, from which
Ca Plnzex
=tot ZEAL

Making substitutions, we have:

t(Z) t;+2’ALBn'?°* )

lnox tf+J%r"l" (22)

i
atlz )—;%E!n"“

P_p zex
At max=337 b Zin ‘

In correspondence with (18) we find the heat resistance of a

cylindrical wall for concentrated power:

R-;'enZe'
¥ 2zl (22)

One should note that the temperature parameters (expression (22)
and heat resistance of a cylindrical wall are dependent on the
ratio of radii r, and r,, but not on their absolute values.
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2.1.3 Contact heat conduction [5]

A very common case is the case of heat transfer across the
contact of two surfaces. 1In the general case this contact has the
form shown in Figure 12.

haya 'l'ltl‘l"
JAARNNA 4

AN

Figure 12

In correspondence with this, the transfer of heat is accomplished
both across surface roughnesses and through the medium between
roughnesses.

The question of contact heat exchange is very complicated, a
great deal of research has been devoted to it, and there are many
varying recommendations for calculation of this process.

The following is a convenient method of calculation. The heat
resistances of the contact and the interlayer ("medium") are
calculated separately by the formulas:

R =360 10°4
T“ 2 ‘ N i m)
havlhavz

T~ 2 5non

where Ry is the heat resistance of the contact, deg/W;

Ryc is the heat resistance of the interlayer between surfaces,
deg/W;

havl and hav2 are the average values of the heights of the
microroughnesses on the contacting surfaces, which are determined

by the roughness class of the surfaces, m;
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Shom is the nominal contact surface area, m’;

op is the tensile strength of the less plastic material of
the contacting parts, kg/m? (0 can be used in kg/cm?® and then one
can omit the factor 10%);

N is the total force at the contact, kgq;

AN = 2\A/(N + A) is the reduced coefficient of heat
conduction of the contact, W/(mdeg) (A, and A, are the coefficients
of heat conduction of each of the contacting materials);

A, is the coefficient of heat conduction of the medium in the
interlayer, W/ (mdeq).

Since these two resistances are "connected" in parallel, then
one obtains not the resistances, but rather the inverse quantities-
-conductances. Then the total heat resistance of the contact R,
can be found from the expression:

{4 .4 _24NX _  2\S
— I e = ————:-]- ZLe 2 NOMm 2

This method gives values of R; that are somewhat too low in
the case of the contact of large surfaces that have significant
waviness. The “guilty party" in this is the second term of
expression (24), since for wavy parts the value of the interlayer
in fact proves to be greater than (hav1 + havz)/z. The way out
here is either to consider the actual waviness in the calculation
or to assure that the flatness error of the parts does not exceed
h .

It should be noted that even in this case the first term of
the formula gives a gquite reliable result, in spite of waviness.
The fact is that the contact of the surfaces is actually
accomplished at individual points — contact spots that form as the
ridges of the microroughnesses are compressed under the effect of
force N. Here the actual area of contact, which then determines
its resistance, is always determined by the ratio:
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com ‘acom is the strength of

material in compression)

If a part is wavy, there will be fewer contact points, but then
each of them will be "mashed" to a greater area and the total
actual area of contact will again prove to be equal to N/acom‘
Incidentally, this also explains the fact that the heat resistance
of the metal part of the contact is not dependent on the nominal

contact surface S as can be seen from (23) and (24).

nom’
Very often one must have some heat contact between parts in a
vacuum, where A, = 0. In this case only the first term of

expression (24) remains and

<R 36,107
ReRo g~ deq/w ()

In completing this section, a number of comments must be made.

First, in books that are devoted to contact heat exchange, the
dimension of R; is assumed to be not deg/W, but rather m’.deg/W.
In correspondence with this, the nominal surface of contact Snom
will appear in the numerator of the first expressions (23) and will
vanish in the denominator of the second of these expressions. The
fact is that in the literature the discussion concerns the specific
heat resistance of the contact (i.e., the heat resistance of a unit
of area of contact). Here, however, we give expressions for the
total heat resistance of contact, which is more convenient for use
in practice. Returning to the electricity-heat analogy, we see
that according to Ohm’s law

U =1IR

where R is the total electrical resistance.
Using the notion of total electrical resistance, one can use a
completely analogous Ohm’s law for a heat circuit (with

substitutions as in expression (17)):
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At = PR;
If, however, one uses the notion of the specific heat resistance,
in the last expression one would have to introduce the term Snom
again, which seems less convenient.

Second, expression (25) can also be used for evaluation of the
electrical resistance of a flat contact. For this one need only
replace the quantity S in it by
du 2
P Pk

where p, and p, are the resistivities of the materials of the

contacting parts, ohmm.
2.2 Convective heat exchange [(4,6]

This is the transfer of heat between the surface of a solid
body and a liquid or gaseous medium.

The amount of transferred heat P is proportional to the
surface area of heat exchange F and the difference of temperatures
of the wall and liquid (t, - t,) in correspondence with Newton’s
law:

P = aF(t, - t,) (26)

The proportionality factor is @, which is called COEFFICIENT OF
CONVECTIVE HEAT TRANSFER and is equal to the amount of heat
transmitted through a unit of surface for a one degree difference

of temperatures between the surface and the liquid:

P
=t w/m?*deg (27)
w 1q

The heat resistance in the process of convective heat exchange is

determined by the expression
R = 1/aF (28)
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The process of convective heat transfer is linked with the
conditions of motion of the liquid. As is well known, there are
two basic types of motion of a liquid: laminar (stream-like,
quiescent motion) and turbulent (vortex-like, unordered motion).
Processes of heat removal occur differently in these forms of flow
and, naturally, there immediately arises the question: when is a
flow which kind?

Reynolds established, as a result of special studies that an
indicator of one or another flow regime 1is a particular
dimensionless complex

wl/v

where w is the velocity of motion of the liquid, m/sec; v is the
kinematic viscosity of the liquid, m?’/sec; 1 is a characteristic
linear dimension of the swept body, m. This complex was later
named the REYNOLD’S CRITERION or REYNOLD'S NUMBER

_wt_wly
Re T (29)

where v is the density of the liquid, kg/m’;

g = 9.81 m/sec? is gravitational acceleration;

p is the coefficient of dynamic viscosity of the 1liquid,
kg'sec/m?.

The transition of laminar flow to turbulent flow occurs at
some value of Re, which is called the critical value (Recr). If Re
< Re_ the flow is laminar, while if Re > Re . it is turbulent.
The value of Re_. is dependent on specific conditions. Thus, for
the flow of a liguid or gas in tubes and channels

Recr & 2300
The characteristic dimension of the swept body 1 is also dependent
on the specific conditions of the process. For example, for the
flow of a ligquid in tubes and channels this dimension is the so-
called HYDRAULIC DIAMETER, which is defined by the expression:
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dh = 4F/U
where F is the cross-sectional area of the channel, n?;
U is the parameter of the channel, m.

It is easy to see that for a round tube dh = d.

A second serious question that arises in the use of expression
(26) is the question of finding the coefficient of convective heat
transfer a.

The process of convective heat transfer is a very complex
process, and a is a function of a very large number of quantities
that characterize this process: the shape and dimensions of the
swept body, its surface temperature, the temperature of the liquid,
the velocity of motion and the physical properties of the liquid,
and so forth. A rigorous mathematical description of this process
is very difficult. In connection with this, SIMILARITY THEORY is
used to determine the coefficient of convective heat transfer.

The essence of this theory is that under similar conditions
similar processes proceed in a similar way. This means that to
determine some guantity ¢, in process A it is sufficient to take
the same quantity in process B, ¢,, and multiply it by a
“similarity factor" C:

P = @C

The similarity factors for different quantities in similar
processes cannot be arbitrarily prescribed, but rather must be
quite specific. They are complexes of certain specific physical
guantities and are called SIMILARITY NUMBERS. They are usually
named for scientists who did successful work in this field:
Reynolds (Re), Nusselt (Nu), Fourier (Fo), and so forth. A
characteristic property of similarity numbers is their
dimensionlessness.

The existence of similarity numbers makes it possible to
simplify the calculation of heat processes substantially. Thus,
the intensity of convective heat exchange is always characterized
by the NUSSBELT NUMBER.
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Nu = al/A (30)
where 1 is a characteristic linear dimension, m;
A is the coefficient of heat conduction of the heat carrier
(heat transfer agent], W/(mdeg};
@ is the coefficient of convective heat transfer, W/(m>deg).
Expression (30) is the basic expression for determination of
the coefficient of convective heat transfer a:
a = (Nud)/1 (307)
The value of the Nu number is determined as a function of the
specific process of heat exchange being analyzed. Thus, for the
motion of a:ligquid in tubes and channels for the turbulent regime
the following criteriocnal expression is recommended for the
determination of Nu

Nu, = 0.023Re?"8pr¥-%¢, (31)

where Ny, is the Nusselt number for determination of the average
coefficient of convective heat transfer over the length; the
coefficient of convective heat exchange over the length is used
because the liquid gradually becomes heated as it moves along the
body being cooled, the properties of the liquid change and «
changes;

Re, and Pr, are the Reynolds and Prandtl numbers for the
average temperature of the liquid (this is indicated by subscript
"lq"}:

€g is a coefficient that takes into consideration the
curvature of the tube and is equal to

€g = 1 + 1.77d4/R (32)

where d is the diameter of the tube and R is the average radius of
curvature.
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Formulas for <calculation of similarity numbers and
coefficients of convective heat transfer under various conditions
of convective heat exchange are given in Table I.

If heat is being removed with water, the coefficient of
convective heat transfer can be determined from the graphs in

Figure 13. o
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Figure 13. cCoefficient of convective heat
transfer for the removal of heat with water
(corresponds to the relationship
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Key:
1 - Average temperature of water tpy, °C
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16
17

18
19

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

30

Convective heat exchange
Transferred power

Coefficient of convective heat transfer

(1 — determining dimension)

Process

Regime

Criterional eguation

Determining dimension

Determining temperature

Flow in tubes and channels

(d — diameter of tube; 1, — length)

Turbulent ...

Laminar ...

Liguids:

Air:

Round tubes — diameter d

Nonround channels — hydraulic diameter

d, = 4F/U

F — cross section of channel

U — perimeter of channel

For parameters with subscript "lq" ("liquid") — average
temperature of heat carrier; for parameters with subscript
"w" ("wall") — temperature of surface being cooled
Natural convection

Sphere and horizontal tube - diameter

Vertical tube and vertical plate -— height of cooled (heated)
Seqgment

Horizontal plate — gmaller dimension in plan view
(hot side up, increase C by 30%;

hot side down, decrease C by 30%)

Heat removal in interlayers

Heat conduction with equivalent coefficient of heat
conduction is calculated

A —coefficient of heat conduction of medium

at determining temperature

Thickness of interlayer

Arithmetic mean temperature of walls of interlayer ...
Similarity numbers

Notations

Name

Formula

Which determines

Reynolds

Nusselt

Grashof

Fourier

Prandtl

Hydrodynamic regime of flow of heat carrier
Intensity of convective heat exchange

Relative effective free convective heat exchange
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35 - Unsteady-state heat conduction )
36 - Thermophysical characteristic of heat carrier

37 - 1 - determining linear dimension, m
4T - characteristic difference of temperatures,deg
T - time, sec
g = 9.81 m/sec?
o - coefficient of convective heat transfer,
W/ (m*deg)

HEAT CARRIER

W - velocity of motion, m/sec

v - density, kg/m’

v - coefficient of kinematic viscosity, m’/sec

M - coefficient of dynamic viscosity, kg'sec/m?

A - coefficient of heat conduction, W/ (mdeg)

C, - specific heat capacity per unit of weight,
Wsec/kgdeg

i) - coefficient of volumetric expansion, 1l/deg

a

= AN/ CA coefficient of thermal diffusivity, m?/sec

2.3 Heat radiation [4,7,8]

The carriers of the energy of radiation are electromagnetic
vibrations in the wavelength range from fractions of a micrometer
to several Kkilometers. In processes of heat transfer we are
interested in those forms of radiation that are determined by the
temperature and optical properties of bodies, i.e., the visible
(light) and heat (infrared) waves with wavelengths from 0.4 to 800
sm.

The nature of light and heat rays are the same and, therefore,
the laws of their propagation (refraction, reflection, and so
forth) are also the same.

Every body radiates energy into space. Upon striking another
body, this energy is partially absorbed, partially reflected, and
partially passed through the body. The absorbed part of the energy
is converted to heat, while the reflected energy and the energy
that is passed through the body reach other bodies and the process
repeats.

Thus, every body is continuously radiating and absorbing
energy. The result of these conversions of heat energy to radiant
energy and back is heat exchange by radiation.
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The amount of heat given off or taken up by a body is the
difference between the heat absorbed and radiated by it. This
difference will exist only when the temperatures of the bodies in
a system are different. Bodies with the same temperature form a
system that is in thermal equilibrium; in this case all of the
bodies radiate and absorb energy, but the incoming energy is equal
to the outgeing enerqgy for each body.

2.3.1 Radiant flux

The total radiation that passes per unit of time through
surface F is called the RADIANT FLUX P (W).

The RADIANT FLUX DENSITY E = dP/dF (W/m%).

If out of the total radiant flux P a part P, is absorbed by
the body, a part P; is reflected, and a part P, passes through the
body, then

P, + Pp + P, = P
from which

%G

or:
A+R+D=1 (33)

where A, R and D respectively characterize the absorbing,
reflecting and transmitting capacities of the body.

A=1, R=D= 0 —all of the energy is absorbed by the body.
Such a body is called an ABSOLUTELY BLACK BODY (or, simply, a BLACK
BODY) .

R =1, A=D =0 — all arriving energy is reflected by the
body. This is an ABSOLUTELY WHITE body;

D=1, A=R =0 —all of the incoming energy passes through
the body. This is an ABSOLUTELY TRANSPARENT (diathermic) body.
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All solid bodies and some liquids (water, alcohols, and so
forth) are practically nontransparent for heat rays (are athermic),
i.e., D = 0. Then for nontransparent bodies

A+R=1 (34)

From this it follows that if a body absorbs energy well, then it
reflects it poorly, and vice versa.

In nature there are no absolutely black or absoclutely white
bodies. All bodies both radiate and absorb energy, and in this
sense they are not completely black, but rather GRAY bodies. The
degree of brightness of a body € (also: "COEFFICIENT OF
BLACKNESS", “COEFFICIENT OF GRAYNESS") is numerically equal to the
absorbing capacity of the body A:

€ = A (35)

The degree of blackness [emissivity] is a characteristic of a

material that is dependent on the temperature of the body and the

status of the surface. Values for various conditions and materials
are given in the literature.

2.3.2 Heat exchange by radiation between bodies

According to the Stefan-Boltzman law the radiant flux density
of an absolutely blackbody is

E,"C.[]% ]‘i ﬁ?mz (36)

where T is the temperature of the body, K,

C, is the coefficient of radiation of an absolutely blackbody,
which is equal to
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For a not absolutely blackbody the radiant flux is

Pa f.C[;%‘] ‘e (38)

where € is the degree of blackness of the body and
F is the surface of radiation, m?.

Radiant flux between two bodies is calculated as

ST e S XE T I

where T, and T, are the temperatures of the bodies, K;

_ i
Ered 1+ (& )+ (1)

That is the reduced coefficient of blackness of the system, in
which €, and €, are the degrees of blackness of the bodies, ¢, and
¢, are the surface-average coefficients of irradiance of body 1 on
body 2 and of body 2 on body 1;
H = ¢,F, = ¢, F, is the mutual surface of irradiation,

m? (F, and F, are the surfaces of radiation of the bodies).

Coefficients of irradiance ¢, and ¢, are dependent on the
shape, dimensions and mutual positions of the bodies and are given
in the literature for various cases (for example, (8]).

We will consider individual simple, but typical, cases.

2.3.2.1 Two parallel walls at a distance that is small by
comparison with their dimensions (Figure 14)

’ b T Thak |
H=F,=F,
Dy A £ o1 (40)
Te Ta redé"l'é'-l .
Py T\ /T, W
p"ieﬁ-ﬁ [(Fofi) B wo) ]

Figure 14
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2.3.2.2 Two surfaces that form a closed system (Figure 15)

D=1 qii Eg'li'Fi

a;'ed --+ —( "') “w

P-E CcF [(too wo)j

Figure 15

Fay>»>F,

oy ..
é;;:&; F’-éaclfi[(wo (%%rq

For

Equations (41) and (41’) are valid for the case where the
inner surface does not have concavities. However, they can also be
used if there are concavities, but in this case F, should be
understood as the surface not of body 1 itself, but of an
infinitely thin film surrounding the body (Figure 16).

y/
/2
Figure 16

2.3.3 Heat screens

If a screen of a material that is not transparent for heat rays is
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placed between two bodies, then the heat flux between the bodies
will change.

For simplicity we will consider the case with absolutely black
flat surfaces, between which a flat, likewise absolutely black,
screen is placed.

Without the screen the density of the heat flux between the
bodies was

q; = Cy(v, - Vv,) where
U;-(% 4"’" vz"(%%)l‘ are the temperature factors of
bodies 1 and 2. Aféer installing the screen it is only known that
heat radiation from body 1 onto the screen is equal to the heat
radiation from the screen onto body 2, i.e.,
qQ; = Co(vy - v

scr) = c"(vscr - V)

: Vieth V-
from which Y= Lo and g =C, Ao %_I_

Thus, the installation of one absolutely black screen reduces the
heat flux twofold. It can be shown that two screens will reduce it
threefold, three screens fourfold and, in general, n screens reduce
heat radiation by a factor of (n + 1) times.

If, however, the screens have high reflecting capacity (i.e.,
low degree of blackness), their efficiency increases significantly,
and the screens become a radical means of reducing the heat flux.

The heat flux of radiation across a closed system of two

bodies and n "gray" screens will be:

p_ Co [! T! iﬁ'__(Tml,] .
4 1 (42)
+d .. .4
€l €yHys Eine iy Hono neny

where F,, €1 and T, are the surface, degree of blackness and
temperature of the radiating body;
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F,, €, are the surface and degree of blackness of the first

screen;
F,, €; are the surface and degree of blackness of the second

screen;

Fn+1’ €,41 2Tre the surface and degree of blackness of the n-
th screen;

Fn+2' € 42 and Tn+2 are the surface, degree of blackness and

temperature of the heat receiving body.

€13, €23, +-- are the reduced degrees of blackness

* €(n+1) (n+2)
in the systems of the first and second, second and third, and so
forth up to the (n + 1)-th and (n + 2)-th bodies.

Hyp, Hy, ..y H(n+1)(n+2) are the mutual surfaces of
irradiance in these systems of bodies.

2.4 Complex heat transfer

Under real conditions there are always several kinds of heat
transfer participating in a process of heat exchange —sometimes in
succession, sometimes in parallel.

Thus, for example, in the case of the transfer of heat from
one liquid to another through a wall (Figure 17) the heat is first
transferred by convection to the wall with coefficient of
convective heat transfer a,, then through the wall with coefficient
of heat conduction A, and, finally, from the wall to the other
liquid with coefficient of convective heat transfer «,.

qui

Figure 17
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Since the heat fluxes from the first liquid to the wall and
from the wall to the second liquid are equal, then:

P=o F(thl"tg)
P=A%(t,-t,)
pﬂdgF(ta" thz)

Finding from the second expression
21
tg"tg— AF

and substituting this into the third expression, we find:

8 -_.E-—- _p_.s-
t-tia dgr"' AF thx"tﬂ’fﬁ

Addition of the last expression gives

{ .t .85
thx' th:-plaﬁ+a:r+ﬁ']

from which the heat flux from one liquid to the other proves to be

equal: p = t:.qx-' tiq
i I |
&F Yo F T AF

The denominator contains the total overall heat resistance of the
system, i.e., the last expression can be rewritten in the form

P= thl "‘thﬂ

R (43)

TZ
This expression is valid for any system, no matter what forms of
heat transfer there were in succession "in passing”.

This was a case of the successive action of different types of
heat transfer. An example of parallel action is, in particular,
convective heat transfer from a body to the surrounding medium
under ordinary conditions.

As a rule, heat is given up in parallel by convection and by

radiation.
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The power given up by convection is:
Py = aF(t; - t,)

where a is the coefficient of convective heat transfer, W/ (m*degq);

F is the surface area of cooling, m’;
t, and t, are the temperatures of the body and the surrounding

medium, °C.
The power given off by radiation is:

R &CF (o) ()]

where €, is the degree of blackness of the body;
Co = 5.67 W/ (m*K*);
F is the surface area of radiation, m?;
T, and T, are the temperatures of the body and the medium, K.
The total heat flux from the heated body to the surrounding

medium is:
PoReRmotFlt toe GFIGIY] @

It is more convenient to write the last expression via the

overall coefficient of convective heat transfer a; in a simpler

form:
A
P=ols F(‘h- tl)

vhere olg= ok + £.Co[(s) - (35)'] (45)

t,-t,

The literature [7,9] gives tables and curves for determination
The degree of blackness of the

of a; in dependence on t, and t,.
which is valid for normal

body here is assumed to be €, = 0.8,
exposed surfaces for an average level of dustiness.
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On a preliminary basis, in initial estimates one can assume
(for bodies with temperature no higher than 100°C)
ayp = 10-20 W/ (m*degq).

3. Unsteady-state processes

We have considered all forms of heat transfer in a steady-
state regime, i.e., when the temperature field of the body does not
change with time. However, cases where one must analyze the
operation of a part or item in the process of heating or cooling,
i.e., in an unsteady-state regime, are encountered fairly often in
practice.

Here there are usually two possible questions:

1) by what law does the temperature of a body increase or

decrease?

2) what is the time that we require to reach a steady-state
temperature (what will be the time for "coming up to
regime")?

We will discuss using simple examples how the dependence of

temperature t on time 7 is derived.
3.1 Heating of a body

Let some body of mass m at the initial moment of time
(r = 0) have temperature t, equal to the temperature of the
surrounding medium. At this moment power P (W), begins to be
released in the body uniformly throughout its volume. The specific
heat capacity per unit weight of the material is
C, (Wsec/kgdeqg).

At time 7 the body will have temperature t and in the interval

P

of time dr it will change by dt. Let us write the equation of heat
balance for this process.

Energy mC,dt (Wsec), is expended in heating the body by dt.
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During time dr at temperature t the following energy is given
off from the body
t_';.&. dt Wsec
v

(R is the heat resistance (deg/W), between the body and the

surrounding medium).
However, enerqgy Pdr (Wsec), is also released during time dr,

Pdt = mc, dt +%—.& dr

dt dt T

m(.!- R, Pl? -t mc,lz, e"[P Re-(t-t)]+C
vor Tl t'tolﬂd Ca En(PQ‘.)

t =fn Y ___ PRy — s e_tcﬂ,'-E PRy

mCRy T PR,-(t-1d PRe—(t-1)
T
toto+rPR{(1- e Mirk) )

It is known that PR;= t, - t,, from which

t' tq"' (tmnl‘,t.)(" - -"%F') 4s')

(tmax is the temperature of the body in a steady-state regime).

The curve of the change of temperature through time has the

form shown in Figure 18.

Figure 18
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The temperature of the body continuously approaches the

steady-state temperature t reaching this value at 1t = o,

max’

3.2 Cooling of a body

A body with mass m and specific heat capacity C, at the initial
moment of time has temperature tmax and begins to cool across heat

resistance R;.
At time 7 the body has temperature t and in time segment dr

changes its temperature by dt.
Here the store of energy of the body changes by -mCdt and

tgede

is given off from the body, where t, is the temperature of the
surrounding medium. Thus, the equation of the heat balance has the

energy

form:

t;to d.'t-—-med t

dt dt
“MGRy t-te t. mc B"(t td+C

For T=0 t-tma.mdc- —ln(tcmu- te)
T J en t-te i
mC'R1 tmal't- T

t= to"' (tmax- tu) e-mr 47)

The curve corresponding to equation (47) is shown in Figure 19.

If 1 =wt =t,. t

Figure 19
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3.3 Time required to come up to regime

It can be seen from equations (46’) and (47) that the quantity
mC,R; must have the dimension of time. This is indeed so:
kgWsecdeq _
kgdegW sec
The segment of time defined by this quantity is called the TIME
CONSTANT of the process that is described by equations (46') and
(47).
We will use the notation mCR; = 7, and rewrite equations (467)
and (47) in the form:

t-to= (tmax—to)({ - e-%)
t-ty= (tmax-t,) e & 1“

It can be seen from equations (48) and Figures 18 and 19 that if 7

= 7, the quantity t __
(thay — to) bY a factor of e for heating and quantity t(r) - &
differs from (t .

if 7 = 27, these quantities differ by a factor of e?, if
T = 31, they differ by a factor of e, and so forth.

- t(1) differs from the quantity

- t,) also by a factor of e during cooling, while

However, e' = 20 and the difference of temperature from the
steady-state temperature at 7 = 371, is only about 5%, which in most
cases can be neglected (in any case, if 1 = 47, the disagreement
will be ®1.8%, which is always insignificant}).

Thus, with accuracy that is sufficient for design calculations

one can consider that the time for the system to come up to regime

will be
Tregime = (374)To = (3-4)mC,R; (49)

One more method of calculating the time for the system to
reach steady-state regime can be shown.
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Let us plot the graph of some process, in which a body of mass
m is heated by power P with heat resistance between the body and
the surrounding medium R;. The specific weight heat capacity of
the material is C, and the temperature of the medium, which is equal
to the initial temperature of the body, is t,.

As is known, the temperature of a body in such a process
changes according to an exponential law (Figure 20), which is
described by the first of equations (48).

t
tnuH N B o
A
o
t, | ~
0 Figure 20 v

If the length of segment BC is calculated on the scale of time
T, it turns out that, first,

BC = 71,

and, second, quantity BC is not dependent on the coordinate of
point A. (BC is a "subtangent" of the exponential curve, the
constancy of which is one of the properties of an exponential
curve) .
But if guantity BC is not dependent on the ccordinate of point
A, then
MN = BC = 71,.

tmax = te £ - -
MN =0 28 Lmax™ie o Tmex
tgol EEI;aA EZHC}

On the other hand,
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After this, we can write that

Toawe (5. 4) Tam(3...4) Emax-to_

where t .. - t, is the difference of temperatures of the body and

X
the surrounding medium in a steady-state regime.

3.4 Unsteady-state heat conduction [10]

Often in designing variocus devices the designer runs up
against the need to use parts that experience heating from one
side, with propagation of heat into the material. Examples include
parts through which high-frequency currents flow (in the skin
layer) as well as various collectors, radiation receivers, and so
forth.

For all of these parts the temperature field is variable
through time, and the heat spreads in them by means of heat
conduction, i.e., they operate under conditions of UNSTEADY-STATE
HEAT CONDUCTION.

How does one calculate the distribution of temperatures in
such a part at a given moment of time?

A rigorous mathematical solution of such problems is very
difficult and, as a rule, leads to a solution in the form of the
sum of the terms of an infinite series, which is not very
convenient for practice.

To make practical calculations easier, graphs are plotted
using these formulas and these graphs make it possible to do these
calculations fairly easily and simply. The solution of a number of
such problems in graphic form is given in [10].

In order to become acquainted with the technique of using
these solutions we will consider one very typical problen,
one—sided heating of an infinite plate.

A plate of thickness h (infinite in area) is heated on one
side by a specific heat flux q (W/m’), which is constant through
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time. The initial temperature of the plate is t;,, and heat removal
from the "cold" side is absent (Figure 21).

\-A#L-h.{ 2k .r‘
2 N
N
N

t‘ﬁuu TV Tl a%

In correspondence with the recommendations of [10] the

temperature of any point on such a plate can be determined from the

expression:
t = t, + 8(qh/\) (51)

where A is the coefficient of heat conduction of the material,
W/mdeqg;

6 is a parameter that is a function of the coordinate through
the thickness of the material, in which the temperature, properties
of the material plate and time of heating are determined.

Parameter 6 is determined from graphs, which are given, for
example, in [10]. For our problem this graph has the form (Figure

22): 45 .
|

N 0
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N

N d -
o bt 1 -
Q E

-— 1

olll = 3

aR a8 0.

=&

Figure 22
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8 = f(Fo, 7) Fo = ar/h?

where a = A\/C,y is the coefficient of temperature diffusivity of the
material, m?/sec.

For known (given) r and x one finds Fo and 7, and then from
them 6, after which the temperature at this point of the plate at
time 7 is determined from equation (512).

However, besides solving the question of the temperature of a
given point on the plate at a given moment of time, this graph
makes it possible to answer a number of other interesting
questions.

The first question is: in what amount of time will a plate of
thickness h be heated over its entire thickness (i.e., how long
will it take for the heat front to reach the "cold" surface?)

It can be seen from the graph that this moment corresponds to
the quantity

Fo = a‘rheat/h2 = 0.1 (52)

from which the time of heating is:

= 2
Tyheat = 0.1(h*/a) (53)

A second question is: to what depth 'heat has the heat front
penetrated into the body in time r1?

From the same equation (52) we have:

*heat = V'10art (54)

A third question is: what is the average temperature of the
plate at time 1?

The average temperature is determined from the parameter 0=
Fo, i.e., it is equal to
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t= tn""-g g%""to"' Fo %\ﬁ (55)

If, however, we wish to find the average temperature of the

plate at time 7 {or the average temperature of the layer heat

heat
that has been heated in time 7 —naturally for ®heat < h), then for

this case, as can be seen from the graph, Fo = 0.1 and

theat = t, + 0.1(gh/)\) (56)
Finally, a fourth question: how does the temperature of the
"hot" surface of the plate differ from the average temperature of
the heated layer?
As we already know, for the heated layer

and the average heating of the heated layer at this time is

T -t = 0.1(qh (57)

heat/h)
It follows from the graph that the heating of the hot surface of
the plate at this moment will be

t - t, = 0.35(gh

hot (58)

heatlk)
Thus, for one-sided heating of a plate that is uniform over
its area the increase of the temperature of its "hot" surface will
be 3.5 times higher than the increase of the average temperature of
the layer that has been heated in the same time (if h < h).

heat —
This simple example clearly shows what brcad possibilities are
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offered to the developer by ready-made general sclutions of
problems in graphic form such as are contained in [10].

3.5 Heating of a body by a beam of charged particles [3]

Let us consider the heating of a plate by an electron beam of
power P, (W), which falls uniformly on area F, m’.

Transforming expression (58), one can obtain the increase of
the temperature of the "hot" surface in a time equal to a pulse
length 7.:

surft

At . -0.55 pP.@;.g QSSP -3 46 VAT '~ Or-
oA a1

ot =111 2T

surf F G Ax (59) *

However, as experiments show, the temperature of heating of
the surface of the body when it is bombarded by electrons actually
proves to be lower than that calculated by expression (59). This
is due to the fact that the power of the electron beam is released
not on the very surface of the plate, but rather in some layer that
is equal in thickness to the penetration depth of electrons into
the material (expression (11)). This decrease is considered by
introducing an additional factor G(Sn/aﬂg into expression (59) in
the case of heating by an electron beam:

Atiu.rg= {14 % G-( s/ﬁ?p') (60)

The function G(Sthrﬂ is described by complex expressions, but in
calculations one can use the following simplified formulas:
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VLT: <5 G(’\Eﬂi‘ sazzza-qaz(s—#)’"
1,41

L
(——-;’ c“ﬁ;-) ':7_-
Substituting (61) into (60), we obtain:

’

for %ﬁ. <5 af 3 anez'___P 2% [141+ (s- % J=*7
or 23.104Dy
£ F >S5 At surf G!'_T—E’s__ !’o."p

(62}

Expressions (61) and (62) make it possible to calculate the
heatup temperature of the surface of the body when it is bombarded
by electrons. In correspondence with this, if the curve of the
distribution of temperatures for ordinary surface heating of a
plate has the form of 1 (Figure 23), then when it is heated by a
beam of electrons with the same specific heat flux, this curve will
have the form of 2.

*h
0 Figure 23

Here the folliowing ratio will be valid:

te-to o

= G gr)
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4. he elastic st ses the ements cons tions

The heating of the parts of constructions, as a rule, causes
in them the appearance of mechanical stresses, which in this case
are called thermoelastic stresses. Exact calculation of
thermoelastic stresses is a very difficult problem, and the
engineer in practical reality must always seek reasonable
hypotheses that are aimed at simplifying the calculation scheme
with the goal of reducing it to one that is amenable to
mathematical investigation.

Just to get a sense of the approach to solving such problems,
we will discuss very briefly a technique for determining stresses
in systems of uniformly heated rods.

The elongation of a rod when heated is, as is well Kknown,
defined as

Al = alAt

where 1 is the length, m;

At is the temperature of heatup, deg;

a is the coefficient of linear expansion of the material,
1/degq.
If the rod is fixed in place and cannot buckle, then the following
stress will arise in it

¢ = -aEAt (63)

where E is the modulus of elasticity of the material (the "-" sign
indicates that compressive stresses develop upon heating
(At > 0)).

Now we will discuss two rigidly fastened bars of the same
length, which are made of different materials (Figure 24).

A

LET 1
L 4-* EE Ta

Figure 24
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Assume the rods were fastened at temperature T,, and then one
of them has been heated to a temperature of T, and the other to T,.
Naturally, there will begin a redistribution of heat in the
direction of lower temperature, but in the calculation we will
consider that this redistribution does not exist. This is the
assumption that immediately makes the problem "doable," with the
error going into the calculation allowance.

Since the rods by definition do not bend and do not buckle,
then, being rigidly joined to each other, they obtain the same
resulting elongations Al, and Al,, each of which has thermal and
force components. By using expression (63), we can write the

equality of these elongations in the form:

o4, 0T T+ B1E o o, B(T-To) + G2f
€ . Es
In addition, we have from the static equilibrium the system:
o F, = -o,F,

gsimultaneous solution of the last two expressions makes it possibile

to find the stresses in the form:

5.--'*0‘.5.(1'«-13)
6y=-6i
s Tg=Ts
where K= -,—:i.t._ %
{.'.g.l.ﬁ
E: Fa

(e4)

If the rods are joined so that some axial shift 5 of one
relative to the other is possible before the beginning of the

interacticn, then

{52 To-To __a _
Kom — =t T=Te BT (&)

E
g
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These and an even larger number of other cases have been
examined in the corresponding literature [11,12,13,14], but the
approach to solving the problem is always the same and is analogous
to this one.

We should discuss separately the stresses that arise when
bodies are bombarded by charged particles. With ordinary pulsed
operation of the beam source, the part is subject to cyclic heating
during the time of passage of the beam. This heating causes in the
material mechanical stresses, the magnitude of which will be the
greater, the greater the amplitude of the pulse temperature. At
some temperature these stresses become sufficient to create
microfailures in the metal, which, accumulating as the number of
cycles increases, lead to failure of the material in the end.

At the same time, for each material there is a critical
temperature, at which the stresses that arise in the material are
elastic and do not lead to failure for any number of cycles.
According to the data of [3], these "safe" temperatures are, for

example:
for tungsten ATJW = 843°
for molybdenum ATSMo = 595°
for copper ATSCu = 110°

If, however, the heatup temperature exceeds the "safe"
temperature, the useful 1life of the part will be limited to a
certain number of heating cycles N, which can be calculated by the

formula [3]:

N ‘”-‘-g;-'—?‘?%’-;- @ &ieral) (66)

where N is the permissible number of cycles of operation of the

device;
U is the heat of evaporation of the material, cal/mole;
T, is the steady-state temperature before the beginning of the

pulse, K;
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AT is the amplitude of pulsed heating, degq.
We give data on the heat of evaporation for a number of
frequently encountered materials (cal/mole), which are difficult to
find in the literature:

Tungsten 175,270
Molybdenum 140,460
Aluminum 6C, 000
Graphite 120,000
Copper 76,320

5. Example of calculation

A copper plate 0.5 m long and 0.1 m wide with thickness
h = 0.01 m is heated on one side by a pulsed electron beam that is
uniformly distributed over the area and that has current
I = 12.5 A at a kinetic electron energy T = 10° eV. The current
pulse duration 7, = 4 x 10? sec and the pulse repetition period T
= 1 sec.

On the opposite side the plate has a channel for cooling by
water with cross-sectional dimensions 0.1 m x 0.01 m; the velocity
of the water w = 8 m/sec and the temperature of the water at the
inlet t_ = 20°cC,.

We will define the distribution of temperatures in the plate
in a steady-state regime before the next pulse and after it; to
determine the time for the system to reach a steady-state regime,
and to determine the useful life of the construction.

ep

5.1 cCalculation scheme and additional parameters

= = 3 =
Duty factor v = -rrep/-rp 1/(4 x 107) 250
Pulse power P, = T'I = 1.25 x 10’ W

Average power (expression 8’) P = (TI)/v = (1.25 X 107) /250 =

5 X 10* W. I'l‘ li l"
A,
Ow

Hm 00im

Qim
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It is necessary to explain precisely what is meant by
"distribution of temperatures in a steady-state regime before the
next pulse and after it."

A steady-state regime is determined by the average power P,
and the distribution of temperatures in the plate will be linear

through the thickness with a difference t® -t which is

hot cold’

proportional to this power.

However, at the moment of passage of the beam a thin surface
layer of the plate (its thickness is the sum of the depth of the
penetration of electrons and the depth of heating of the material
in 7,) will be heated to t® .. The temperature of the surface
after a pulse will exceed its temperature before a pulse by this
"surge" tmhot - tmhot' hot will be
then the amplitude of the pulse temperature, which affects the

* . + (2) - (1)
useful life of the item. Here the gquantity t hot t hot

g i @ - £
This same guantity t hot t

is

determined by the pulse power of the beam P,.

5.2 heatup of water during coo of the plate
at . P . s x 104 ~ L5°
B20 65254.13 x 107 x 8 x 0.01 x 0.1 x 103 _

s

(Here G is the flow rate of water, kg/sec)
The average temperature of the water is:
tﬁzo = ty, + 0.5At, = 21°C
The parameters of the water at t = 21°C are:

A = 0.6 W/mdeg; i = 10* kg'sec/m?’; P, = 6.87
5.3 rature of "¢cold" surface o te

The "wall-water" difference of temperatures (expression 27)
is:

<A!}r-o'ﬂ§§%;
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e m t " " -

The temperature of the "cold" surface t_,,4 tﬁgo + ktw—HgD'
For determination of the coefficient of convective heat transfer a
we find from expression (30’) the Reynolds number Re (expression
29):

d‘ - 4,01,00I _ 4018
" "2(0,1+40,0I) ' "

Rox WhEa 8. 0,018, 10°
M9 104, 9,81

Nu = 0,023Re 08p2 04 ¢ 0,023, (1,472,105)%:8,6,870+4-
- 677

- 1,472, I0°

of = VA _ 671,08 o oosm
dr 181072
W/m’.deg (according to the graph
in Figure 13, a = 23,000),
after which the difference of temperatures between the wall and
water proves to be:

‘t...- --—glo‘w—— - “0.
w-H20 2 267.10%.0,5.0,I

and the temperature of the "cold" surface of the plate in steady-
state regime will be

t t + At = 21 + 44 = 65°C

cold = “HO w-H,0

5.4 Temperature of the hot" surface of the plate before the next
pulse

This temperature, as was already noted, is determined by the
difference of temperatures through the thickness of the plate that
corresponds to average power P

hot = t + At
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The difference of temperatures through thickness in correspondence
with (16) is:

t =Ph_ _ 5104102 - 26

A= \F = 0. 0,05

i a = =
after which t hot 65 + 25 90°C.
5.5 Temperature of the "hot" surface of the plate after the next
pulse
¢ = 0
t hot t hot * Atsurf
where Atsurf is the amplitude of pulsed heating of the surface by
the beam in time 7,, which is determined by the pulse power of the
beam P,.
To find At we find from one of expressions (62) the value

surf
of parameter Eﬂ/afp(a from expression 11):

104 2lS 104 1o00f,5

S _
at, svat, a.s.m“i-ﬁ-.n.m".i.ro“" 0%

Since Jtharp< 5, we obtain from the first of expression (62):

- 0,022 By f5- 2,28y _
Aty FI/A_C:i- [11,1+(5 #p) ]

« 0.02.1,25.10" V4105, (1,6 _ g00
0,06 /400, 389.8, 9,

After this:

tmhot = 90 + 388 = 478°C.

At what material thickness will this "surge" of temperature begin
to be felt?
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This thickness is equal to the sum of the penetration depth of
electrons and the depth of heating of the material in time 7.

hy= 5+,h104 1 1.5 ;\[;0?1.:_  ( mooI-

8,9.1
+\/ 10.1,1L, 104,4.702 = 3,55.107% + 2,11, 1079
x 2,5,10° u

5.6 Time to come up to regime

In correspondence with expressions (50) we have:

~ 5% 3t max-1ts) ;3_[!;" 1ol _.3_@0_-2&_, 7 3sac

lroqln P ) 5.40%
/mCp /mCe 35-01-4018,9-0%.369
2% t(c)_
‘qu-. 4‘1;/110&!_'1 = {0 aec
mCp
$.7 Usefu fe

The useful 1life in numbers of cycles of heating in
correspondence with (66) is:

= U=50T, em'm'ﬂ 76320-5000+223 egﬁiﬁ—iﬁ-

16,72u =" 16.7-76320

=] .04.106 Cycles

If Trep = 1 sec the time of operation will be =290 hours.
It is interesting to evaluate how significant consideration of
the penetration depth of electrons into the plate is in this case.
The pulsed heating of the surface Atsurf‘without consideration
of the penetration of particles into the plate is given by

expression (59) and in our case is

0 05\—/400 389.8 9.103
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The value Atsurf that was obtained exceeds the actual value
(i.e., that calculated with consideration of the actual penetration

of electrons into the material) only by =20% (it was At rf =

388°). However, in this case the useful life of the construction

falls off sharply, since for At = 472°C it will be only

surf

- 76320-50(90+273) '
16,7.76320 e 6- (90+2731472)

N = 1.88 x 10° cycles,

» ~ 3 = [-]
l.e,, =5.,5 times less than at Atsurf 388°C.
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