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Abstract

Dechanneling in bent crystals due to dislocation defects in the lattice is considered. The
effect of these defects in commercially available silicon crystals for the proposed crystal
extraction scheme at the Superconducting Super Collider (SSC) is estimated. Future

needed investigation is discussed.

iii



1.0 INTRODUCTION
The efficiency of charged-beam crystal optics is limited by the dechanneling process.

Two kinds of dechanneling are well known at present:!
¢ bending dechanneling, due to the centrifugal force in a bent channel, and
¢ diffusion dechanneling, due to the multiple scattering of the channeled particle.

The latter process is characterized by the dechanneling length Lp, over which most
of the beam (1 — 1/e) is dechanneled. In a perfect straight crystal the scattering on the
electrons and nuclei leads to the proportionality Lp ~ pv (logarithmic term is omitted
here). At pv = 20 TeV the Lp value in a perfect crystal is of the order of 10 m, so there
1s no problem with it.

In the real crystal, various defects disturb the lattice perfection. Of all the various
defects present in crystal—point-like (interstitial atoms and vacancies), linear (disloca-
tions), two-dimensional (stacking faults), and three-dimensional (amorphous clusters)—
dislocations are of most interest, because the dechanneling cross-section for the other

defects decreases with energy or remains constant. (For a good review of this field, see
Ref. 2.)

Since the present application of commercially available crystals is successful (as a rule),
we should take care of the dislocation defects only. The long defects of the crystal structure
(such as dislocation lines, loops, and walls) induce local distortions of the planar channels.
For this reason, the channeled particle could enter the region with a high density of nuclei
and scatter, and/or pass through the region with high local bend, leading to a considerable

change of the transverse energy or dechanneling.

In general, this could result both in bending-like dechanneling and in the diffusion-like
dechanneling. The former determines some “intrinsic acceptance” defined by a maximal
local curvature; the latter means an additional diffusion in the phase space. In terms of the
kinetic equations, these are the new boundary condition and the new diffusion coefficient,

respectively. In a previous discussion® on this subject, some limit cases were estimated.

Below we shall consider the channeled beam interaction with some defects, and make a
few estimates for the crystal extraction scheme with commercially available silicon crystals

proposed for the Superconducting Super Collider (SSC).

2.0 THE CRYSTAL MOSAICITY

Mosaicity should be the most visible defect of the lattice. The crystal consists of a num-

ber of perfect blocks slightly disoriented from one another. This is due to an arrangement



of edge dislocations in a pattern (dislocation wall), separating the crystal into blocks. This
defect is more typical for metal crystals. The angle of misalignment of the crystal blocks
for each side of the wall* equals

b

Om = 5 (1)
where h = b/fy, is the spacing between dislocations in the wall and b is the Burgers vector
value. Channel orientation differs on 6y, along the distance of order h. If zg << h, where
zg is the oscillation period of the channeled particle, the dechanneling is determined by
the maximal curvature along the distance h. If zo and h are comparable, the result of
the particle interaction with the wall depends on the phase of its oscillation; its random
character leads, in addition, to some diffusion in phase space. Finally, for zg >> h, there
would be only diffusion and no bending-like dechanneling. The same approach could also

be useful in other cases.

For commercially available Si crystals of high quality, the extremely low value of 6
(about 0.05 urad %) leads to the b/8m value one order of magnitude higher than the oscilla-
tion period at 20 TeV. For this reason we will estimate here the bending-like dechanneling
only. As discussed above, the “intrinsic” bend leads to some “intrinsic” acceptance. The
channel bent by angle 8,, along the distance b/fy, corresponds to the radius of curvature
b/62 . The ratio pv/Rj,c = pvéZ, /b determines the bent channel acceptance A in the model
of Kudo and Ellison.® It should be added to the global curvature pv/ Ry, if present.

For a 4-cm Si crystal bent on 0.1 mrad, a 20 TeV beam (the SSC case), and a mosaic
spread 6,, = 0.05 urad, the additional loss due to mosaicity is equal to
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So, the preliminary analysis states that the mosaic spread of approximately 0.05 purad
is not dangerous for the proposed crystal application at the SSC. The beam loss is pro-
portional to the pvé2, value (until it gets too high).

Some dechanneling also occurs due to the dislocation cores in the wall. (See Section 4

for discussion.)

3.0 THE DISLOCATION LOOPS

The dislocation-loop defect can be imagined as an interstitial (vacant) piece of atomic
layer. In other words, this is a closed-edge dislocation. It is characterized by its size
(radius R, if it is circular). The Si crystal, used for the 1-GeV beam deflection, was tested

2



in Gatchina for the dislocation contamination.” It was found that there are two types of
clusters associated with dislocation loops: A-type of size 1-3 um, and B-type of size 0.06-
0.08 um. Their density depends on position: in the center of the crystal it equals 100/cm?
(A-type) and 10*/cm? (B-type).

The lattice in the vicinity of the loop is displaced by approximately the Burgers vector
b value (interatomic spacing). The atom displacement at a distance r, large compared to
the loop size, is equal® (in isotropic matter approximation) to

2 2
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where v? = ;\-fﬁ, A and p are the Lame coefficients, d;; = S;ib;, and S; and b, are the

projections of the loop area S and the Burgers vector b onto the coordinate planes.

Displacement falls very fast, as 1/r%, so the channel curvature decreases as 1/r%. The
curvature becomes a critical one at about the distance (bR? R.)!/*,

For the 20-TeV channeled beam interaction with such a defect, it is essential that
the oscillation period of the channeled particle (about 0.5 mm in Si) is much larger than
the disturbed lattice region size. The usual criterion of dechanneling (applied at lower
energies)—that is, when the channel curvature is larger than the critical one—is not valid
here, because the channeled ion does not make an oscillation in the distorted channel.
However, we must take into account a “kick” due to the pass through the channel with the
disturbed potential (long-range influence of the loop), as well as the multiple scattering of

the ion passing through the loop core.

Probability of dechanneling due to a single collision is small; a change of the transverse
energy per one interaction with such a defect is also not large, because of the small size
of the distorted region.? For this reason the consideration could be in terms of the kinetic

theory.

We shall make a simple estimate below. We divide the distorted region in two parts:
a “core” (with size Deor, of order R), where the atom displacement is larger (roughly)
than the screening radius arr, and an “outer part.” Collisions in the core we consider to
be uncorrelated (amorphous approximation); for the outer part no multiple scattering is

assumed, only the potential perturbation.

Consider at first a high-energy particle interacting with the core. The transverse energy
change is defined by the coordinate changes éz and 66 :

SE; = pvbbd + U'(z)éz . 4)
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We shall consider the second term first:

8§E; ~ U'(2)6Deore - (5)

The cross section of particle interaction with distortion is op ~ D?, ., and the interac-
tion length éz = 1/n’op, where n’ = np/27R is a volume density of the dislocation loops.
Diffusion coefficient (averaging is made over both the oscillation period and the defect size

distribution) is of the form:

<BEL s B - V() > D>

6
5 (6)
The noncoherent scattering on nuclei leads to the following diffusion coefficient:
o BE) ¢ 13
>=2< E; -U(z) > <n D, >, (7)
bz Lgpv

where ¢ = 14.1MeV and Lpg is the radiation length. Possible correlated collisions in the
core would lead here to the transverse energy change:

§E, = / U'(2(2), )8dz (8)

of the same order as Eg. (5).

The core size, as defined above, is independent of the beam momentum; for this reason
the above diffusion coefficient is inversely proportional to puv.

The long-range contribution can be estimated here as follows. Note that the atom
displacement u at the distance r is of the order of 8(R/r)? (Eq. (3)), so its range is much
less than zp. The particle interaction with the distortion may be considered like a “kick”

at some point. The interplanar force can be expanded in the following way:
Ulz +u) 2 U'(2) + U"(z)u . (9)

The angle change over interval dz is

H
56 = U'(z)udz , (10)
U



and the E; change, integrated by z over the trajectory, is

$E, =pv9/59 = H(m)U"(m)/u(r,z)dz . (11)

As mentioned above, we keep z and 8 constant during the interaction; a generalization is

possible.

Averaging over the impact parameters and defects distribution, we have

3 (5?:)2 Lo 2< (U"(w))ZIEUEz —U@E)> / do( / udz)? > . (12)

For example, for the loop parallel to the plane of channeling and the b vector orthogonal
to it, integration of Eq. (12) gives

<5 > = <nT yp log Do >, (13)
where
1,307 51—
'=1+ o + 8yt . (14)

The result depends logarithmically on the limits of the integration over the impact
parameters. The upper limit is set to be 2, since above this value the loop influence is
suppressed by the oscillation of the particle.

Let us estimate now the values of Eqgs. 6, 7, and 12 at 20 TeV for the defect densities
mentioned above. The result depends strongly on the Do choice; according to the

criterion discussed above, we choose D ore = TR.

For the large (A-type) loops, in the considered approximation, the Eq. (6) diffusion
coefficient value is about 0.6€V?/cm, the Eq. (7) value is 0.002eV?/cm, and the Eq. (12)
value is 0.2eV?/cm. The total diffusion coefficient is about 0.8eV?/cm. With a potential
well depth of about 10 eV, that means that the length Lp, over which a significant amount

of dechanneling occurs, should be of the order of 100 cm.

The diffusion coefficient is proportional to npR3, so the dechanneling on the small
(B-type) loops is smaller by about 200 times.
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With the above estimates we should expect the dechanneling fraction in a crystal of a
few centimeters length to be of the order of 10%. All this contribution is from the large
(A-type) loops. The small loops’ contribution is 107% — 107*. The beam loss is roughly

proportional to npR?3, for sizeable dechanneling.

The most important result of the above analysis is that there is no more saturation
in the dechanneling on the loops (contrary to the famous situation in the MeV and GeV

region). The dechanneling length becomes a linear function of the energy.

Note that we have estimated only the order of the problems to be encountered. The
detailed analysis or MC simulation could change considerably the above estimates. For
this reason the 10% value of dechanneling is too high; a better quality of the crystal is
needed at 20 TeV.

4.0 THE LINEAR DISLOCATIONS

The channel curvature 1/R around the linear dislocation decreases as 1/r?, the inverse
square of the distance r to it.2 For this reason the radius of the distorted region is propor-
tional to the square root of the critical radius, i.e., the square root of the beam energy. The
particle oscillation period is the same function of the energy. So there will be no change in
the character of dechanneling with the energy increase. One can expect that the formulae
valid at low energies are also good at 20 TeV.

The dechanneling here occurs when the channel curvature is larger than the critical

one. The dechanneling cross section for the rectilinear dislocations was derived first by

2,8
bpv
0 =K\l2zang, - (15)

where N is the atom density, d, is the interplanar spacing, Ze is the nucleus charge,

Quere:

and K =~ 0.34 for screw dislocation and 0.56 for edge dislocation. The cross section has
the meaning of the radius of a cylinder surrounding the dislocation line, inside which
dechanneling occurs; its value is about 50 pm in our case (silicon, 20 TeV). The op is
derived under the assumption that every particle inside the cylinder is dechanneled and
every particle outside it is not influenced. Dechanneling length is equal to

1

LD - ~ 86 ’ (16)
npop :

and is proportional to the critical angle. The cross section increases with the energy,

because the critical bend of channels occurs at a larger distance from the dislocation line.
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Further investigation, including experiments, simulation, and more detailed analysis®
indicates that Eq. (15) overestimates the dechanneling cross section by a factor of about

5. A particle having crossed the cylinder retains the ability to channel again.

We can suppose also that with an energy increase the K constant could decrease,
because the contribution of the muitiple scattering in the distorted region becomes in-

significant in the multi-TeV domain.

The particles that are not dechanneled have experienced some change of the transverse
energy {due to long range of the displacement field). The diffusion coeflicients for the
rectilinear dislocations (in the harmonic approximation) are given!? for edge dislocation
and screw dislocation, respectively:

2

b

™

b BN 18
12\/5 \/ﬁnl) ( )

B(E;) =

The diffusion coefficient B = ByE¥ leads to a considerable dechanneling along the
following length:!!
_ 4EFF
- 2- k)zjfn,lBﬂ '

Lp (19)

Here jm, is the Bessel function Iy, zero, and m = |(1 — k)/(2 — k)|. Dechanneling
lengths in the considered interactions, with coefficients of Egs. (17) and (18), for edge

dislocation and screw dislocation, respectively, are:

2d6.

Lp = 47— 20
Jg,lban (20)
and
1928,
Lp=———. 21
ﬂ]]?'lbnﬂ ( )

Note that extrapolation of a diffusion-like view to our case should be done with care.
With the crystal purity required, np ~1—10 cm ™2, the average distance between disloca-
tion lines, 1/,/nD, is a few millimeters. Since the area of the crystal surface in touch with
the beam is only a fraction of a square centimeter, S ~ 0.3 cm?, the number of dislocations
“on the way of the beam,” Snp, is of the order of one! So the situation becomes concrete;
in particular we can vary the transverse coordinate of the crystal (tangential to the beam)

to find the optimum.



At 20 TeV the single-scattering formulae (Egs. (15) and (16)) give the dechanneling
length of a few tens of centimeters at the density of the linear dislocations np of the order
of 10/cm?. The diffusion estimates (Egs. (20) and (21)) give lower values. So the crystal,
perfect enough, should not have more than one linear dislocation per square centimeter.
The quality of commercial crystals is increasing; the dislocation-free examples can be

produced now, in principle.

5.0 CONCLUSION

The very preliminary analysis given above estimates the expected problems with the
silicon-crystal lattice imperfection to be not too severe. Detailed analysis of the dechan-
neling at 20 TeV, including an MC simulation, is needed. Measurement of the densities
of the dislocation defects of all types is very important. An accurate measurement of
imperfection-induced dechanneling at the highest energy in the crystal with the well-known

structure would be very useful, especially in comparison with the simulation.

Another important part of this problem is radiation damage resistance. Its value may
be a strong function of the energy, in principle. The behavior of this function is determined
by the kind and size of the accumulated defects. For this reason the investigation of the

defects accumulated in the radiation-damaged crystal would be interesting.

There is another important point. In the proposed bent crystal extraction schemes,
most of the beam-crystal interaction occurs in a very thin layer with a thickness of 1 um or-

der. A simple estimate for this layer lifetime:

10%cm™% 1mm 1um
108 sec!

Lifetime ~ ~ 108 sec ~ 1 Week , (22)

with 10! cm™? as a limit of integrated dose and 10®/sec as a beam intensity.

At this time, the highest irradiation achieved in bent crystals with high-GeV beams
is of the order of 109 protons/cm? | with no substantial degradation of channeling prop-
erties observed. In the experiment,!? this value was achieved with 70-GeV fast-extracted
beam and 13-mrad bent Si crystal, where the crystal also experienced large dynamical and
heating shocks. This value could change considerably at the energy two orders higher. Do
the defects migrate from the damaged layer? This is also important to understand.

The two-crystal scheme!? of extraction, with a thin crystal added as a scatterer, would
provide the impact parameters of a few hundred microns order. That could solve the

problem of radiation damage.
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