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Consider the following simplified diagram (Figure 1) of the signal processing for a single

calorimeter tower.

Figure 1. Signal Processing for a Single Calotimeter Tower.

This note estimates the average signal at point A (before digitization and before any
thresholds are applied) due to event pileup. The average signal is denoted by Eiower, and
the variation as A Ejower. These depend on the following variables:

1. Average number of events per beam crossing = fiey.

2. Average number of particles produced per unit n = @, (it is assumed that the

particles are uniférmly distributed in n and ¢).
3. Average energy per particle E.
4. RMS spread in particle energies AE.

5. The shaping function h(t). This includes both the integrator and the shaper. It is
defined so that if energy E is deposited as a delta function in time at ¢t = 0, then
the signal at A is E h(t).

The signal at A will depend on the energy deposited in the tower on the previous
beam crossings waited by the function A(t). Let #; (k =1,2,...) be the times of the beam
crossing. Let nf, be the actual number of pp interactions in the k*! crossing. Let n/* be
the number of particles that deposit energy in the tower from the 7t event (j < nk,) of the
k*h beam crossing. Finally, let Eijx be the energy deposited by the it particle (: < ni*)
of the j* event of the k" beam crossing. Then, the signal at A is
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Now, we have to average over (1) particle energies, (2) number of particles per tower
per event, and (3) number of events in each beam crossing. Denote these averages as ( )k,

{ Y, and { }n,,, and do them in the following order:
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All the E;j;’s are statistically independent and are sampled from the same distribution,
which is assumed to have mean E = (E,-jk)E =E.
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All the n?%’s are statistically independent and Poisson-distributed with mean 7 = %’:AnArﬁ,
where AnAdg is the size of the tower.
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Applying the same arguments, (nf,) = fiey
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Let At be the time between beam crossings.

; h(te) = = Zk: (te) At = - Of B(t)dt.

[Note h(t) = 0 for ¢ < 0 since it is not possible to build an anticipator box.]

Thus,
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This is quite sensible in that E\ower 18 linear in E, Tip, and Fiey.

Now we need to estimate A Eyower. Since we have Eiower, we need Etowet From Eq. (1),
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If 43 # 49 or j1 # j2 or k1 # kz, then E; ;i and Ej,j;, are statistically independent
variables = (E; j &, Eizjzk2>E = (E; jik )E (Eizjzkz)E = E2,

If i1 = i and j1 = j2 and k1 = k3 then
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Thus, there are basically three contributions to A Ejower:
1. The fiey 1 AE? term from fluctuations in the energy deposited per particle.
2. The figy i E? term from fluctuations in the number of particles per event.

3. The fiey 72 E? term from fluctuations in the number of events per crossing.
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Note 1: for the size of towers in SDC (Ag¢An = (.05)%), 7 5
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Note 2: The shaping enters through the integrals [;° h(t)dt for Eiower and v/ fy- [A(2)]24t
for AEiower- It is possible to make the first integral zero, but it is not possible to make
the second one zero. It may be preferable to minimize fj° [h(t)]?dt [and hence AEiower| at

the expense of a non-zero Eiower and then subject off Eigwer offline.



