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Abstract

This note is based on the work we did in August, 1989 for parameterizing Irwin factor-
ization kick map. A semi-parameterization method was employed in which the linear part
of the map is three-dimensional (six-dimensional in phase space) while the nonlinear part
of the map is two-and-one-half dimensional. The one-half dimension can be eliminated
once the parameter (off-momentum) is updated at the beginning of each turn of the kick

map.
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1.0 INTRODUCTION

In 1989, Irwin proposed a method of converting a Dragt-Finn factorization! of a Taylor
map into kicks.? The minimized highest-order rotation bases are used as the bases for all
orders, while Lagrange multipliers are employed to (1) eliminate the extra independent
bases in order to obtain a unique solution, and (2) suppress the higher-order {order higher
than the order of the original Taylor map) artificial terms. If the artificial terms can be
suppressed enough and be negligible, then this method may be promising for fast long-term
tracking. Therefore, an investigation was started right after Irwin’s proposal to verify its
applicability for the Superconducting Super Collider (SSC) long-term tracking. In order
to enhance tracking speed, a semi-parameterization method was employed to parameterize
the nonlinear part of the Dragt-Finn factorization map and, therefore, reduce from three
dimensions to two dimensions for the kicks proposed by Irwin. To accomplish this, the one-
turn Taylor map should not involve any RF cavity so that the off-momentum (represented
by the energy deviation § = AE/E) is kept invariant and is treated as a parameter. To

update the off-momentum, simply track the particles over the RF cavities separately.

Let a closed-orbit Taylor map (which can be extracted using Zmap® for the SSC) be
extracted up to the §2 order for a beam line from after an RF cavity to before the next RF

cavity. The map can be expressed as follows (we adapt the same notational convention as
in ZLIB* manual):

0
m:2=U(F)=Mi+ )Y Oi-),
k=2
where the transpose of the coordinates are

. =T
ZT = [21,22,...,2’”] = [X ,6,P5],
)_{T = [m,P:c:yaPyL

and the transpose of the VTPS (vector truncated power series) is
U7(2) = [U1(2), V2(2), Us(Z), Us(Z), Us(Z), Us(Z))-

Note that P;, Py, and Ps are the conjugate momenta of z,y, and §, respectively. Us(Z) = 6,
that is, the off momentum, &, is an invariant since no RF cavity is involved for acceleration.
The nonlinear part of the map is dependent only on X (X = (&, Py, y, Py]) and 4, not
on Ps, as we have explicitly expressed ﬁk(i—) for ¥ > 1 as nonlinear VIPS of z— =
(2, Py, y, Py, 6]. Furthermore, each of the constant terms in U; (: =1,2,...,6) is 0.



2.0 BLOCK DIAGONALIZATION OF M

Before the nonlinear Dragt-Finn factorization can be performed, block diagonaliza-
tion and similarity transformation are necessary such that the transformed map is semi-
normalized in the linear part. In order to parameterize the nonlinear Dragt-Finn gener-
ators, the transformed nonlinear part of the map should be independent of Ps, and the
transformed U£(Z) should be 0 for k = 2, . In this section, we describe the method we

used to accomplish this.

The linear part of the Taylor map can be generally expressed as a symplectic matrix

given by
Ny m O
M=| 6" 1 of,
T :
n a 1

with the constraint that M and N (N is a 4 x 4 matrix) are both symplectic, that is,
MTSM = S = S5, and NTSN =§ = Syx4> Where m and n are vectors with 4 elements

and

52><2 O2x2 02x2

52 2 02 2
Sﬁxb‘: 02x2 Szxz 02x2 7 S4><4:( * )
O?x2 S2><2

02X2 02><2 SQxZ

S 0 -1 i 0 0 0
g = , an = .
2x2 1 0 2x2 0 0

First, we found the first-order parameter- (6-) dependent closed orbit %, by imposing that

with

)EC = N}_{‘C + (51‘?—];
thus,
Ko = (I — N)'6m = £5,
where
£=(I-Nylm.

Then, we found a symplectic generation matrix M) to transform the coordinates ¥ into the
linear-order-¢-dependent-closed-orbit coordinates, while keeping the parameter, §, invari-

ant. Py is inevitably transformed to have M| symplectic, that is, to have MirS'Ml = 5.
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The generator M is given by

I4x4 f 6
6 1 0]},
£Ts 0 1

M,y

and its inverse is given by

Lyxa “5 0
mMit=| 6T 1 o],
-&Ts 0 1

where S = S, ,. The forms of the generator M, and its inverse M, 1 show that through the
similarity transformation, we would still have the two required properties (é is an invari-
ant and X is independent of FPj) for parameterizing the nonlinear Dragt-Finn generators.

Performing the similarity transformation we have

Q
m' i E=(Mym MY E = (M MM)Z + Y MO 2),
k=2

or simply,
Q
m' 7 =Mi+) Uz,
k=2
where
Nywg 00
M =M MM ={ 0 1 0f%,
6T a, 1

and @, = « + ﬁTSg is the momentum compaction. Note that M and Ml_l are the
symplectic transformation generator representing the matrices M and M, ! respectively.
However, for convenience we have followed the convention that M; and M| operate on
the global variables, while their matrix representations, M; and J\ffl_l, operate on local
variables. Please also note that Uf(Z) = 0 and U'*(Z) are independent of P for k > 2.



Now that the transverse linear map N is decoupled from the longitudinal space, the

linear part of the map, M’, can be semi-normalized by another similarity transformation

as follows:
Ry, 0 0O
67 1 0| =Mp=M"MM
6T o, 1
=1 o7 1 0 ol ofloef 1 o
ol 0 1 07 a1 67 0 1
N{NgaN; 60
= 07 1 0|,
6T a; 1
where

Riys = N[ ' NyxaNy

is the usual normalization for a four-dimensional symplectic matrix. The map is thus

transformed as follows:

1Y)
m s E = (Mym MUY 7 = (M7 MOM)E + Y MO M, 2),
k=2

or simply,

Q
im i E=Mpz+ Y UNE-).

k=2

The form of the matrix Mg, which has already been decoupled between the transverse
coordinates and the longitudinal coordinates, guarantees that an additional transformation
by operating IVIIEI on the map would not destroy the two requirements (§ is an invariant
and non-linear part of the map and is independent of Py} for parameterizing the nonlinear

Lie generators. So we made another transformation by operating M}_zl on the map and

obtained



or simply,
0
ymiE =24 Y ,UNE-). (1)
k=2

Note that M;{l operates on the global variables, and its matrix representation MEI oper-
ates on the local variables. ,Uf(Z) = 0 and 26’“(5*) is independent of Py for k > 1.

3.0 DRAGT-FINN FACTORIZATION

We reformed Equation (1) as follows:

L9
omiE=17+,0%(F-)+ ) ,U%i-), (2)
k=3
where Z— = [X, §] indicates that 213"(5—) is independent of F;.

To obtain the second-order Lie generator, since :UZ(Z—) = 0, we let
(f2(7-),2) =, U*(Z-).

Although 6 and Ps are treated as a pair of canonical coordinate and momentum, 6 is
actually a parameter. To obtain f, (Z—), an integration path was chosen from 0s to (04, 6,0)
along the § coordinate and then to # with particular care. Note that the second-order Lie
generator, f(Z—), is a third-order polynomial of Z—. Since zﬁz(i—) is independent of P;,

so is f,{Z—). Since
expl(: fold=) )i = 7 + [fa(3=), 3] + Lfoli-), LR(2), 2] /2+ ...,
we let
ﬂ —
s E=exp(: f(Z-) DE+ ) A,UNE-), (3)
k=3
where

Q
> A UNE-) = ym 2 —exp(: fo(Z-) 1)Z.
k=3

Then we obtained

Q
ym E = {exp(—: fo(=) )gm) 1 E = T+, U (E-) + Y ;0¥(E-). (4)
k=4



Equation (4) is similar to Equation (2). So we let [ f;(Z—),Z] = 3ﬁ3(i—) to obtain the
third-order Lie generator f;(Z—), and follow a process similar to the one we used to obtain

Equation (4). Now we obtain

0
gm 7%= {exp(—: fy(E-) )ym}:Z=1724 464(5*) + z 4ﬁk(5")- (5)
k=5

Through iteration, we finally obtain all the Lie generator f,; (Z—) and

Q
i 2= {exp(—: f; (=) )ym}  Z =24, U (E-) + Z i UNE-),  (6)
k=1+2
and so
—_ Q —_
asim i = {exp(— : fo(i-) Dam} T =7+ UM (E-) + Y qUKE-)
k=014-2

=Z+o(+1)rZ=IZ.
Therefore, neglecting terms with order higher than £, we have (in terms of global variables)
m = M7 M7 Mpam MMy ~ MM M pmp MIM, (7)

where

my = exp(: foZ—) Jexp(: f3(2-):) ... exp(: fo(Z-) ). (8)

4.0 KICK FACTORIZATION BASES

Followed Irwin’s Work,? we first decided the total number of kicks necessary. Recall
that each of the Dragt-Finn factors, fi(Z—), is independent of Py, that is, its longitudinal
dimension (8, Ps) has already been in a kick form. Thus, we need only rotation bases in the
transverse dimension. Since the same rotation bases are used for each of the Dragt-Finn
factors, fi(Z—), the minimum required number of kicks is determined by the highest-order

of Dragt-Finn factor, fo(Z—), which is given by:?

K> (Q+3)2/4 if 9 is odd
44
2+ 2) (24 4)/4 if Q is even,

Once the total number, K, of rotation bases is chosen. the next step is to choose the

rotation bases. We used random number generator to generate the two sets of rotation
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angles, 8, and Oy, k = 1,2,..., K. Note that 0 < 8;; < «. If two of the angles are too
close in a set, that set of angles was regenerated until no two angles are too closely based

on a pre-determined criterion. We then calculated the rotation bases, which were given by
Cak = cos bz,
S.’xk = sin ea:k:
Cyr = cos Oy,
Syr = sin ;.

New local base coordinates were then formed by letting
oy =Cpz+ S Py
Y = Cyky+Syku‘

The task of this section is to construct from the Dragt-Finn factorization given in Equa-

tion (8) a kick factorization of the form

my = exp(: g3 (X1 +) ) exp(: g2(¥p4) 1) .. . exp(: gp(Xp+) 1) . exp(c g (Xg+) ) (9)
such that
my, =mys+o(fl+ 1) & my

where m, is given in Equation (8) and X, + is defined as X, + = (z;,¥;,6). The “4+”
emphasizes that the third dimension, é, although 1t appears, has no effect in determining

the rotation bases.

5.0 KICK FACTORIZATION OF THE SECOND-ORDER
DRAGT-FINN FACTOR

The task is to find ,g, (X, ), for £ =1,2,..., K such that

K
Z 20x (X +) = fo(Z-),

k=1
that is,

T m
nmo T n—r 5 m—s ¢o
E afy cx PRy PTYE

r=0 s=0

Z Z ﬁnmo 931; yk - Z
n+m-to=3

k=1 n4m-4o=3

if we take the explicit power series for ,¢,(X,+) and f,(Z—). Therefore, the purpose is to
find all the 3™ for k = 1,2,..., K, and all possible combinations of n,m, 0 such that
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n+ m+ o = 3 (note that both ,9,(X,+) and f,(Z—) are 3rd order polynomials). Simply
speaking, for each possible combination of n,m, o0, the task is to find all the 3™ for
k=1,2,..., K such that

K n m
ZB:mo mz y;;n - Z Z a;tsmo 27 Pzn—r ys Pym—s. (10)
k=1 r=0 s=0
Note that the third dimension, §, is a common factor on both sides of the “=" sign, so
gn,

it has been taken out of the equation. Therefore we have exactly the same equation as
Irwin’s except an extra superscript, “o”, appears for 4™ and &/™° to indicate that there

are more coeflicients than with a non-parameterized case,

To solve Equation (10) for 37™°, k = 1,2,..., K (n,m,o0 fixed), the key is to take
iyl k=1,2,... (n+1)(m+1) as complete bases (this can always be proved afterwards).
Note that K was chosen such that (n + 1)(m + 1) < K for all possible combinations of
n,m,o, such that n + m + o < Q + 1. With the new complete bases, we can obhtain

(n+1)(m+1)
SRR R = Y oy (11)
k=1

for each combination of r,s, wherer = 0,1,...n, and s =0,1,...m, and

(n+1)(m+1)

D DR (12)
k=1

-

for each of the extra rotation bases z7y*, 7 = (n + 1)(m + 1) + 1,... K. Substituting
Equations (11) and (12) into Equation (10), we have

{(n+1)(m+1) ¥ (r+1)(m+1)
Yo BTty 4 > D S 3 ¢
k=1 7=(n+1){(m+1)+1 k=1
noom (n4+1){(m+1}
=Y Doanm N CR Rt
r=0 s=0 k=1



or after rearranging

(n+1)(m+1) k
Bnmo $k yk + Z ﬁ;zmo q;zkmo x: y)rcn
k=1 j=({n+1){(m+1)+1

(13)

= 3 R yemeomre

r=0 =0

An easy solution would be

ﬁnmo nmo Zzanmo ::;1210, k:1,2,(n+1)(m+1)

r=0 s=0

and

BI™ =0,  k=(n+1)(m+1)+1,...K (14)

However, such a solution would sometimes result in large artificial higher-orders in
the final kick map. So we follow Irwin’s minimization method to introduce a set
of Lagrange multipliers A;, 7 = (n + 1)(m 4+ 1) + 1,... % in order to introduce
(k — (n + 1)(m 4 1)) constraints to eliminate the extra 1ndependent bases z7y",
j = {(n+1(m+1)+1,...k for a unique solution of §7™°, k = 1,2,...K. The
Lagrange multipliers are introduced to minimize the sum of the squares of ™7,
k=1,2,.. K.

With the introduction of the Lagrange multiplier, an equally valid solution as opposed
to Equation (14) would be

K
nmo 'Bnmo _ Z /\J qﬁcmo b= ]_’2’,__ (n+ 1)(m+ 1)
j=(nt 1) m 1)1

ﬁnmo Aka (15)

that is, let the coefficients B'™°, k = (n + 1)(m + 1) + 1, ... K, of the extra indepen-
dent rotation bases be Lagrange multipliers instead of 0 given in Equation (14). Because

these Lagrange wmultipliers are introduced to minimize the sum of the squares of 8™,
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k=1,2,... K. We therefore obtain k — (n + 1)(m 4 1) constraints by setting the deriva-
tive with respect to each of the A, k=(n+1}{m + 1)+ 1, ... K, as follows:

{(n+1)(m+1) R k
I D D K SR
k=1 I=(rn+1}{m+1)+1 (16)

forj=n+1)m+1)+1,(n+1}m+1)+2,... K.

Equation (16) has a total of ¥ — (n + 1)(m + 1) linear equations of k& — (n + 1)(m -+
1) variables A;’s. The linear system can be easily solved using standard numeri-
cal librartes. We therefore get a unique solution for g™ given by Equation (15).
Note that other combinations of n,m,o such that n + m + 0 = 3 can be ob-
tained by following the above process. Once we have gotten all the §/™’s for
k=1,2,... K, and all possible rn,m, 0, such that n 4+ m 4 0 = 3, we have gotten ,g, (X, 1)
for k =1,2,... K such that

P
Z 20k(Xp+) = f2(Z-),
k=1

that 1s, the kick factorization for the 2nd order Lie factor is finished.

6.0 KICK FACTORIZATION OF 3RD-ORDER DRAGT-FINN FACTOR

Now that we have obtained

oMy = exp(: 991 (X1 +) 1) exp(: 992(Xa 1) 1)
oo exp(z ggx(Xp+) 1) - exp(t 29k (Xg+) 1),

our next step 1s to expand ym, into a Taylor map and then convert the Taylor map into

a Dragt-Finn Factorization map up to the 3rd order. Let it be
277ty = e f1 @) i) a(4).
Then we have
2J3(E~) = f,(Z)
and
3S3(Z-) = f[3{2—) — ., f{{Z—) £ 0 in general,
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The task in this section is to find 3¢, (X, +), £ = 1,2, ... K such that

¢
Z Sgp(Xp+) = 353 (2-).
k=1
This can be done by following a process similar to that discussed in Section 5. Then add

Sgk(ik+) to zgk(fk'{‘) fOI' k = 1,2, e K tO get

3, = exp(: 391 (X, +) 1) exp(: 392(¥,+) 1)

... exp(: 3p(Xp+) 1) ... exp(: 395 (Xg+) 2) 1
where
30(Ft) = 20 (K ) +Ho0(Fxt),  k=1,2,8, . K.
7.0 KICK FACTORIZATION UP TO (! ORDER
Assume we have obtained
img = exp(: ;g1(X;+) 1) exp(: ;go(X Fat) 1) (18)

.. exp(t i gp(Xpt+) 1) o exp(s i g (Xgt) o).

Following a process similar to that in Section 6, we would first expand ;m, into a Taylor

g
map, then extract from the Taylor map a Dragt-Finn Factorization map up to ¢ + 1 order.

Thus we would have

img = exp(:; fI(Z=) ) exp(: ; f{(Z—):) ...
exp( , f97-) ) exnl: , f,(5-) ) + ol +2),

where
fHE-)=f(Z-) forj=23,. ..
and
ir1fin(@—) = fi1 (=) — ; f41(Z—) # 0 in general.

The task is then to follow the process in Section 5 to find 'tlg, (X, +),
k=1.2,... K, such that
p

Z Mo Fet) = i fip(E-).

k=1
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Then we get

i+1Mg = exp(: i1191 (X +) 1) exp(c j1192(Xp+) )

. _ (19)
.- exp( i 19x(Xp+) 1) - exp(s i 9x(Xg+) 2),

where
im0 t) = s g (Ft) + HopE ), k=12, ... K.
Iterate the above process until 1 + 1 = €.

We therefore have the original closed-orbit Taylor map represented by a kick factor-

ization map as follows:
m = M M7 M pm, My My, (20)

where

My = qmy = exp(: gg;(X;+) 1) exp(: gga(Xo+) :) ... exp(: qop(Xp+) 2),

or simply written as

my = exp(: g1(Xy) 1) exp(: go(Xp+) 1) - .. exp(: g (Xp+) 2). (21)

8.0 KICK MAP TRACK
Equation (21) can be further transformed by taking the rotation out of the Lie operators

to get a global variable form, that is,

m = (Rle:g'v](z,y,&):Rl—l)(Rze:_&g(z,y,é):R;I) o (Rke’é"(”’y’é):ﬁgl),

g

where R, and Rk_l, k=1,2,... K, are 4-dimensional (phase space) rotations. We could

combine adjacent rotations:
m, = Rl ezﬁi(z,y,ﬁ): Rl? e:_&?(z,y,ﬁ): Rgg e:§3(z,y,8): o R(k-})k ezg'-k(z,y,é): Rk—l

Since §, is independent of conjugate momentums (P, Py, Ps), to advance the momentum

we simply have

9
AP} = £
¥ Ox
apt = %
y By
Py
AP; = % foreach £ = 1,2, .. K.
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Therefore,

P, =F, +AP:§($:%6)
P, = P, + AP} (z,y,6)
Py =P + APf(m,y,é) for each kick k =1,2,... K

where AP, AP, ,AF; are given as explicit functional form of z,y,4. Since at the begin-
ning of each turn (or after each RF cavity), the off-momentum § is updated and fixed before
the next RF cavity, we can substitute é into each of the functional forms of APF, AP;c , A.Pgc
to convert them into 2-variable polynomial instead of 3-variable polynomial to save com-
puter time. That is, after substituting é into the polynomial in the beginning of each term
we have

P, =P 4+ Asz(m,y)

P, =P, + AP}(z,y)

Py = P; + AP(z,y)
in each of the kicks to update the conjugate momenta of z,y,§. Therefore the nonlinear
map m, becomes rotate, kick, rotate, kick, ..., rotate, kick, rotate for k+1 4-Dimensional

(phase space) rotation and & 3-dimensional kicks. The linear part is six-dimensional. All

six-dimensional coordinates are updated by 6-D matrix operation.
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