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Yiton Yan and EtienneForest

Abstract

This note is basedon the work we did in August, 1989 for parameterizingIrwin factor

ization kick map. A semi-parameterizationmethodwas employedin which the linear part

of the map is three-dimensionalsix-dimensionalin phasespacewhile the nonlinearpart

of the map is two-and-one-halfdimensional. The one-halfdimensioncan be eliminated

oncethe parameteroff-momentum is updatedat the beginningof each turn of the kick

map.
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1.0 INTRODUCTION

In 1989, Irwin proposedamethodof convertingaDragt-Finnfactorization1 of aTaylor

map into kicks.2 The minimized highest-orderrotation basesare usedas the basesfor all

orders,while Lagrangemultipliers are employed to 1 eliminate the extra independent

basesin order to obtain auniquesolution, and2 suppressthe higher-orderorder higher

than the order of the original Taylor map artificial terms. If the artificial terms can be

suppressedenoughandbe negligible,then this methodmay bepromisingfor fast long-term

tracking. Therefore,an investigationwas started right after Irwin’s proposalto verify its

applicability for the SuperconductingSuperCollider SSC long-term tracking. In order

to enhancetracking speed,asemi-parameterizationmethodwasemployedto parameterize

the nonlinearpart of the Dragt-Finn factorization map and, therefore,reducefrom three

dimensionsto two dimensionsfor the kicks proposedby Irwin. To accomplishthis, the one-

turn Taylor map shouldnot involve any RF cavity sothat the off-momentumrepresented

by the energydeviation 8 = E/E is kept invariant and is treatedas a parameter. To

updatethe off-momentum,simply track the particlesover the RF cavities separately.

Let a closed-orbitTaylor map which can be extractedusing Zmap3 for the SSC be

extractedup to the Q orderfor a beamline from after an RF cavity to before the next RF

cavity. The map can be expressedas follows we adaptthe samenotationalconventionas

in ZLIB4 manual:

in: = Ui’= Mi+
k=2

wherethe transposeof the coordinatesare

= [z1,z2,. . .,zI = [*T8p6]

= [x,P1,y,Py],

andthe transposeof the VTPS vector truncatedpower series is

UTi = [Uii, U2i, U3i, U4, U5i, U5].

Note that P1,P,,andP5 arethe conjugatemomentaof x,y, and 6, respectively.U5i = 8,

that is, the off-momentum,6, is an invariant sinceno RF cavity is involved for acceleration.

The nonlinear part of the map is dependentonly on Z {x,P,y.P and 8, not

on P5, as we have explicitly expressedU- for /c > I as nonlinear VTPS of 1- =

{.x, F1, y, F’,, 6. Furthermore,eachof the constant terms in U, i = 1.2,. . . , 6 is 0.



2.0 BLOCK DIAGONALIZATION OF M

Before the nonlinear Dragt-Finn factorization can be performed, block diagonaliza

tion andsimilarity transformationare necessarysuch that the transformedmap is semi-

normalizedin the linear part. In order to parameterizethe nonlinear Dragt-Finn gener

ators, the transformednonlinear part of the map should be independentof F5, and the

transformedUi should be 0 for k = 2, Q. In this section,we describethe method we

used to accomplishthis.

The linear part of the Taylor map can be generallyexpressedas a symplectic matrix

given by

/N44 iii 6
M=f 52’ 1 01,

-.2’
fl a 1

with the constraint that M and N N is a 4 x 4 matrix are both symplectic, that is,

MTSM = = S andNTSN= S = 844, where th and ii are vectorswith 4 elements

and

/ 82/2 °2x2 02x2 /0
o in n I fl’2x2 2x2
06/6 ‘-‘2x2 02/2 ‘-‘2x2 , 044 -

2x2 2x2
‘-‘2x2 ‘2x2 2x2

with

0 -1 /0 0
S2X2 , and O2/2=

First, we found the first-order parameter-5- dependentclosedorbit i, by imposingthat

c = + ôñ’ì;

thus,

= I- N15th = 55,

r here

5= I - N1th.

Then, we found asymplecticgenerationmatrix M1 to transformthe coordinates into the

linear-order-S-dependent-closed-orbitcoordinates,while keepingthe parameter,5, invari

ant,. ,ç is inevitably transformedto have M1 symplectic, that is, to have M[SM1 = S.
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The generatorM1 is given by

/‘4x4 5
M1=j 5 1 01,

0

and its inverseis given by

/ 144 - 5
Mj1=f 52’ 1 01,

0 1

whereS = S44. The formsof thegeneratorM1 andits inverseM’ showthat throughthe

similarity transformation,we would still have the two required properties8 is an invari

ant and is independentof F5 for parameterizingthe nonlinear Dragt-Finngenerators.

Performingthe similarity transformationwe have

in’: i= M1 mM1 : = M1MMiz+
2

MUkM11,

or simply,

in’

where

N44 5 6
Ml=MT1MM1=ST

c

and a, = a + jT5 is the momentumcompaction. Note that M1 and Mj’ are the

symplectictransformationgeneratorrepresentingthe matricesM1 and iVIj, respectively.

However, for conveniencewe have followed the conventionthat M1 andMj1 operateon

the global variables, while their matrix representations,M1 and Mj, operateon local

variables. Pleasealso note that Ui = 0 and Ulki are independentof P5 for k 2.
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Now that the transverselinear map N is decoupledfrom the longitudinal space,the

linear part of the map, M’, can be semi-normalizedby anothersimilarity transformation

as follows:

5 6
aT o=MR=M-1MtM

6 6 /N44 6 6 /Ni 6 6

=162’ iojJ
5T

1 ojfo2’ 10

0 ikoT &c 0 1

Nj1N4x4N1 6 0

62’ i o

ac 1

where

=

is the usual normalization for a four-dimensionalsymplectic matrix. The map is thus

transformedas follows:

1rn : i = M m’M71 : = M’M’M1i+ M_lU?CMi,

or simply,

k=2

The form of the matrix MR, which hasalready beendecoupledbetweenthe transverse

coordinatesandthe longitudinal coordinates,guaranteesthat an additional transformation

by operating Mj on the map would not destroy the two requirementsS is an invariant

and non-linear part of the map and is independentof F5 for pararneterizingthe nonlinear

Lie generators. So we made another transformation by operating M1 on the map and

obtained

= 1 1in :1 =

2
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or simply,

:1=
k=2

1

Note that M1 operateson the global variables,andits matrix representationM’ oper

ates on the local variables.2Ui = 0 and 2Uki_ is independentof F5 for k 1.

3.0 DRAGT-FINN FACTORIZATION

We reformedEquation1 as follows:

0

2
k=3

wherei- = [,8] indicates that 2Uk_ is independentof F5.

To obtain the second-orderLie generator,since2Uz- = 0, we let

= 2Uz-.

Although 5 and F5 are treated as a pair of canonicalcoordinate and momentum, 8 is

actually a parameter.To obtain f2 i-, an integrationpathwaschosenfrom 06 to 54,5,0

along the S coordinateandthen to i with particular care. Note that the second-orderLie

generator,f2i-, is a third-order polynomial of i-. Since2U2- is independentof F5,

so is f2i-. Since

exp f2i- :i = I + [MI-, 11 + [f2i-, [f2I, iT/2! +

we let

I = exp: f2 I- :I +
k3

A 20ki_, 3

where

A 2Uki = : I - exp: f2 I- :

Then we obtained

3111: = {exp- : f7i- :2m} :1=1+ 3U3z-+
k=4

4
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Equation4 is similar to Equation 2. So we let [f3i-,i] = 3Uz- to obtain the

third-order Lie generatorf3 I-, and follow aprocesssimilar to the onewe usedto obtain

Equation4. Now we obtain

47Th : I = {exp- : f3 I- : 37n} : I = 1+ 4U4I- +
k=5

4UkI_. 5

Throughiteration, we finally obtain all the Lie generatorf I- and

I = {exp- : f1 I- :m} : I = 1+ +iUt+l1_+
+i- 6

k=i+2

and so

:1 = {exp- : f0I- :qm} :1 = 1+ o+1U0+1i_+ 0Uz-

= 1+ aQ + 1 1=11.

Therefore,neglectingtermswith orderhigher than12, we havein termsof global variables

m=M’M’[1MR2mMcMl M’Mç-1MRmJMcMl, 7

where

inf = exp f2I- :exp: f3I-: ... exp: fI- :. 8

4.0 KICK FACTORIZATION BASES

Followed Irwin’s Work,2 we first decidedthe total number of kicks necessary.Recall

that eachof the Dragt-Finn factors, fi-, is independentof F5, that is, its longitudinal

dimension5, F5 hasalreadybeenin akick form. Thus,we needonly rotation basesin the

transversedimension. Since the samerotation basesare used for each of the Dragt-Finn

factors, fI-, the minimum requirednumberof kicks is determinedby the highest-order

of Dragt-Finn factor, fi-, which is given by:2

112+32/4 ifQ is odd

12+2Q+4/4 ifQiseven.

Once the total number,K, of rotation basesis chosen,the next step is to choosethe

rotation bases. We used random number generatorto generatethe two setsof rotation
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angles,8xk andO, k = 1,2,... , K. Note that 0 0rk < ir. If two of the anglesare too

closein a set, that set of angleswas regenerateduntil no two anglesare too closely based

on apre-determinedcriterion. We thencalculatedthe rotation bases,which weregiven by

C1k = cosOxk,

5xk = sin

Ck = cosOk,

8yk = sin

New local basecoordinateswere then formed by letting

Xk = x + 8zkF

Yk = Ck Y + 5yk P.

The task of this section is to construct from the Dragt-Finn factorization given in Equa

tion 8 a kick factorizationof the form

Tn9 = exp: g111+ :exp: g2t2+ :. . .exp: gx+ :. . .exp: gjç+: 9

such that

ing=inf+CQ+1Ftinf

where rnf is given in Equation 8 and fk+ is defined as xk+ = xk,yk,S. The "+"

emphasizesthat the third dimension,5, althoughit appears,hasno effect in determining

the rotation bases.

5.0 KICK FACTORIZATION OF THE SECOND-ORDER
DRAGT-FINN FACTOR

The task is to find gi+, for k = 1,2,... ,K such that

= f2I-,

that is,

n ‘Ii

/3ThTfl°
x

rn o = a,m° r pu-r yS Fm5 S
k=1 m+m+o=3 n+m+o=3 r=O s=O

if we take the explicit power seriesfor gx+ and121-. Therefore,the purposeis to

find all the mo for k = 1,2,. . . , K, and all possiblecombinationsof n, in, a such that



ii + in + o = 3 note that both 2gx+ and 12 1- are 3rd order polynomials. Simply

speaking,for each possible combination of ii, in, a, the task is to find all the 1jm0 for

1, 2, .. . ,K such that

K n in

y 4 y7 = am°
pfl-r y5 Pm5. 10

k=1 r=O s=O

Note that the third dimension, 5, is a commonfactor on both sides of the "=" sign, so

it has beentaken out of the equation. Thereforewe have exactly the sameequation as

Irwin’s exceptanextrasuperscript,"a", appearsfor /3in0 anda,mO to indicatethat there

are more coefficients than with a non-parameterizedcase.

To solve Equation 10 for 19:7120, k = 1,2,... ,K n,m,o fixed, the key is to take

xyr, Ic = 1,2,... ii + 1m + 1 as completebasesthis can alwaysbeprovedafterwards.

Note that K was chosensuch that n + 1m + 1 < K for all possiblecombinationsof

n,m,o, such that n + in + a 12 + 1. With the new completebases,we can obtain

n+1in-f 1

= C$°XYr 11

for eachcombinationof r, .s, where r = 0,1,... n, and s = 0,1,.. . in, and

n+1m-f 1

qJm0xy 12

for each of the extra rotation bases j = ii + 1m + 1 + 1,. . . K. Substituting

Equations11 and 12 into Equation 10, we have

n+1m--1 K n-J-Jni+1
/91mo 4 y +

qjfllO

4
k=1 j=n+1m+1+i k1

ft in m+1m+1

r=O s0 k=1
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or after rearranging

n-]-1nz-j-i / k

>I I onmo n in J711710

LPk xy Pj

k=1

13

n+1in+1 ,, in

= >Eanmbcrn7,204yr.

k=1 r=O s=O

An easysolution would be

71 in

fl:m0=m0=amoc:r, k=1,2,...n+1m+l
r=O s=O

and

/JflTflO
= 0, Ic = ri+ 1m+1 + 1,...K. 14

However, such a solution would sometimesresult in large artificial higher-orders in

the final kick map. So we follow Irwin’s minimization method to introduce a set

of Lagrange multipliers A, j = n + 1m + 1 + 1,... Ic in order to introduce

Ic - ii + 1m + 1 constraints to eliminate the extra independentbases xçy7,

j = n + 1m + 1 + 1,...k for a unique solution of 192in0 Ic = 1,2,. ..K. The

Lagrange multipliers are introduced to minimize the sum of the squaresof

k=1,2,...K.

With the introductionof the Lagrangemultiplier, anequally valid solution asopposed

to Equation14 would be

K
$7nO

= :‘"° j qm° Ic = 1,2, n + 1m + 1
j=n+1in-4-1-I-1

QijinO
Pk Ak,

that is. let the coefficients 13J$mO, Ic = it + 1m + 1 + 1, . . . K, of the extra indepen

dent rotation basesbe Lagrangemultipliers instead of 0 given in Equation 14. Because

these Lagrangemultipliers are introduced to minimize the sum of the squaresof
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Ic = 1,2, ... K. We thereforeobtain Ic - n + 1in + 1 constraintsby setting the deriva

tive with respect to each of the Ak, Ic = it + 1in + 1 + 1, ... K, as follows:

n+Im+1 / k

E e:m0 A1qfm° q7km0+A=0,
k=1 ?=n+1in+1+1 16

for j = n+ 1rn+ i+ 1, n+ 1m+ l+2, ... K.

Equation 16 has a total of Ic - it + 1in + 1 linear equationsof Ic - it + 1in +

1 variables Aj’s. The linear system can be easily solved using standard numeri

cal libraries. We therefore get a unique solution for $in0 given by Equation 15.

Note that other combinations of it, in, a such that it + in + a = 3 can be ob

tained by following the above process. Once we have gotten all the 19°’s for

Ic = 1,2, ... K, andall possiblen, in, a, such that it + in + a = 3, we havegotteng+

fork=l,2,...Ksuchthat

2gk"k+ = f2I-,

that is, the kick factorizationfor the 2nd order Lie factor is finished.

6.0 KICK FACTORIZATION OF 3RD-ORDER DRAGT-FINN FACTOR

Now that we haveobtained

2g = exp: 2g11+ : exp: 2g22+:

exp: 2gx+: ... exp: 2gx+ :,

our next step is to expand2mg into a Taylor map and then convert the Taylor map into

a Dragt-Finn Factorizationmapup to the 3rd order. Let it be

2g
= e2f2 e2f3_ + a4.

Then we have

= f2 I-

and

= f3I- - 2f3 $ 0 in general.
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The task in this sectionis to find 3g+, Ic = 1,2, ... K such that

=

This can be doneby following a processsimilar to that discussedin Section 5. Then add

to gx+ for Ic = 1,2, ... K to get

sing = exp: 3g11+ : exp: 3g2x2+:
17

exp: 3gx+: ... exp: 3YKXK+Y

where

= gx+ + 3gk+, Ic = 1,2,3, ... K.

7.0 KICK FACTORIZATION UP TO 12 ORDER

Assumewe haveobtained

in9 = exp: g11+: exp: 1g2 F2+:
18

exp: gx+: ... exp: IgKXK+ :.

Following aprocesssimilar to that in Section6, we would first expand1m9 into a Taylor

map, thenextract from the Taylor mapa Dragt-FinnFactorizationmapup to i + 1 order.

Thus we would have

= exp: fI- : exp: fI-:

+ exp: ffi- : exp: ff1I- : + ai + 2,

where

forj=2,3,...i,

and

= .f11- - f+- $0 in general.

The task is then to follow the process in Section 5 to find ‘+g+,

Ic= 1.2, ... K. such that

= i+1fi11.
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Then we get

= exp: 11g1f1+ : exp: 1g22+ :
19

exp: 1gx+: ... exp: 1gK+ :,

where

k=1,2, ...K.

Iterate the aboveprocessuntil i + 1 = 12.

We thereforehave the original closed-orbitTaylor map representedby a kick factor

ization map as follows:

in = Mi1M’i’MRingMl M1, 20

where

in9 = 0in9 = exp: 0g111+ : exp: 0g212+: ... exp: g+ :,

or simply written as

in9 = exp: g1f1 : exp: g22+ : ... exp: g+ :. 21

8.0 KICK MAP TRACK

Equation21 canbefurther transformedby taking the rotationout of the Lie operators

to get aglobal variable form, that is,

in9
= 71e9 rYS71g2xY.S:7_1

... 74e9krYslçl,

where7?.k andRj1, Ic = 1,2, . . . K, are 4-dimensionalphasespacerotations. We could

combineadjacentrotations:

= R1 :iixvS:
12

e12ttI,s 7?. e:oTS
k-1k

eckx96 iç’.

Since Uk is independentof conjugatemomentumsP1,P,P5, to advancethe momentum

we simply have

‘

AF5 = foreachk=1,2,...1C
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Therefore,

P =F1 +AFx,y,5

P, =F +APx,y,8

P5 =F5 +AFJ’z,y,S for eachkickIc=1,2,...K

where AF5 , AP, , AP5 are given as explicit functional form of x, y, S. Since at the begin

ning of eachturn or after eachRF cavity, theoff-momentumSis updatedandfixed before

the next RF cavity, we can substituteS into eachof the functionalformsof AFt, AF, AF

to convertthem into 2-variablepolynomial insteadof 3-variablepolynomial to savecom

puter time. That is, after substituting5 into the polynomial in the beginningof each term

we have

= F, +AFx,y

F =F +AFx,y

F5 =P5 +AFx,y

in eachof the kicks to update the conjugatemomentaof x, y, 8. Therefore the nonlinear

map ni9 becomesrotate,kick, rotate,kick, ..., rotate,kick, rotate for Ic+ 1 4-Dimensional

phasespacerotation and Ic 3-dimensionalkicks. The linear part is six-dimensional.All

six-dimensionalcoordinatesare updatedby 6-D matrix operation.
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