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Abstract

Sixteen geometries of expansion bellows were analyzed, using MSC/NASTRAN. The cases
were carefully chosen to span the practical ranges of diameter and thickness. The results are plotted
against dimensionless parameters giving the maximum stress due to expansion, the axial stiffness,
the maximum stress due to pressure, and the axial forces caused by pressure. Design criteria based
upon plastic analysis are suggested and explained. The significance of bellows thrust is explained.
A means of anchoring bellows to eliminate their tendency to squirm is proposed.
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1.0 GEOMETRY OF A BELLOWS CONVOLUTION

A bellows is a series of flexible convolutions intended to contain pressure while allowing
for the differential thermal expansion, or contraction, of other adjoining rigid pressure vessel
components. The number of convolutions in a bellows is determined by the amount of expansion
to be accommodated. A bellows may consist of a single convolution, in which case it is more
commonly called an expansion joint, or of many convolutions, making it more of a flexible hose.
But the key to the understanding of a bellows is the understanding of the convolution, which is

shown in Figure 1.
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Figure 1. A Bellows Convolution.

Each bellows convolution is composed of two toroidal shell segments: the inner torus, of
negative curvature, and the positively curved outer torus. These tori are connected by flat annular
plates. The axial flexibility of the flat annular plate is greater than that of the toroidal shell
segments. Therefore, there is a desire to make the toroidal radii, R, as small as possible.

Most bellows are formed by expanding thin, cylindrical tubes. There is a practical limit to
how small the toroidal radii can be formed. This limit seems to be about three times the thickness.
For the purposes of this study the radii, R, of both the inner and outer tori were taken to be four
times the thickness, (R = 4t). Note that in both cases the 4t radius is taken from the inside of the
curved wall.



The ratio of the bellows outside diameter over the bellows inside diameter, which is the
same as the radius ratio a/b, would probably not be less than 1.1, except in the case of exceedingly
thin walls and that would produce a very stiff bellows. On the other extreme, it is unlikely that a
bellows would have a diameter ratio as great as two because there usually isn't that much space to
accommodate a protrusion of that size. Therefore, a/b in this study ranged from 1.1 to 1.9. The
thickness ratios, B = b/t, ranged from 25 to 200.

Because there must be some portion of a flat, annular plate between the inner and outer tori,
the criterion f > 10/ (a-1) must be met, causing a lower limit to the thickness ratio for some

diameter ratios. The cases studied are presented in Table 1.

Table 1. Finite Element Cases Used for MSC/NASTRAN Study.

—_—
o = ab= 1.1 1.3 1.5 1.7 1.9
B=obn
Y
200 Case 1 Case 2 Case 3 Case 4 Caseb
100 * Case 6 Case 7 Case 8 Case 9
50 * Case 10 Case 11 Case 12 Case 13
25 * * Case 14 Case 15 Case 16

e _ o —

*The criterion, B > 10/ (x-1), is not satisfied.

2.0 FINITE ELEMENT ANALYSIS

A finite element analysis was done because closed-form solutions for the general shell
theory analysis, including bending of the shell wall, are unavailable for a bellows convolution.
While such solutions do exist for the annular plate,! those for the tori2 are valid only when the
meridional angle is significantly greater than zero. But in a bellows the meridional angle of the tori
does indeed go all the way to zero.

Even when an analytical solution does exist, as is the case for the annular plate portion, it is
algebraically involved. One may as well use the finite element solution. In the Appendix, the
closed-form solution for the flat annular plate is fully developed. It leads to 12 algebraic influence
coefficients which must be evaluated in terms of boundary condition constants. Nevertheless, that
closed form solution was productively used in this study to check the accuracy of the finite element
analysis, and as the basis for deriving the dimensionless parameters.

The finite element analysis was conducted using the MSCePAL 2 software3 on a
Macintosh I computer. Axisymmetric ring elements were used. In addition to axisymmetry, there
is also symmetry between the upper and lower halves of the convolution, as shown in Figure 1.



Thirty rings elements were used to model half of the bellows convolution. The resuits of the study
were compiled into four dimensionless parameters, where

G = stress,
A = expansion,
n = number of convolutions, and

P = pressure.

The four parameters are:

. nonb?
Stress due to expansion: ,
EiA

nKnb2
Et3 °

Bellows stiffness:

ot
Stress due to pressure , and
nbh2P

Force due to pressure: ——I—:—.
%xb2P

As a check, the MSC/NASTRAN program was used to calculate the stresses and
deflections for the case of a pressure vessel expansion joint on which careful experimental data has
been published.# The NASTRAN solution confirmed the published stiffness within 2% and the
stresses within 5%. The NASTRAN solution very accurately represents reality for an
axisymmetrically convoluted shell like a bellows.

3.0 STRESSES DUE TO THE EXPANSION OF A BELLOWS

The half-convolution of the bellows modeled is shown deformed by axial expansion in
Figure 2. The stresses are primarily due to the bending of the walls. The regions of greatest
bending stress are the inner and outer tori, rather than the flat plate portion. In each of the 16 cases,
the maximum stress was in the inner torus.

The maximum principle stresses for the case of expansion are shown in the dimensionless
graph of Figure 3. Principle stresses are used since they are greater than the Von Mises stresses
and thus can be conservatively added to the similar results for pressure. They are presented as a
family of four curves for the four thickness ratios on a logarithmic scale. No simple curve fitting
routine worked very well; therefore the curves are drawn as segmented lines with corners.



It was necessary to insert a Case 1b, with an a/b ratio of 1.2 and a b/t ratio of 200, in order to more
effectively smooth out the b/t = 200 curve.
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Figure 2, Expanded Convolution Half.

4.0 DESIGN CRITERIA FOR EXPANSION STRESS

Stainless steel contracts 0.3% from its room temperature length when cooled to the 4°K
temperature of liquid helium. Aluminum contracts 0.4%. This contraction is highly non-linear in
that 95% occurs in lowering the temperature from 300°K to the 80°K temperature of liquid
nitrogen. The expansion bellows must be designed to take up not only the contraction of the
bellows itself, but also the change of the length of the rigid pressure vessel components to which it
is attached. The idea is to calculate the expansion required, (or the differential expansion if both
aluminum and stainless are involved), and to select an a/b ratto, b/t ratio, and the number of
convolutions so as to keep the stress level from Figure 3 within an acceptable value.

For a bellows restrained with a sleeve, the stress due to expansion can be permitted to be as
high as three times the yield strength of the material. This seems preposterous at first glance, but it
is based upon now well-accepted elastic-plastic criteria fully integrated into the Section VIII,
Division Two, rules of the ASME pressure vessel code.5 The three-times-yield criterion might be



used without sleeves if careful buckling analysis is done to ensure that the slenderness of the
bellows is not so great as to cause the bellows to buckle after several cycles of plastic action. If
three-times-yield is allowed for expansion stresses, the bellows will generate its own compressive
preload that could squirm the bellows. This quite valid design philosophy is left to another paper.

L S e R s A S a= outside radius
; e LT b b= inside radius
o=maximum siress
A = expansion
! t = thickness
i E = modulus of elasticity ;.
:n = number of convolutions
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Dimensionless Stress, (ncubzlEtA)
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Figure 3. Maximum Principle Stress Due to Expansion.

The plastic criterion to be developed in this paper is to allow the expansion stress from
Figure 3 to reach 1.5 times the yield strength of the material. This is similar to the Code criterion
associated with the case of "primary bending.” It can be used even when the bellows is quite
slender and not laterally restrained by a sleeve. It is based upon a favorable residual stress



distribution produced by the first loading cycle, keeping the material elastic on subsequent loading
cycles. It works as follows:

If a bellows is extended excessively while stress is measured at the most highly stressed
point on the inner torus, a curve as shown in Figure 4 results. (Since there are no such things as
stress gauges, strain gauges would have 1o be used, and the readings back-calculated into apparent
stress.)

Gross deformation
2 2103 i N
(o] S
e fully plastic é; .. 3
[++]
g ~Oy
s 2
S 44 Soy Outer torus yields through
[ =
Q Inner torus yields through
[}
% 1 1102 :
o 0y ——— partially plastic
2 Onset of Yield
2
5
5 Oto1
[~% fully elastic
< 0
Expansion ———p TIP-01909

Figure 4. Apparent Stress at the Inner Torus Due to Excessively Expanding a Bellows.

From 0 to 1 the stress increases linearly with expansion because the material is below the
yield point and is everywhere elastic. The bending stress distributions produced through the
thickness of the wall are shown by the accompanying stress blocks. Beyond point 1 of Figure 4,
the material begins to yield and become plastic at the surfaces. When this happens the actual stress
of the material can no longer increase and is stopped at the yield stress. But, the core remains
elastic and the stress profile as shown for points 1 to 2 develops.



As the expansion increases, the elastic core decreases and region of plastification intrudes
more and more into the elastic core. But, 5o long as an elastic core remains, there is very little
deviation form the original straight loading line, 0-1, in Figure 4.

At point 2, there is a sharp change in the loading curve as the wall of the bellows at the
inner torus yields through and becomes fully plastic. The stress blocks shown for points 2 to 3 are
now rectangular. The wall of the bellows has no further reserve strength. By the theory of
plasticity, the apparent stress at point 2 can be shown to be 1.5 times the yield. From 2 to 3, the
bellows convolution is transferring a greater proportion of the load to the outer torus. The bellows
will no longer seem to be as stiff, though it continues to require additional force in order to expand
it further.

When point 3 is finally reached, both the outer torus and the inner torus have yielded
through and full "collapse" can take place. Collapse means that there is very little increase in
resisting force, as the expansion continues to get larger. At this point there are two yield zones
acting like plastic hinge lines, extending around each convolution of the bellows. The difference in
apparent stress between points 2 and 3 represents the additional reserve plastic strength due to the
redistribution of the bending moment from the inner to the outer torus.

Gross deformation is not in itself a failure condition of a bellows. In fact, since a bellows
must be rather grossly deformed in order to be manufactured, the added deformation might not
even be noticeable without taking measurements, and may not even be of cosmetic importance.

When the force causing the expansion is released from any value beyond point 2, a residual
stress, as shown in Figure 5, will be present. This is a favorable residual stress distribution. Now
it is possible to restress the material to an apparent stress of 1.5 of the yield strength without any
further plastic action due to the fact that some of the material in exactly the right places has been
prestressed in the reverse direction to 0.5 of the yield strength.

It is a rare cryogenic component that will see even a thousand cycles of cooling and
warming throughout its lifetime. Therefore, the endurance limit associated with high cycle fatigue
does not come into play. Due to expansion, bellows fail by low-cycle fatigue, which is the
cracking by the successive embrittlement which is seen when bending a paper clip back and forth.

In order to have low-cycle fatigue, one must have alternating plasticity. Alternating
plasticity is successive cycles of stress back and forth, beyond yield in tension to beyond yield in
compression. This cannot occur if the bellows is extended only in one direction and back to zero
repeatedly, and the absolute value of stress is kept below 1.50y.

Since thin 304 stainless steel sheet can have a yield greater than 120,000 psi at room
temperature, and even higher at cryogenic temperatures, design expansion stresses of 200 ksi are
entirely reasonable. But one must accept the fact that yielding will occur during the early cycles.
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Figure 5. Stress Distribution. Due to a favorable residual stress, the bellows wall
remains elastic after the first load cycle 50% beyond yield.

5.0 AXIAL STIFFNESS OF A BELLOWS

The axial stiffness, K, of a bellows is sometimes a matter of concern. This finite element
study produced the stiffness curves given in Figure 6. These curves give rise to two observations.

First, for the dimensionless parameters chosen, the stiffness curves for all the ranges of b/t
fall closely within a curved band. When the results from 2 flat annular plate (the data points in
Figure 9) are plotted, they too fall within that band. The flat annular plate was one of the checks
used for the finite element analysis. The support analysis used for the flat plate is given in the
Appendix,

Second, the stiffness falls off dramatically as the diameter ratio increases. The curves are
plotted on a logarithmic scale making them appear less pronounced. But by simply increasing the
diameter ratio a small amount, one can significantly reduce the stiffness.

6.0 STRESS DUE TO PRESSURE

The deformation of a half convolution due to pressure is shown in Figure 7. In the case of
pressure, there are three regions of high stress: the two tori and the mid-span of the flat plate.
Again, the highest stress is at the inner torus, usually at the point where it attaches to another
convolution half.
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Figure 6. Stiffness of a Bellows.

The stresses due to pressure are given in dimensionless form in Figure 8. Here again the
maximum principal stress is given. A family of curves represents the increase of stress with the
diameter ratio.

The maximum stress due to pressure occurs at the inner radius of the bellows, just as in the
case of expansion. But it is important to understand that the stress from bending at the inner torus
is opposite in sign to that due to expansion. Comparing Figure 7 to Figure 2, one notes that the
inner torus in Figure 7 is closing, whereas that for Figure 2 is opening. It is only at the outer torus
that the stress for expansion has the same sign as that for internal pressure.
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Figure 7. Pressurized Convolution Half.

One should also note when in comparing Figures 7 and 2 that pressure tends to bulge the
annular plate. Expansion, while forcing the plate into a shallow conical shape, does not tend to
bulge the plate. The effects of pressure on the bellows are very different from those of expansion.

But the most important difference is that for the same thickness, increasing the diameter
ratio from 1.1 to 1.9 increases the stress about 30 times. However, the same diameter increase
reduces the expansion stress about 40 times. What one does to reduce expansion stress increases
the stress due to pressure, and vice versa.

7.0 DESIGN CRITERIA FOR PRESSURE

The stress due to pressure falls into the category of primary bending stress by the ASME
code. Primary bending is bending that is not self-equilibriating, as is the case with expansion.
Failure due to primary bending is seen in the outward bulging of the flat plate walls of the
convolution. In the case of pressure the stress should be kept within 1.56y, which allows for the

reserve bending strength as explained previously.

10
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Figure 8. Stress Due to Pressure.

However, it is important to understand that bellows, if restrained against squirm, are very
forgiving as pressure containing elements. As the flat annular plates of the convolutions bulge to
the point of gross deformation, they actually assume a better shape for pressure containment. They
are unlikely to burst even when greatly overpressured. The worst that will probably happen is that
they bulge to the point that the convolutions come together and the bellows loses its flexibility.

Because catastrophic bursting is unlikely, it makes no sense to impose pressure vessel

safety factors on a bellows. Here again, stressing bellows to 1.5 times the yield is more than
conservative.

11



The interaction of pressure and cyclic expansion is theoretically possible in the form of
incremental failure. In such a failure scenario, each cycle of expansion produces an increment of
bulging due to pressure. Presumably, after many cycles of expansion while the pressure is held
steady, the bellows convolutions are so deformed that the bellows no longer works. The ASME
code deals with this situation by cascading the criteria.

In other words, the absolute value for stress due to pressure should be less than 1.5 times
the yield; the same holds true for stress due to expansion. This will insure that the two absolute
values added together will be no greater than 3 times the yield. At those stress levels, incremental
failure cannot take place because the shell wall will "shake down" to elastic action with repeated
cycles.

The notion of safety factor is not really applicable in the case of expansion elements. Safety
factors in pressure vessels are intended to produce thicker shell walls, thereby lowering stress. But
while a thicker bellows wall will lower the stress due to pressure, it will increase the stress due to
expansion. Whatever helps for pressure hurts when expansion enters the picture.

Instead of safety factors, it is advisable to use ductile, high-strength materials up to and
beyond yield to the full plastic strength of the shell wall. There is no justification to do otherwise,
even from the standpoint of micro-leaks. Micro-leaks, if they are going to be present, would
already have been produced by the severe forming processes necessary to manufacture a bellows.
The only reason for keeping bellows stresses low is the avoidance of corrosion fatigue. But
corrosion fatigue is not likely to be a problem in the presence of helium.

8.0 BELLOWS FORCE DUE TO PRESSURE

A bellows exerts an axial force when pressurized. Figure 9 shows this force as a
dimensionless number in terms of the diameter ratio. If the bellows is experiencing positive internal
pressure, the force at its inner edge is compressive. In Figure 9 it is called the thrust force. If the
bellows is experiencing a vacuum, the force at the inner edge is tension.

Likewise, there will be a reverse force at the outer edge of the convolution. Under positive
pressure that force will be tensile, and is called the draw force in Figure 9.

In Figure 9, one line is drawn which represents the flat annular plate solutions for the inner
edge forces. A second one is drawn representing the outer edge forces. The data points, in the case
of the graph, are the results of the finite element analyses of the bellows convolution. They fall
almost exactly on the annular plate curve. This is true for all thickness ratios studied.

12
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Figure 9. Forces on Adjoining Elements Due 10 a Pressurized Bellows.

9.0 SIGNIFICANCE OF THE THRUST OF A BELLOWS

The term thrust is used to mean the push from a bellows. But, that term is not used by
éveryone to mean exactly the same thing. In this paper thrust, Fj, is used to mean the force
provided by the inner edge of a pressurized bellows. It is given directly by the lower curve of
Figure 9. It does nor include the hydrostatic force, nb2P, developed over the inside area of the
bellows. Figure 10 illustrates the difference.

13
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Figure 10. Two Magnet Cold Masses Connected by Bellows.

The two magnet cold masses are supported horizontally on four posts. One post on each
magnet allows the cold mass to slide and expand horizontally. The other post is fixed to the
containment shell in order to transfer the horizontal load to the cryostat shell.

The bellows convolutions must be restrained by the force, F;, which is obtained from
Figure 9. This force will put the containment shells into an axial compression of F; inboard of the
two fixed posts.

The elliptical head on the containment shell must be restrained by the force, 7b2P. It will
put the containment shells into axial tension outboard of the two fixed posts.

The fixed posts provide the total of the head force and the bellows thrust, F;+ nb2P, while

no part of the cold mass is acted upon by the total of the two forces.

10. A PRACTICAL MEANS OF AVOIDING BELLOWS SQUIRM

Squirm is the only truly catastrophic event that can happen to a bellows. It occurs because a
bellows, when constrained at its inner edge, is a self-actuating column. When pressurized, it tries
to expand beyond its supports with the compression force shown in Figure 9. If the bellows is too
slender, it buckles elastically and squirms off to the side. The relatively thin-walled bellows can
tear where it is attached to the pipe.

Figure 11 shows a simple anti-squirm connection for a bellows that should be easy to test
experimentally. Mathematically, the force, F, is tension on the outer edge of the convolution of a
bellows, and compression on the inner edge. If one accepts that the cause of bellows squirm is a
self-generated compression due to pressure on the very flexible column formed by the bellows,
then changing the attachment force from compression to tension should stabilize the bellows.

14
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Figure 11. An Anti-Squirm Connection for a Bellows on the Left.

Intuitively, one can visualize that one pitch of the bellows on the left in Figure 11 is
squeezed together by the internal pressure. Therefore, the stack of pitches tries to shorten the
bellows, and a tension force is needed to keep it at its original length. On the other hand, a single
pitch of the bellows on the right tends to be forced open by internal pressure. Therefore, the stack
of pitches tends to lengthen the bellows, and a compression force is needed to keep the bellows at
its unpressurized length. Pulling on a rope is a stable process, but one needs a very stiff rope to
push on. So, it is with a bellows.

15
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APPENDIX
FLAT ANNULAR PLATE

For a flat annular plate of outer radius, a, and inner radius, b, acted upon by a uniform
pressure, P, and an edge force having a total value of F, the differential equation® is

FIEEIC)

where the coordinate system is as shown in Figure A-1.
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Figure A-1. Annular Plate Geometry Variables. w = downward deflection, d—?— = the slope O,
and M is the bending moment per unit length of edge.

Ef

D = the plate stiffness =——————,
12(1 - p?)

@

where E = the modulus of elasticity, and y = Poisson’s ratio.



Solving for the differential equation, one obtains

Prt  Kyr?
W='6—4jﬁ++r+K21n%+K3 3)

where K, K3, and K3 are constants to be evaluated.

The constants for this equation from Reference 6 can be solved, with a number of algebraic
steps omitted here, for the cases where Mj, Mz F, and P act separately upon the annular plate
yielding a matrix of influence coefficients, such that

0 M;b
1 I L2 I1y Iig Mob
02 > 1 I1 o In3 14 2 4)
w D I ' I ' I ! I ' Fb
# 3.0 B2 B3 ba f{o,

Where 1 = a/b, the Ij j can be expressed in dimensionless form.

L __ 1 1 + n2
M2-1LA +p) (1 -p)
I2,1 =l * an
M2- DL +p) (1 -p)
-n2
I3, N : [ o * = lnl]
M2-Df21+p) A - n
n? 1 1
I ==
1.2 m2- 1)[(1 m o a —u)]
I =-— [ T g
Mm2- DI +p) A -p)l
n2 [nz_ 1 1 1]
I = - e
3,2 mz- D20+ " A -p) 0
1r.1 1 C
I "2 2 €
1,3 41t[ nTl 2 2 2]

&)



I2,3

I3

where

and

Ia =Ts+Ts+Ts

I2,4 =T7+Tg+ Ty

I3 4 =T+ T2+ Ts,

where the T}, are constants defined as follows:

m- g 1)[((15:5)) 2_1]

T =-%[% (ln :—1~1)— S-c 1n}1— + c,]
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__ B[ 1 n2
Te=""T6 [(1+u> * (l—u)]

3
T7=__;1_2(_1 R u)

1+

n6+m[ 1, 1 ]
16 [+ q-wl

n

| —
(S~

Tg =—

For the case where the plate is supported at both a and b and restrained from rotation at
those edges as well, as shown in Figure A-2,

91. Gg,and w1 =0.

!
!
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I dd e | = 1111
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Figure A-2. The Annular Plate with Fixed Edges.
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Equations (4) become:

0 M,
In,i I Inz Ing M,
0 p=| I2,1 I22 123 I24 F )
0 | I I
3.1 132 Is3 I {(L,
Letting Pb2 =1,
I1,4 In.y Ii2 I1a My
Ia p=]| I2,1 I22 In3 KM2 3)
I3 4 I3, Is2 I35 |\Fb

which can be solved for the edge moments M, and M, and the force, F.

The matrix equation was solved for a/b ratios from 1.1 to 2. The inner edge force, F, is
plotted over tb?P as a dimensionless factor in Figure 9.
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