SSCL-N-749

DECOHERENCE OF THE KICKED BEAMS II

S5.Y. Lee

Department of Physics
Indiana University
Bloomington, IN 47405

February 1991



SSCL-N-749

DECOHERENCE OF THE KICKED BEAMS I1

S.Y. Lee

Department of Physics
Indiana University
Bloomington, IN 47405

February 1991

Abstract

The decoherence of betatron oscillations of the kicked beam is calculated
analytically in two degrees of freedom by assuming a Gaussian distribution. De-
coherence due to higher order chromaticity effect is also discussed.



1.0 INTRODUCTION

From basic linear beam dynamics, a beam, kicked transversely from its closed
orbit, will execute betatron oscillations. These betatron oscillations can be ob-
served by a beam position monitor, which measures the centroid of the particle
distribution. For a linear betatron motion, the observed betatron oscillation is
harmonic. Such procedures are commonly used to measure the betatron tunes.
However, if beam particles have betatron tune spreads due to chromaticity or to
the effects of nonlinear multipole elements in the accelerator, then the observed
centroid of the beam will be decohered due to the accumulated betatron phase
spread of particles. Knowledge of these decoherence effects can be used more re-
liably to obtain the betatron tunes and to understand nonlinear beam dynamics.
When detailed phase space maps (Poincaré maps) are needed to study the non-
linear betatron motion, the decoherence process must be understood in deducing

the effect of nonlinear motion.

In the past, Meller et al.! have derived analytic formulas for the decoherence
in the presence of betatron tune spreads due to chromaticity and to the betatron
amplitude of one degree of freedom. Their results have been used successfully in
analyzing the data of the nonlinear beam dynamics experiments E778.2 Recently,
experiments in nonlinear dynamics, extended to two degrees of freedom, have
been proposed and approved in the IUCF Cooler Ring. Extending the discussion
of decoherence effects to two degrees of freedom is therefore important. In this
note, I shall study the betatron decoherence of kicked beams due to the tune
spread in two transverse degrees of freedom in the absence of linear coupling. 1
shall also study the effect of higher order chromaticity. Fortunately most of these
effects can be expressed in terms of an analytic formula when a Gaussian particle
distribution is assumed. The discussion includes decoherence due to chromaticity

and due to betatron tune spreads in two degrees of freedom.



2.0 DECOHERENCE DUE TO CHROMATICITY

Assuming a linear dependence of the betatron tunes with respect to the
momentum deviation of the particle, Meller et al.! showed that the betatron

coordinate, z(n), of the kicked beam at the n** turn can be expressed as

{z(n)) = z0Fj cos(2rvgn + ¢g), (1)
with
Fy =exp (_%2> D oa= Kossinmyen sli}n:'wsn, (2)

for a Gaussian particle distribution. Here zg is the initial kicked betatron am-
plitude, v, is the synchrotron tune, { is the chromaticity, and o; is the rms
momentum spread, § = Ap/p. Thus the rms tune spread is £o5. Equation (1)
shows that the measured centroid of the particle distribution is oscillating with a
Gaussian form factor with frequency of V% turns. The modulation does not affect

the tune measurement. The Fourier spectrum of Equation (1) is also Gaussian.

The frequency of the amplitude modulation of the betatron oscillation is
independent of the particle distribution function used in obtaining Equation (2).

For a uniform particle distribution function in the phase space, we obtain

Fg = 2_17_1_\(/% = o F1(2; -%2), (3)

where Jj is the Bessel function, gF} is the generalized hypergeometric function,
and «a is given by Equation (2). Again the betatron oscillation recoheres every
;1: turns around the accelerator. In general the decoherence factor depends on
the longitudinal distribution function of the beam in the accelerator. Methods
to calculate the decoherence factor are given in Reference 1 and will be discussed

in the next few sections.



3.0 HIGHER ORDER CHROMATIC EFFECTS

For a high energy particle accelerator, the linear chromaticity is normally
corrected to a zero value. Higher order chromatic effect may then become impor-
tant. It is known that the second order chromaticity depends on the half-integer

stopband of the accelerator. I will discuss the decoherence effect later.

Let us consider the tune spread due to the second order chromaticity, where

the tune spread is given by

2
sin (2nven + ¢s)| . (4)

acs

Av(n) =&

20

Here a is the synchrotron oscillation amplitude of the particle, o, is the rms
synchrotron amplitude of the distribution, ¢ is the rms momentum deviation of
the distribution, and €3 is the second order chromaticity. The betatron phase

spread is then given by

Adgla, dps,n) = 2W/AV(m)dm
0

(5)
o2 ol
= 7fy o—gazn + 2«52;%(12 sin(27vsn) cos(2rvsn + 2¢,).
a a

Thus the transverse position of a particle with synchrotron amplitude a and

synchrotron phase ¢ at the n** turn in the beam is given by
z(n) = zo cos(2nvgn + ¢ + Adgla, ¢s,n)). (6)
The centroid of the beam measured from the beam position monitor is given by

{z(n)) = 29 /cos(?:'ryﬂn + dp + Adgla, ds,n))pla, ds)dadgs. (7)
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When the distribution function p(a, ¢5) of the beam is assumed to be a Gaussian,

le.,

6 = smgaexp (2 ®
pla,ds) = oo gaexp {57 |
then Equation (7) can be solved easily as

(z(n)) = zoF5 cos(2nvgn + ¢g + B P), (9)
with

Fy = [(1 — 4r2¢loin® + 167°L20; sin’ 27rt/3n)2 + 1672€20¢n? ’

p

(10)

1 4wlaoin
Ag = —arctan X
¢ 2 1 — 4n2&3ain? + 16720} sin? 2my,n

Since v, is a small number, we expect that

1
14 4n?tioin?

Fp

Equation (9) indicates that the amplitude of the measured betatron ampli-
tude decoheres with an amplitude function Fy and that the phase is also mod-
ulating with the phase function A¢ of Equation (10). The measured betatron

tune is obtained from the Fourier transform of Equation (9), i.e.,
Vmeasured ~ 2 11
[} ~ I/,@ + 6206 . ( )

The characteristic Fourier amplitude will be exponential.

When the linear chromaticity and the second order chromaticity are simul-
taneously present in the accelerator, then the ¢, integral in Equation (7) can be
performed to obtain sums of Bessel funciions. The radial integral becomes too
complicated to be represented by special functions. However numerical solutions

can be obtained easily.



4.0 DECOHERENCE DUE TO THE BETATRON TUNE SPREAD

The betatron tune spreads due to the betatron amplitudes also decohere
the betatron motion of the kicked beam. Meller et al.! have derived an analytic
formula of the betatron oscillations for the kicked beam in one degree of freedom.

The measured betatron oscillation is given by

2
. Ty é
(z(n)) = —zF; sin (27ru,:n + ¢z + ﬁm) ) (12)
where
zr = Bz AL, 6 =4dnAv;n; é; = 2arctan¥; (13)
1 x% g2
Be= e (“5:(‘1?927) - (14)

Here z; is the kicked amplitude, Av, = kmcri is the rms tune spread in one
degree of freedom. From Equation (12), we obtain the betatron tune of the

kicked beam as

ymeasured . vy + 4]61:3:0—5 + kzzxz . (15)

z

The measured Fourier spectrum is initially a Gaussian and then evolves towards

an exponential form.

5.0 DECOHERENCE IN TWO DEGREES OF FREEDOM

The betatron motion of the kicked particles can be described by

2(n) = az cos(2mvzn + ¢r + A¢r);  azz + B2 = —ag sin(2rvgn + ¢ + Ady),

2(n) = a; cos(2muan + ¢, + Ad.); a2z + B2 = —a.sin(Crv.n + 6, + Ad.),
(16)
where a,, a, are the betatron amplitudes, 1, v, are the betatron tunes, ¢z, ¢,

are betatron phases of the particle, and A¢;, A¢, are the betatron phase spread
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given by
Ady = 2n(keza’ + kesa)n;  Ad, = 2n(kypa + kyzai)n. (17)

Here the tune spread is second order in the betatron amplitude due mainly to
sextupoles in an accelerator. The betatron coordinates, measured from the beam

position monitor, are then given by

(z(n)) = /aI cos (2mvgn + ¢z + Adz)plaz, dz)p(a., ¢:)dazdd-da.dg,,

(18)
{z(n)) = ]az cos (2mv.n + ¢, + Ad.)p(az, :)o(az, ¢.)da.d¢.da.dé.,
where the distribution function of the kicked beam is given by
2 2
plaz, éz) = o5 exp (— % """) exp (“’"“” sin m) :
2nol 202 ol
9 . 2 (19)
g a; + zi Zray )
P(aza‘i’z) = 2,”0_3 exp (_ 20,2 ) T eXp ( UE s ¢‘z) )
with
tp = B Az oz = BAY, (20)

as the kicked amplitudes. Here o;, o, are rms beam sizes. Using the Gaussian

distribution of Equation (19}, we obtain easily

2
:Ei 9_1;1: Zk 91:2 )
>

(z(n)) = =2k Frz Fr.sin (27””-'” tfaot dea t 2021 +63, 2021462,

= — sin | 27v,n iz \s ,
zin Zpfzrtizz 20’% 14 f?gx 20’3 1+ 932

(21)
with

6., = 47rk”03n; 8., = 47rk“afn; G, = 47rkzra§n; 8, = 47rkzzo§n. (22)

]



bij = 2arctanbyj; (i,7 ==z,2)

1 i 82, 1 ( 22 62, )
= Sk _mz ). Fm o exp | o2 |,
Frz 1+9g,:e"p( 2021+ 62, == 156, P\ T2l 62,

1 x: 6%, 1 ( 2 6 )
—_—— _k_zz ) R exp | —oh—2E ),
Fer 1+@$ﬂp< %1+ 62, ) "2 T 1162 P\ 207146,

(23)
Within a short time interval after the kick, the measured betatron tunes,
derived from the Fourier transform of Equation (21), would be

2
U;neasured ~ v, + 4];’-’:10-2 -+ ermi + 4!’6;;0’3 + kzzzk ?

(2)
pmeasured v, + 4kzz0'§ + kzz:p% + 4kzza£ + kzzzz .

z
The amplitude modulation shortly after the kick is Gaussian. Thus the
Fourier spectrum would also be Gaussian in shape. When the condition [6;;{ > 1
is met, the decoherence of the betatron oscillation obeys a power law. The cor-

responding Fourier spectrum is exponential.



CONCLUSION

The decoherence of betatron oscillations of a kicked beam is studied in the
cases of (1) higher order chromaticity effect and (2) the betatron tune spread in
two degrees of freedom. Most of the discussions in Reference 1 remain valid. I do
not wish to repeat them here. The present study, a generalization of Reference 1,
should be useful in data analysis of nonlinear beam dynamics experiments in two

degrees of freedom.
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