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Abstract

STRAIN ENERGY MINIMIZATION IN ssc MAGNET WINDING

3. H. cook*
Advanced Photon Source

Argonne National Laboratory
Argonne, IL 60439

SSCL-N-/44
TM- 1073

Differential geometryprovidesa natural family of coor

dinate systems,the Frenet frame, in which to specify the ge

ometric propertiesof a magnet winding. By a modification of

the Euler-Bernoullithin rod model, the strainenergy is defined

with respect to this frame. Then it is minimized by a direct

method from the calculus of variations. The mathematics,its

implementationin a computerprogram, and someanalysisof

an SSC dipole by theprogram will bedescribed.

Introduction

The 5Ommbore-radiusof theSuperconductingSuperCol

lider SSC main ring constrainsits superconductingcablesto

tight bendsat the ends of the magnets,therebyjustifying in-

crestedmathematicalattention to the cable-strainminimisa

tion problem. This paper,a successorto reference[1], describes

progressat Fermilab in a particularapproachto this problem.

Wehaveonly roughestimatesof constitutiverelationsbe

tweenstressand strain so we concentrateon strainalonewhich

is purely geometricand susceptibleto exact specificationand

analysis. The pronoun "we" in this note will refer to those

membersof RodgerBossert’sMagnet andTooling Development

group workingunderJeff Brandt in the TechnicalSupportSec

tion at Fermilab.

The method to be describedis implementedby an in

teractivecomputerprogram, BEND. It employs a variational

methodto presentits userwith cableconfigurationshavingalow

total elasticstrainenergy ascalculatedwith respectto a reason

ablemathematicalmodel. Becauseit is not the total strainbut
thelocalizedpoints of higherstrainwhichfirst endangeracable,

detailedinformation is presentedabout thehigh-strain points

in the configuration. The usercanadjust intuitively meaning

ful parametersto relieve strain at thesepoints. The program

then presentsthenewuser-modifiedconfigurationwith its pre

sumablynew high-strain points. The processis repeateduntil

the userfeelsthat significant improvementis no longerpossible.

tOn loan to Permi National AcceleratorLaboratory,
Batavia, IL 60510, operated by the Universities
ResearchAssociation Inc. under contract with the
U.S. Department of Energy.

Then files describingtheoptimized block of cablescan be out

put, formatted for input into Greg Lee’s AutoEnd program3in

terfacing with the rest of the Fermilab magnetdesign andfabri

cation systemwhich includes standard stressanalysisprograms3

and our computer aided design andnumerically-controlledma

chining systems.4"We also interfacewith the LawrenceBerkeley

Laboratoryfield calculation programs.5

In thenext sectiona classicalmodelof cable-likeobjects

is modified to include thenondassicalgeometricconstraintsim

posedupon a superconductingcable by winding it around the

end of a magnet. Then are outlined methods for solving the

resulting equations. In the last section the mathematical model

is extendedfrom single cables to packed blocks of cables.

The Rectifying DevelopableMethod

We base our approach on the Euler-Bernoulli theory of

a thin homogeneousrod in a plane, modified by Kirchhoft to

include a twist out of the plane into spaceseeChapters 18 and

19 in 1’fl The cablecrosssection,constant along its length when

unstrained, is a bilaterally symmetric trapezoid. The elastic

properties of the cable are completelycharacterizedby three

constants,a, a5 anda5. Thefirst two are thefiexursl rigidities

of the cableabout axesin theplaneof the trapezoid,throughthe

midpoint of its base and perpendicularandparallel respectively

to the base. The third is the torsional rigidity about an axis

through the midpoint and perpendicular to the plane of the

trapezoid.

Thesemidpoints form a curve in spacespecified by the

vector function fls of arc length a. To completethe geometry

of the cable one more function of a would suffice, an angleof

rotation of the trapezoidabout the tangent to fl. Insteadit is

convenient to attach to eachtrapezoid a right-handed orthonor

mal frame F seepage 32 of 8J of vectors

5 Ft=dä/ds.

* F, in the plane of the trapezoid and perpendicularto its

line of symmetry.
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Now we haveembeddedin the cable a coordinateframe with dom whereaswhen constrainedby S andthepackingcondition,
respectto which its propertiesareexpressiblein a naturalway.
Thecurvatures,Ic2, ac2, and torsion r, functionsof acorrespond

ing respectivelyto the rigidities a1, a, anda3, arc definedwith

respect to this intrinsiccoordinatesystemby

* F . dF1 =

*

* A.dP,=i-da.

Given the curvaturesandtorsion we can reversethe definition

andobtain the configurationof the cableby solving thesystem

of ordinary differential equations

dl’ = OF

where12 = {wjj} is a skew-symmetricmatrix of one-forms

page33 of 81 defined by

= . dFJ.

The languageof differential forms simplifies the formal

ism and its future sophisticationto include more complicated

andrealisticstress-straintensors.Flanders’textbook5 is ana
celient introduction to differential forms andis availableas an

inexpensiveDover reprint. In this paper we will extend the

domain of definition of F and12 from theone-dimensionalman

ifold ft to the three-dimensionalmanifold occupiedby a block

of cables.

sion

The meaningof the rigidities is containedin theexpres

alliss’ + aztc,a’+

for the strain energydensity. A is thecurvewhich, subject to

givenconstraints,minimizesthe total strainenergy,the integral

of 2 with respect to a over the length of the cable. One of

the constraintsis that it lie on a given smoothsurface,S. At

presentthesoftwarecan handleonly cylindersbut we generalize

herebecauseof a remarkby Shlomo Caspiof LawrenceBerkeley

Laboratorythat thereis a real needfor other surfaces. Con

straints are handledin the rectifying developablemethod not

by first modelinga cablein spaceand then constrainingit to

5, but ratherby basingtheconstructionon variablesinsidethe

intrinsic geometry of S from the beginning. There they are

unconstrained.This mathematicalconveniencebecomesmore

important in the last sectionwherewe model a block of cables.

In an unconstrainedblock eachcablewould slide freely against

its neigbbors. The blockwould havetoo manydegreesof free.

the entire block has thesamenumber of degreesof freedomas

a single cable.

Theoriginal Euler-Bernoullimodel thin rodmodelis easy

to modify for anonpianarS. Then thetwo flexural rigidities, a1

anda2, are equal and expression2 becomesaiscs’/2 where

is the curvaturepage92 of 9] of fl. If we addKirchhoff’s

termit becomesajics2 + a37s’ /2 wherer is the torsion of

R.

But theheight of the crosssectionaltrapezoidof theca

ble, measuredparallel to its line of symmetry, is much larger

than its midthicknessmeasuredperpendicularto that line. So

the strain II imposesa muchgreaterlongitudinal deformation

on curves passing through the endpoints of the line segment
1

of symmetry and parallel to A than does ,c imposeon curves

along the two lateral facesof the cable. a3 is much larger than

a1. The so-called"constant perimeter" condition’° requiresthat

the integral of ‘czs along the length of the cable be sero so

that "perimeters",curvesparallelto fl, maintainconstanttotal

lengths. The rectifying developablemethod carriesthis condi

tion to an extreme. a’, is requiredto be identically equal to

zero. The cableis modeledat this stageof the method by a

long thin developablerectangle,a two-dimensionalstrip asif its

trapezoidal crosssection had zero thickness.

A surface is developableif and only if it can be flattened

out into a plane without any stretchingor tearing. Seethe

bottom of page 303 in [9]. Not only arethe "perimeters"of

the strip constant, so is the length of every curve in it. We

constrain the cable to S by requiring A to be in S. Now we

2 usea nice result from differential geometry: Any smooth A in

apace,with nonzero curvature,is containedin oneandonly one

developable surface, its rectifying developable see page 4? of

[11]. The strip is uniquely determined by the condition that

it be in the rectifying developableand that one of its sides lie

along ft. Now the frame F is the Frenet frame of A see page

93 of [9]. = ‘ci, a’, = 0, andthe of thecableequalsthe

of the curve. To find the configurationof the constnzinedcable

in spacewe needonly find the configurationof an unconstrained

Euler-Bernoulii-Kirchhoffrod in the surface.

To express‘c andr in termsof variables intrinsic to the

surfacewe usestiU another moving frame, a special surfaceframe

see §130 in [9] that can be attached to any smooth curve in

S. It is obtained by rotating the Frenet frame about its first

column vector, tangent to A, until its second is perpendicular

to S. As in [1], a’ and r can then be expressedin terms of the



intrinsic variables.8, F1, 7 and y’ in the strain energy density becauseour independentvariableswere chosento put theprob

expression2, where y is the geodesiccurvaturepage 284 in

The rectifying developableis not definedat singularities

of A where ac does not exist or whereit is equal to zero as

along a straight sectionof the coil. If A is analytic the recti

fying developablecan be uniquely definedby continuity across

thesingularity. Otherwiseit may be necessaryto twist thestrip

any from developa.bilityin orderto makea smoothtransition.

The degreeof smoothnessis measuredby the smallnessof the

strainenergy addedby the twist. Becausethe rectifying devel

opableis developable,it is a ruled surfacepage303 in [9]. It

is swept out by a family of straight line segments,its rulings,

parameterizedby a whereAs is thepoint at whichthe ruling

intersectsA. Let a be the angle of intersectionof the ruling

with ft. The twist from the rectifying developableto this new

strip, which we call theguiding strip, is for each a a rotation

of amount r4s aboutP,s of theruling throughAs, so as

is held constant.The guiding strip is still a ruled surfaceeven

though it is no longerdevelopable.

ThegnJdjngstrip is now amodelfor thecableso we define

F by rotatingtheFrenetframealso by an amount ‘p about the

tangentto A. ThenP is perpendicularto theguiding strip and

F3 is tangentto it. The total strainenergy to be minimizedis
now

= J"a, cos’’p + a, sin’ çoa" + ast’ di. 3

It is a functional of y including its first derivativeand, to get

P and A respectively,its first andsecondindefinite integrals,

see§3 in [1] andp. It also dependson four endpointconditions

for and two for p. r is now the torsion of the guiding strip,

not of A.

Strain Minimization Mgorithsns

To minimizeEi, co we iteratebetweentwo suboptimiza.

lions, alternativelyminimizing with respectto 7 with p fixed

and with ‘y fixed. This is theAlternatingVariableOptimiza

tion Method seepage16 of 12] exceptthat we alternatebe

tweentwo orthogonalsubspacesinsteadof all of theorthogonal

coordinateaxes. The proof of convergenceis the same.

We havefound that good numericalaccuracycan be ob

tainedwitha numberof points along A that is small enoughto

put the minimization problemwell within the rangeof modern,

generalpurpose,numericaloptimizationprograms;especiallyso

1cm in the domain of unconstrainedoptimization1’ wherenu

merits! methods,in particularconjugategradient and quasi-

Newton13 methods,work well with smooth objective functions

like ours for whichwe can find a very good initial guess.

Whennumericalmethodsareappliedin thiswaythey axe

called "direct" methodsin thecalculusof variationsseeChapter

8 in [14. Available generalpurposeprogramsarestraightfor

wardand powerful andwould undoubtedlybe able to perform

eachof the two suboptimizationsor evenoptimize andp 51-

inultaneously.Bowevertheyignoreall of thespecialstructurein

ourmodel andarenot capableof giving theuserintimateaccess

to it interactivelyduring progressof theoptimization,so we use

a specialpurposedirect method. Though less automaticand

more complicatedit is appropriateat a time when we are still

investigatingvariousmathematicalstructuresto beoptimized.

Applied mathematicsis an art of approximationand we

arestill investigatingthe approximationsto be made. We op

timize ‘p only in a linear approximation. In a full perturbation

expansionof thenonlinearproblem,derivativeswith respectto

a of order higher than two axe neglected.The solution is then

just a cubic splineof a chosenmonotonicfunction of a.

The suboptimizationof ‘y can be achievedby solvingthe

Euler-Lagrangeequationwithy fixed. If p is small enoughto

be neglected,the Lagrangianis to that extent independentof

a. Then by Noether’s theorem20 in 1141 the order of the

differential equationcan immediatelybe reducedby one. If the

Lagrangianis independentof £ then two more first integralscan

be found. For examplethe surfaceof a right-circular cylinder

has a two-dimensionalfamily of symmetriesso in reference[1

theequationis reducedto a single third orderordinary differ

ential equation. The first Noetherreductionfor our particular

problemis explicitly given in thesecondpart of problem13 on

page52 of 141.

Partly for historical reasonsin the developmentof the

project, andpartly becausetheequationmay be singularat an

endpoint, in 1 we solveit by a specialmethod of successive

approximations,a direct method which simulatesa physically

reasonablerelaxationof thecable into its equilibrium configu

ration.

Blocks of Cables

The cablesin a block are packedtogetherwith slightly

changingcross sectionsas they twist aroundan end. Program

BEND is supposedto predict the shapeof the block so that

when pressureis applied during thecuring processthe cables



will fit togetherexactly with neithergaps betweencablesnor

bulgesoutsideof the prescribedvolume.

Placementof the packedcables is determinedby anor

thonormal frame F attachedto each point i in the block. t1
is tangent to the curve passing tbrough it which is parallel to

the axis of the cable containing i. When £ is on the lateral

surfaceof a cablenot oneof theparallel sidesof a trapezoidal

cross section, then P,i is perpendicular to that surface. In

the unstrained block these lateral surfacesare all planar. We

include them in a family of disjoint planeswhoseunion is the

entire block. The family then constitutesa foliation of the un

strained block which is carried into a smooth foliation of the

strained block by two.dimensional surfaces that are no longer

planarbut still give a continuous interpolationbetweenthe lat

eral surfaces of each cable. P is defined throughout the block

by the requirement that it be perpendicularto thefoliation.

At the end of the secondsection above,F was defined

on A by twisting the Frenet frame attached to the rectifying

developableuntil it was attachedto theguiding strip. That F

will first be extendedfrom A to the rest of the 5, andthen from

$ to the entire block. Let i7is be the angle betweenAis

and the normal to S at the point £ in S. A is tangentto the

foliation, so ‘i satisfiesan eikonal equation

fVsiiI = cosml
+

4

on S where s is the gradient on 5, and p is the signedradius

of normal curvaturein the direction s through 1s 04 is

the keystoneangleof the cable the anglebetweentheextended

nonparallel sidesof the trapezoid andA4 is its thicknessat

the edgein contactwith 5. The first term on the right-hand
side of theequationis the rate of changeof s causedby the

keystoning. Its integral, C, with respectto arc length along a

characteristicof the equationis proportional to the numberof

cables traversed. The second term is the rate of changeof s

causedby the curvatureof S. , is determinedby 4 and its

known boundaryconditionon A. A mustbe tangentto S and

perpendicularto g,, so j andhenceF is determinedover all

of S by s.

In BEND, equation4 is solved by a forward difference

schemein which each cable correspondsto a singlestep. The

functions e and S are determinedby userinput. The program

then automaticallytakesinto account the variation of the cross

sectionsof the cablesalong their lengths and their subsequent

shifting along intercable surfacesso as to maintain contact of

theli outeredgeswith the constrainingsurface.

Let £ss,C in S be on the characteristicof equation4

which intersectsA orthogonallyat a. Let

= cosasPzis + sinas13is.

To extendthe definition of F from any point on S to the point

I = £s+aJ in theblock, requiretI to beparallelto 81/Osat

I, andAe at Ito be in theplanespannedb P1i and fi. The

normal curvaturesof S are assumedsmall enoughwith respect

to the sizeof the block that F is now well-defined throughout

the block.

As a matrix of column vectors, F is the3 x 3 submatrixin

the upperleft-hand cornerof the 4 x 4 T-matrix of the robotics

theoristssee Chapter2 In reference15]. TheseT-matrices

are output from BEND for automation of the winding process.

Planning for this project is being directedat Fermilab by Eric

Haggard.A T-matrix is attachedto eachendof the straightsec

tion of cable betweenthespool and the block. The T-matrix at

the block contains the frame F attachedto the midpoint of the

line segmentin theruling of first contactwith theoutsidesurface

of the underlying cable alreadywound. The otherT-matrix, a

rectilineartranslateof thefirst alongthe straight sectionof the

cable,is attachedto the midline of the correspondingsurfaceof

the cableat the point whereit leavesthe spool. Betweenthese

two framesareinterpolatedother framesattachedto theaucces

sin links in thekinematicchainconstitutingthe armof a robot

manipulator. Bob Bonagurohas solved the inverse kinematic

problem seeChapter 3 in 15] to obtain theseinterpolating

frames for one of the manipulatorsthat was proposedat Fer

milab. lie has codedhis solution into a programwhich accepts

output from BEND andin turn outputsa file for input into the

programcontrolling the robot.

Traditionally stress-strainrelations in rods and beams

havebeenderivedfrom a modelmadeup of long fibers parallel

to their axis, elongatedor shortenedby flexing and twisting of

the rod. Thus the elasticpropertiesof a three-dimensionalrod

could be derivedtheoreticallyfrom postulatedelasticproperties

of idealized one.dimensionalfibers. But the superconducting

fibers in our cable are by specificdesignnot parallelto its axis,

and the insulation betweencablesin a block introducesstill

othercomplications.Further,the packingalgorithmis accurate

only to within first order in the midthickness,width andkey

stoneangleof theunstrainedcable. Sothe varying crosssection

of the strainedcable is at presentbeing checkedempirically.

Cured ends are sliced transverselyat severalpoints along the

length of the block. Thenactualdimensionsof the cablesare

comparedwith their predictedvaluesto recalibratetheprogram

in our ongoingeffort to increaseits accuracy. An expositionof



its use to design end partsfor the 50mm SSC dipolesis being

preparedfor publicstion.ta
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