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Instabilities of Bellows: Dependence on
Internal Pressure, End Supports, and Interactions
in Accelerator Magnet Systems

R.P. Shutt and M.L. Rehak

Summary and Conclusions

In this paper we are dealing with internally pressurized bellows which are to be used
extensively for SSC and RHIC magnet interconnections. In Section II we show how an
internally pressurized bellows whose ends are not free to move but are supported more or
less rigidly can become unstable at some well-determined critical pressure p,,, similarly to
a bar that is compressed axially, resulting in Euler-type buckling.

Interconnection bellows must not only accommodate helium coolant flow and
pressures, but also must be axially precompressed when warm and extended when cold in
order to allow for the thermai shrinkage of superconduéting magnets during cooldown.
From manufacturers one can obtain pressure ratings, spring constants, diameters, length,
_convolution geometry, cycling fatigue properties and manufacturing inaccuracies. Making
use of our requirements for the mentioned parameters, we give in Sections IIlab an
approximate theory for bellows, having assumed that, for our purposes, radial widths of
convolutions are small compared to bellows diameters. This gives us a possibility to specify
bellows details that will satisfy our requirements for spring constants, compressions and
extensions, and pressures including margins. We can thus test whether our requirements will
enable us to obtain reasonably available bellows. Specifically, we will be able to calculate
convolution wall stresses and motions (without collapsing convolutions) under operating

. conditions and bejfond, when instability occurs. Based on the results, we can write our
specifications for manufacturers to consider. Large numbers of small or large, and
expensive, bellows will be needed, and they must not fail since need for replacement will

mean a major interruption of accelerator operation.



Sections IV to VI are valid for any size of beilows, since the derivations given there
require knowledge of only easily obtainable bellows parameters. In Section IV bellows ends
are assumed to be supported by two kinds of springs, namely springs acting perpendicularly
to the bellows axis and others acting torsionally, providing a torque when the bellows ends’
angle is varied. If the torsion springs were not provided, the ends would be considered
"hinged". This “spring-support” model has provided much insight into the various conditions
under which a bellows can become unstable. The importance of proper bellows support
becomes apparent, in addition to selection of proper bellows design parameters.
Manufacturing inaccuracies resulting in prebent shapes of purchased bellows, and
installation inaccuracies resuiting in lateral or angular offsets of bellows ends are also
investigated. Instabilities are due to the mentioned Euler-type buckling and end support
spring properties. End-to-end offsets and initial bellows prebends (before installation)
reinforce these instabilities and increase bellows distortions and stresses even at operating
pressures.

In Section V we address possible misalignments of adjacent magnet ends due to
bellows and installation inaccuracies. For instance, assuming that magnet ends are well-
aligned before bellows installation, prebends or offsets of bellows ends can disturb the
alignment, especially if the bellows’ lateral spring constant is large or if the magnet end
stiffness is small. The latter could, in principle, be increased by moving magnet supports
as close to the ends as possible. Interconnection installation difficulties would then have to
be considered. Nevertheless, accelerator performance is quite sensitive to magnet
misalignments, especially concerning quadrupoles, and therefore affects requirements for
bellows behavior under operating conditions.

In Section VI, we have studied a model consisting of three magnets interconnected
by two bellows. Each magnet can be supported by up to five supports whose lateral stiffness
.is taken into account in addition to the magnet stiffness. (Vertical magnet support stiffness
is larger than lateral.) A resulting magnet end stiffness can then be calculated and used for
comparison with the spring-support model discussed in Section IV. Some of the instabilities

already found in the spring-support model can be split into two peaks here, due to
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asymmetries of components or bellows inaccuracies. In particular, however, interactions
between bellows are of interest here; what is the effect of a buckling bellows on bellows in
neighboring interconnections? To answer this question, we have also introduced the
possibility of large forces acting at bellows ends in a direction perpendicular to the magnet
axis, This would model the effect of a grossly distorted, but still pressurized, bellows on the
magnet system. Since the effect is transmitted through supported magnets, the number and
stiffness of magnet supports will thus aiso play an important role.

Calculations were performed using a symbolic algebra manipulation code called
MACSYMA (Section VIII) which has been extremely valuable in solving the many algebraic
equations following from the previous Sections. The program provided matrix inversions
and thus algebraic solutions or matrix coefficients which could be entered into a numerical
FORTRAN program. The algebraic solutions for the spring-support model allowed us to
understand many of the features that can cause bellows collapse or rupture. The
FORTRAN program provided the large matrix inversion needed for Section VI, and of
course, all the numerical output data. MACSYMA and FORTRAN program codes are
described in the Appendices.

In Section VII we discuss numerical results as well as some algebraic expressions
including limiting values for some quantities such as spring vaiues. Examples are given for
SSC as well as for RHIC. Additional details concerning each accelerator will be presented
in separate Magnet Division Notes.

Our calculations confirm that bellows wall stresses generally will have to be very high
(< 1.8 x 10° psi) if one wants to obtain bellows that are usable in applications of the kind
required here. Therefore, in many cases the material will be allowed to yield somewhat
during every operating cycle (axial deflection, bending, pressurizing, cool-down/warm-up).
Material fatigue must then be taken into account, which usually is included in
‘manufacturers’ specifications. For our purpose, we would specify about 2000 cycles.

In the spring-support model we find that a prebent shape of a bellows (we use sine,
cosine and parabolic shapes) can stimulate the instabilities that may algebraically appear as

indeterminate, even for ideally straight shapes. Our bellows are "designed” for the first
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instability to occur at a Jowest pressure of 450 psi. (Another "peak" will then appear at 1800
psi, and more at still higher pressures.) We are mostly concerned that the stresses or strains
in the bellows walls will not exceed specifications. An indication is the maximum axial
compression or ¢longation, uniform for a whole bellows or localized somewhere along the
bellows convolution. We therefore present maximum convolution elongations found in the
calculations, which are compared with manufacturers’ specifications, As the pressure is
raised in a bellows wall, elongations increase gradually and can reach large values at our
critical pressure of 450 psi. To us the value reached at our maximum operating pressure
of 300 psi is particularly important. Thus, after a bellows is designed for the critical
pressure, we must also meet the criterion not to exceed allowable elongation at operating
pressure, which is determined by the rate of rise of the elongation vs. pressure function.

The rise rate is very much affected by the end support of a bellows. The two ends
may be forced into laterally or angularly offset positions during installation. Furthermore,
equivalent lateral and torsional spring properties of the support structure play a very
important role. These spring properties produce additional peaks, usually at higher
pressure, but also below 450 psi if, especially, the torsional support is not stiff enough.
Torsional stiffness as high as 5 x 10° Ib inch/radian is required for some of the large bellows
and magnets considered here, independent of lateral stiffness or pressure. Fortunately, we
can easily provide values >10".

Due to the possible end offsets and due to "support peaks” the rise rate of the
bellows elongation increases: support peaks can be placed above 450 psi by sufficient
torsional stiffness of end supports. However, the presence of the support peaks increases
the rise rate of elongation vs. pressure. The presence of pre-bent shapes additionally
increases the rise rate. '

The spring support model findings recur in the magnet assembly model (Section V1),
“except that now, as already mentioned above, because of assembly asymmetries and due to
the presence of two bellows, some peaks found previously will be split into double peaks.

The magnet assembly model allows us to study the effects of one bellows on a
neighboring one. Any such effects would, of course, also depend on the rigidity of the
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magnet supports. Using Fermilab as well as BNL supports, we find that interactions are
very small in the pressure region (< 450 psi) of interest to us.

One can simulate a "catastrophe” at one bellows by applying one or more large forces |
there laterally and look at the distortion of the neighboring one. We show that such a
disturbance in one bellows affects the other one little at or below operating pressure.

Qur general conclusion is that, with sufficient attention to bellows design and support
detail (also including the magnet supports if large bellows are used), practically all sizes,
large or small, of bellows can be used for interconnections between magnets. However, we
recommend strongly that any of the bellows that are to be used in the large quantities
required for the accelerators should still be tested very carefully in test set-ups that simulate

conditions to which the bellows will be exposed.



L Introduction

Bellows represent one of the most commonly used components in. engineering
structures. They are used to contain vacuum, or gases or liquids under pressure. They can
provide for accommodation of differences in thermal expansion between different structures.
Bellows can be bent, stretched, or compressed in various ways when used to connect
adjoining but not well-aligned assemblies. They can be obtained in a mulititude of shapes,
sizes, and materials. They may consist of single or multiple layers,

Many applications of bellows merely require design of adjoining components,
resulting specifications for connecting bellows, and making proper selections from catalogues
available from a large number of manufacturers. In other cases, special, not readily
available bellows may have to be manufactured.

As vital components in much of modern technology, bellows must be as carefully
considered in design as other parts in an assembly. They must satisfy all requirements,
including a sufficient margin. They must not be overstressed in any direction, must not be
damaged in transit, during installation or operation. They must not leak gases or fluids, and
their ends must be properly supported. Material fatigue must be taken into account if
cycling is intended.

When axially compressed or internally pressurized, bellows can become unstable,
leading to gross distortion or complete failure. If several bellows are contained in an
assembly, failure modes might interact. (Of course, external pressure can also "bucklie" a
bellows, but only similarly to a plain cylinder.)

In particle accelerators used for high energy physics research, bellows have been used
successfully for a long time to connect beam tubes passing through magnets whose magnetic
field, interacting with accelerated electrically charged particles, provides the required
circular paths for the particles. In recent times, accelerator magnets have been built to be
‘superconducting (Tevatron at Fermilab, HERA at DESY). In the design stage in the U.S.A.
are the Superconducting Super Collider (SSC) in Texas and the Relativistic Heavy Ion
Collider (RHIC) at Brookhaven National Laboratory. RHIC will contain many hundreds
of superconducting magnets and SSC about 10,000.



For superconducting magnets, one needs many bellows for connection of various
helium cooling transfer lines in addition to beam tube connecting bellows.

Large bellows are also considered as a very feasible and strong possibility for
connecting the large tubular shells that support the magnet iron yokes and superconducting
coils and contain supercritical helium for magnet cooling. In principle, every magnet couid
be self-contained, with endplates closing off the ends of the shells. These endplates would
then be connected by much smaller bellows for the beam tube connections and other
bellows to pass cooling fluid, electric bus bars, and instrumentation connections. However,
the space available in the magnet interconnection region may be quite limited, and to
reduce it further by introduction of the mentioned end piates, transitions, extra bellows, etc.,
would seem not justified unless it turns out that direct magnet connection with large bellows
is not feasible.

It should be mentioned that, with large interconnection bellows full use is made of
available volume to limit helium pressure increase when a magnet "quenches”, when much
of the magnetic field energy is transferred to the helium coolant in a short time. In this
event a helium reservoir, such as the interconnection volume, also serves to reduce pressure
by reduction of temperature due to partial mixing and helium compressibility.

Assuming that a large bellows has been designed properly concerning stresses,
support, availability, etc., we intend to present in this report, (1) a suitable theoretical
treatment of bellows properties, (2) a spring-supported bellows model, in order to develop
necessary design features for bellows and end supports so that instabilities will not occur in
the bellows pressure operating region, inciuding some margin, (3) a model consisting of
three superconducting accelerator magnets connected by two large bellows, in order to
ascertain that support requirements are satisfied, and in order to study interaction effects
between the two bellows. Reliability of bellows for our application will be stressed.

The calculations have been performed with computer programs analytically and
numerically, whichever approach seemed most suitable for a particular phase of this work.

The programs are equaily adaptable to RHIC and SSC magnet configurations, such
as dipole-quadrupole-dipole (DQD), QDQ, DDD, etc.



II.  Basic Derivation for Bellows under Pressure

Here we wish to derive an analytic expression which will take into account the
possibly destabilizing effect of internal pressure on a bellows. (External pressure has a
stabilizing effect up to a limit.) The bellows will be assumed to have an arbitrarily bent
shape before installation, due to manufacturing inaccuracies. For simplicity, the bent
bellows axis is to remain in a piane.

The ends of the bellows are to be quite rigidly supported but are to be open towards
adjoining pipes. Figure 1 shows an element of a bellows with average diameter D, local
axial bend-radius p, and length As = pAx. Pressure p produces a force df, = p dA on
element dA of the bellows wall, when integrated over convolutions, as for a plain cylinder.
(Local forces due to pressure inside convolutions will be treated below.) With dA = V(D
dyas, ), where As, = length along wall at angle ¥, and expressing

as, - (p * Dc;s"']dz ,

we obtain for the component of df,, in a direction that is parallel to the bending plane,

& - p2 cost (p . D‘?’")dw Ax.

Integration from p = 0 to 2r resuits in

2
Af-]‘_ﬁ_? Ay

for the total force due to p on the length element As. (Integral of components of df,
_perpendicular to the bending piane is zero.) Note that this force depends only on the
bending angle 4x = As/p. Using Cartesian coordinates,
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We will be interested only in small bellows deflections. Large deflections are not admissible
because wall bending stresses become large and, also the bellows may then interfere with

various structures contained in it. Therefore simply

2
Af ——’%D-y”Ax (1)

(x, y plane to coincide with bending plane) which now acts only in the y-direction, neglecting
small components along x. The negative sign is used here since we shall assumne that df >
0 when y" is < 0.

We can now set up the equation for bending of a bellows under pressure, In Fig. 2,
the central axis of a bellows is shown in an arbitrarily bent plane shape supported by forces
+F, *F,, and moments M,, and M,,, where

[
M, + M, - Fy© + F o - [ @=x)df - 0 2)

for equilibrium. Here, the bellows is assumed to be straight, not preshaped before
installation.
Bending deflection y at x can be found by solving the differential equation

Vo B L@ Fg e My [ @)
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Figure 2,
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where E, I are "equivalent” values for elastic modulus and moment of inertia for a bellows

represented by a cylinder as discussed below. According to eq. 1

x ) 2. %
[sap - -2 [y @has
P 2 b

- '% 0 & x-x) + y&) I}

xD*p
4

¥x)-¥0)-y'(0)x)

Therefore
1
¥ - SFLO--Fx + M) 4)
where
F -F + 2P (42)
b4 m 4
xD%p (4b
F, - [F,.,-Ty <0)] )

F_, is the axial bellows end support force before pressure is introduced, for instance due to
axial precompression. F,, gives lateral support at x = 0. y(0) and y’(0) are given as
boundary conditions or can be determined as a part of the solution of eq. 4. Assume, for

instance, that we give as boundary conditions at x = 0

y = y(0)
y =y (©)
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and atx = ¢

y=-y®
y =y

Solution of eq. 4 requires determination of two integration constants, Furthermore we must
find M,, and F,,. Thus the four boundary conditions suffice. Moment M, can be found
from eq. 2, if required.

Equation 4 is an Euler-type equation describing the effect of an axial end force F,
on a bar. For a sufficiently large end force buckling can occur. Thus, for a bellows internal
pressure p can result in buckling ("squirming"), if the bellows is supported at the ends as was
assumed.

So far we have neglected the effect of shear forces on bending of the bellows.
Axially, the bellows acts like a spring whose spring constant depends on various parameters.
To be called "K", it will be derived below. Laterally, without bending, the bellows must act
approximately like a cylinder of diameter D with the bellows convolution wall thickness t,
but with a much smaller equivalent elastic modulus than that of a cylinder.

Considering bending of a bar whose ends are fixed and which is loaded axially by
forces =F, a critical force F,, exists where the bar becomes unstable. A simple expression,

due to Euler gives eq. 5,

4nlE]

F, (5)
¢

where E, I, &, are elastic modulus, moment of inertia of cross section, and length,
respectively. Ends are assumed to be fixed. Equation 5 does not take shear forces into
~account. An expression taking deflections due to both bending and shear forces into

account has been given by Timoshenkof!). The critical force is now expressed by
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1z AG

T 6
) (6)

16n* EJ,
Pm'[[“ Z 45,

where A_and G, are cross section and shear modulus of the bar.
Concerning pure shear, we have to treat the bellows as a cylinder whose average

cross section is A, = 7Dt.

E

£

G - 2(1+v)

where E, will be the elastic modulus of the bellows material. If v = 0.25 = Poisson’s ratio,
G, =04 E,

The product E I, concerns the axial behavior of the bellows. Particularly, E; must be
an "equivalent” number referring to the axial bellows spring constant K. The spring constant
(also called "stiffness") of a bar would be

- Elastic modulus x cross section
length

K

For a spring, or bellows, one can define then an equivalent elastic modulus

K
E -2 6a
(6a)

if K is given. (A = A, 2 = ¢,). Therefore, in eq. 6 we will set E, = E. I, will have an
average value
3
7 =1« XD+ Lyt-(D-Lyt] D7 (6b)
, 64(( rEyi=( 2)] :

if t < < D. Therefore
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g - KD (6¢)

It follows that

0.4nDiE,
2

12
P -|l1s 2n KD -1
il 0.4UE,

Typical average values for bellows considered in this report will be

K = 3000 Ibs./inch
D = 13.5" or less

2 = 10" or less

t = 0,03"

E, = 3 x 107 psi

which results in

16n> EI 2zKD

- - 0.071<l
2 AG, O04UE,

Therefore it follows from eq. 6 that

41'!251 (6(1)

for our case; deflections due to shear are small here, thus justifying the simple approach
taken to derive eq. 3. The reason is that here E, < < G_. If D were considerably larger or

- £ smaller, eq. 6 would have to be used.
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Hla. Axial and Lateral Spring Constants, and Convolution Wall Stresses and

Deflections under Bellows Compression or Tension.

Bellows manufacturers provide information on bellows parameters in their catalogues
and upon inquiries. However, sometimes parameters for a particular application, such as
ours, are not readily available. Also, interconnecting large numbers of superconducting
magnets requires as much attention to and quality of design, and reliability of components,
as the magnets themselves; repair of a failed interconnection can require nearly as much
time as replacing a faulty magnet. In order to judge details of a bellows under
consideration, such as spring constants, stresses and deflections under pressure, etc.,
derivations are given in the present section enabiing us to correlate obtainable parameters.
Since in our applications the radial bellows convolution width d wiil be much smaller than
diameter D, it is admissible (Timoshenkol*, et al.) to reduce the problem from three to two
dimensions: We consider a "corrugated sheet" of width #D. The results agree numerically
well with some formulas given in the literature.

One-half of a suitable shape for a convolution is drawn in Fig. 3. We define

d = convolution width

I = "valley" radius between convolutions

t = wall thickness

r = r; + t/2 = average convolution radius

b, = straight section length in convolution

F = force applied at bellows ends

M. = moment required to satisfy boundary conditions

D = average diameter of bellows

wy5(8,2) = radial deflections, to be >0 when directed toward center of
circle formed by r

v12(612) = azimuthal deflection, to be <0 when directed toward 8,, = 0

y(x) = deflection of straight section

N, = number of convolutions in bellows

16
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Since we have assumed that d < < D, we expect symmetry around point P at the
center of the straight section (when no pressure is applied in the bellows). We will be
interested in the axial elongation of the bellows upon application of force F and in
accompanying maximum stresses, expected to occur at 8,, = 7/2. Because of the indicated

symmetry, the elongation of one convolution should be 4y(x = b./2) and of the bellows:

A - 4N,y(-%] ™

The axial spring constant is then

- 8)

>im

Without symmetry one would have to write A = 2N, (y(b) + vx(7/2)). (v, was
defined, is indicated in Fig. 3, and will be treated below.)

For equilibrium we have

2M, - F(b+2r)

According to Timoshenko!®, for a bent curved bar of radius r

9

where ¥ = Poisson’s ratio and E, the elastic modulus of the material.
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From Fig. 3 we obtain

”_(Fr(1-sind,)-M,) (10)

(The positive sign for the second term is due to F and M, acting at §, = 7 /2, not at
8, = 0.) Solution for eq. 10:

A,cos8, + B;sind, - i (1)
w, = A, cos! 1+Blsmﬁl-?(Blc:osﬁl-smﬂl)-'-d1

if

Fr?
EJ,

d, - -(M;Fr)rtlb

For the convolution straight section:

y' - -—éin(Fx-(Mc-Fr)) (12)
y - Ax+B-EL[F%3--(M‘-Fr)‘—2) (13)
A 2

Boundary conditions:
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wy =y
For the resulting deflection at x = b_/2:
[ 2
2| 4E],
Y = b)6+blr+3brienr? (13a)

This is the deflection in the axial direction for one-quarter of a convolution. For the axial

spring constant we obtain then

g . XEPD (14)

3ty

since N, = £/4r if the bellows straight sections are parallel to each other (which they are
not necessarily (see below)).

The maximum tension/compression stress in the convolution wall is

M@®,) M@
z, 21,

on(el) -

and the maximum for o, occurs at 4, = 7/2, leading to

20



2E,tr(r+b, [2)A (15)
ly

Oz

where A was defined as the total axial deflection of the bellows (eq. 7).
One can show that our simple calculation is valid by estimating the hoop stress on
the bellows that would ensue without approximation. For this purpose we will calculate

v,(8, = 0), for which Timoshenko and Gere give

dv
it SR (16)

1

Therefore

v, = [wd8,+G,
G, is found from the boundary condition

1
9,-5-: v, -0

v1(0) is then easily calculated and by about this amount the outer convolution diameter
would be compressed (and the inner diameter expanded) if no approximation had been
used. The resulting hoop stress would amount to only 2 to 3% of the calculated bending
stress. We conclude that for our bellows (d < < D) the above-given calculation is 2 good
approximation. (More general calculations, including d not < < D, often approximate the
shape of the convolutions by alternating flat sheets and short cylinders. For our present
purpose we prefer the procedure used above. See, however, also A. Laupa and N.A.
| Weill®l)
According to manufacturers, the convolution straight sections are not quite parallel,
meaning that N, is not quite = ¢/4r. Figure 4 shows the actual shape of a convolution.
The "pitch” of a beilows is thus given by

21
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Figure 4.
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A=dr+2b B (17)

from which angle 8 can be calculated if A, r (or r, and t), and b, are given. Radial

convolution width d is

d=2r(1-p)+b_+t (18)
From egs. 17 and 18:
g - 4ot l*4r(A—4r)]m_1] (19)
4r (d-t-2r)?
b, - d-t-2r(1-p) (20)

From manufacturers’ data, we obtain

B ~ 0.094 rad (5.4°)
b, = 0.340"

for some relevant bellows.
This value for § we shall use for our calculations. For different bellows parameters
B may also be different but can be calculated from eq. 19. If thenr, t and b, are given, we
can determine A, d, and N, = ¢/A.
We can now modify our original procedure, remembering that 8 is small. First, eq.
S gave the critical buckling force F, at the ends of a bar which are fixed. For our
calculations we will not be allowed to assume that ends are rigidly fixed; the bellows will be
‘welded to magnet ends which are somewhat flexible, laterally as well as rotationally.

Therefore we will encounter buckling modes where

riEl
F -5
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Making use of eq. 6c,

2 2

Thus, in order not to exceed the critical state we must demand that
K > 8¢F_/nD? (21a)
At installation, at room temperature, bellows will be precompressed by an amount

A. Magnets and bellows are designed for a maximum operating pressure p,,. Adding some

margin to p,, we obtain p,. Then we can set

2
F, - kPl @)
from which follows, with eq. 21a,
nD?
Fy = = (23)
BAt
4{1- uzDz]

We can now chose critical pressure p,, for a bellows and use the resuiting F,, to determine
the bellows parameters.
Summarizing, we shall now assume that for a bellows
valley radius r;
inner diameter D,
radial convolution width d
angle B of convolution straight sections
bellows length ¢

maximum pressure p, = p,, + margin

24



precompression i
are given. Then we can calculate

average diameter D = D, + d

-1
8a¢
F, - p,nD? {4[1— 2)] (eq. 23)

n2D

Assume (guess) a likely value for wall thickness t and find
r=r + t/2 ‘

straight section length

b, = d-t-2r (1-8) (eq. 20)

B
¥ = [?°+bfr+3bcr‘1+ﬂ:73] (egq.13a)

pitch length A = 4r + 2 (d-t-2r(1-8))8 (eq. 17)

number of convolutions:

¢
N, - — 24
p- 4 (24)
improved value for t:
13
T e (25)
nD E,

where

E, - E,/(1-v?)

25



The obtained value for t can now be substituted for the first-guessed value for iteration
(convergence will occur after very few iterations).
The maximum wall stress is, substituting t (eq. 25} into eq. 15,

23
O s - —23-(53) [r+-b—‘]( il fr]m (26)
D\ vy 2 N,

For axial spring constant K we use eq. 21a(23):

8¢F,, 2tp,,
in2
=D (. _8AL
x2D?

For a lateral spring constant, both bellows ends fixed to be parallel to bellows axis:

K, - 15 [.?]2 27)

which can be proved easily by an appropriate bending calculation, or by applying results for
the spring-support model to be considered below (see Section V).
Finally, a simple calculation, considering the total integrated length of the bellows

convolutions, gives for the average hoop stress due to pressure p.

pL

2Nb T

U.'

(28)

(Note that o, increases when the magnet system is cooled down, due to an increase of

bellows length ¢, without adding to the number of convolutions, Ny.)
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Results of calculations for different possible parameters will be given below, after
stability calculations have indicated what values are required for K, K,, o,,. Special
attention will have to be paid to availability of wall thicknesses, convolution shapes, etc.

27



lIb. Deflections and Stresses of Bellows Convolutions under Internal Pressure
In Section IIfa. we have discussed effects on bellows due to forces applied at the ends
of the bellows. Here we will consider effects of internal pressure. Total deflections and
stresses can be obtained by superposition. Figures 5a and 5b illustrate the problem, showing
half a convolution. (The small effect of angle 8 is neglected here.) We assume that the
bellows ends are supported against axial motion. This means that at 4, = §, = 7/2 no axial

motion is allowed:

Pressure p is supported at §, = 8, = 7/2 by forces F,, F, and G, and since at 8,, = 7/2,
dw,/d8, = dw,/dé, = 0 due to required symmetry, moments M, and M, are also required.

For equilibrium:

F +F,-p(d-t) = 0 (29)
G - pr (29a)
-Md+Mc2+F1(d-t)+ZGr-p(d-t)(-g—t)-2pr2 -0 (30)

(In this Section all quantities (F,, F,, My, M, G) refer only to a one-inch length of the

bellows circumference.) Referring to Fig. 5b, the moment due to pressure force element

pr,dé’; acting at 8, is, using components of the force element,
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-~ Mc2
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dM,(6,,8,) - -prd®/ (sin6{rcosb, -r,cos6])+cos6(r sind| - rsing, )
- -pr,rsin(6}-6,)d8;

Integrating from 8, to 4/, total moment at &,:
1 1 i

My(0,) - -pry(1 -sinBI) (31)

3
Following egs. 9, 10, and 12, we can now set up the bending equations Pere I b-%]:

o

- - —w e r’l (-pr;7{1-sin6,)+F,r(1-sin@,)+Gr cosd, -M, )

de; EJ,
or
2
dw =Wy # = (F, ~pr ) r(1-5in6,) + Greosd, - M, ) (32)
de} EJ,

2
y - L [p(ﬂwi(r--'!]]-ﬁ (r+x)-Gr+Md] 33)
2 2

EJ,

- W+

z:zr {pr{1-cost)F{tr(Lsid)

-Gr2-cosBy)+M,, (34)
+pri(t+ rsinez) +r(2-cosﬁz))

i)

de:

In addition we have

Kic . (35)
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as given in eg. 16.

Boundary equations are

Solutions for eqgs. 32 and 34 are

. Cy .
W, = AucosBIfBusmeu--i-(eucoseu—smeu)

YE]

S E

wI-O

w, =0

w;-O
v, -0

/

"

Ci2 )
+—2—91 _zsmﬂ1 .2*"1 2

if one has written egs. 32 and 34 in the form

(36)

(36a)

(37)
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d*w,,
2
By,

/. H
- “"1.2*":1.251“31.2*"1.2“0591.2*“'12

Integrating eqgs. 35, 36 results in

14

. €12 .
Vi3 = A,,sin6, - B, ,cos8, _2--.;_(3I AinB, ,+2c0s6, )
y (38)
€12 8 8. —si
-—~(8,,c080, ,-sind, ,)+d, .8, ,+E, ,
Equation 33 leads to
a'x® bxd d'x?
e R +Cx+D, (39)

We will have to determine integration constants A, ,, B,,, E,,, C,, D, and also F,, F,, G,
M., M,,, a total of 13 values for which we have equilibrium conditions 29, 29a, 30, and the
10 given boundary conditions. Substituting equilibrium condition 29a into the boundary
conditions results in 10 linear equations which are solved numerically as described below.
(M,; and F, can be found directly from eqs. 29, 30). Having determined w,, w,, y, one can

determine stresses from

Q
]
Nix

where Z, = 2I,/t. For M use either side of egs. 32, 33, 34. For instance,

01002 dw,, " Eg :
- - - —
1 1.2 dﬁiz 12 2’2 (40)
E ,
o(x) - —y”—ff

All results will be discussed below. Besides maximum stresses, the maximum value of y will
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be of particular interest; if y,,, is too large, neighboring straight sections may contact each

other, in which case the properties of the bellows will change drastically.
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IV.  Spring-Supported Bellows Model

In order to understand and expiain the behavior of bellows used for interconnecting
accelerator magnets, it has been useful to treat a model consisting of a bellows whose ends
are supported by springs. These springs are to model the effects on the magnet ends which
could be deflected laterally by forces acting perpendicularly to the magnet axis, and
rotationally by moments. Both forces and moments can produce lateral deflections as weil
as rotations of the bellows ends.

For the spring supported bellows model we will use two straight springs at the
bellows ends, with spring constants k, and k, (lbs./inch), and two torsion springs with spring
constants k,, and k,, (Ibs. inch/radian).

Manufactured items can adhere to ideal shapes only within tolerances. Thus, we
cannot assume that bellows can be ideally straight but will be obtained pre-bent to some
shape that could be expressed by a Fourier series. For our purpose it is not necessary to
carry the higher harmonics but it is sufficient to carry two of the lowest ones. The prebent
shape shall be

y, - lsinlex- +d,(1 -cos-z—’:f) (41)

with d,, d, the amplitudes, ¢ the bellows length. y, = 0 at x = 0 and &. The lowest mode
(also representative of a possible offset mode d, cos 7x/2) will cause buckling of the bellows
at the lowest pressure. The higher mode (cos 27x/2) would cause buckling only at 4 times
the lowest pressure but it significantly affects the deflections of the bellows, and therefore
stresses, even at much lower pressures, in the bellows operating region.

In Section II it was shown that the effect of internal pressure on an arbitrarily shaped

bellows can be represented by an axial force that may cause buckling and a lateral force that
‘depends on the pressure and the angle (y/(0)) that the bellows axis subtends at x = 0 (see

eq. 4a,b). .
Figure 6 shows the axis of a bellows, which departs from straightness by a function
y, such as given in eq. 41. In addition, due to (smalil) fabrication errors of the bellows
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Figure 6.
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mountings, the ends are to be offset laterally by length ¢. At the ends, the bellows is
mounted on lateraily acting springs, k; and k,, and rotation of the ends is limited by torsion
springs k,,, k, The bellows is to be axially compressed by length A and internally
pressurized {o pressure p. The bellows ends are then exposed to equivalent axial end forces

(egs. 4a)

2
+F msF), - t(lK"'-’F—%E] (42)

Lateral support is to be given by forces F, and F,. Deflection y is to be measured
from the unstressed, prebent shape y,(x) of the bellows. If

Y(©+y,(0) = 0 and Y ()+y,() = 0
we have F, = F,. If the end slopes are not zero, then, similarly to eq. 4b, F, F, become
F, ~F,~F,(y(0)+y'(0))
Fy~Fy+F [y (0+y'(0)

as the total lateral forces on the bellows ends, due to the spring supports and non-zero end

2
slopes. {Fw - I?_ pi For equilibrium:

2nd
F\+F, - F.,[y’w)-y’(o)af—a—‘) (43)
making use of eq. 41. (Signs in eq. 43 are consistent with Fig. 6.)
Moments M,,, M,, are also required for end support. For equilibrium:
(44)

nd,
McJ*Mcz'Fa(ax'“ai)* Fl_Fw Y’(O)'*-—a— t-0
Bending deflections y at x, due to the applied forces, are now found from

d
y! (Fa(y*yo'61)*51"“&(?’(0)*1‘—1]:*-%,) (45)

- —L
ET
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F, is the force that is due to compression or extension of support spring k,. Therefore

aF‘
'k

—

similarly

F
3, « 2
&

For boundary conditions, M,, and M, determine the end slopes due to the bending forces:

Y@ - 2 (46a)
k:l
y© - Ma (46)
kg,
and for the total end deflections:
F
y0) - {+8, - C+f (46c)
1
F.
o - 8, - 7—3 (46d)

Boundary conditions 46a to 46d, together with equilibrium conditions 43 and 44 will be used
to determine y(x). The six conditions suffice to find F,, F,, M,;, M,,, and two integration

constants for eq. 45 whose solution is

2ax

y = Acoswx + Bsinwx + Clsilzli':é£ + C,co08—= + Dx+G (47)

* Substitution into eq. 45 resuits in
w = (F /EN" (47a)

and expressions for C,, C;, D,, and G, while A and B are the integration constants that need
to be addressed. Of special interest are
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e, - a2 1-{2]) (7

2 2
C, - -d[L4 /]1-{ 2!
2 dz[Zﬂ:) I[ [21:
which are due to the prebent shape of the bellows (see eq. 41). We can therefore expect
buckling (squirming) of the bellows when

wl == ifd=»0

and
wl = 2n if d,»0
or when
n2E]
F‘ = cz (48)
2
F, - 41:2EI (49)

in agreement with Euler-type buckling.

We must not exceed allowed extension or compression of the bellows, to be called
AL,

Maximum bellows stress ¢ due to bending (excluding stress due to local pressure on

convolution wall (see Section IIIb), which must be added).

- ___)f! y”ﬂ - [Kﬂ
° Y 2xt

A z

Strain € 1s
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yﬁDa

A = el = =
“T
and, including precompression A
it
At - ;.Jzizl*@ (50)

which must be checked for all cases.

In addition to the buckling modes (eqs. 48, 49) due to bellows prebending, there are
important additional ones due to the end supports (k,, k;, k,;, k;;) which will be considered
in detail below, when the procedure for solution of the boundary condition matrix and

numerical results are discussed.
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V.  Magnet End Misalignment and Lateral Spring Constants

The accelerator magnets must be aligned within strict tolerances. If bellows

mountings are misaligned, making it necessary to distort the bellows laterally, the magnet

ends may be misaligned in an opposite direction, depending on lateral bellows and magnet

end stiffnesses. This occurs mostly during bellows installation, when it may be necessary to

force the bellows to a shape with offset ends.

Refer to Fig. 7. Let k, be the lateral spring constant of the magnet ends and 2d

their relative misalignment. Then =F = k,, d are the forces on the bellows ends. Moments

M are given by 2M = Fe for equilibrium. Then the bending equation is simply

Y = - (-FrsM) - ﬁ(x-l]

EI\ 2
At
x =0 y=-{~-d
| y =0
x=-1 y=-d
y -0
One obtains
F lZ(C;fd)EI

and for the total misalignment of the magnet ends
¢ ¢

k¢ ( k(¢ z]
L+ 1+—=2| —
24EI BK(D)
If k,, ~ =, d would have to - 0, and, from eq. 51

2
F _12E _, sp(D - K,
E’ .

{ ¢

(1)

(32)

as was given for the lateral bellows spring constant K, in eq. 27 and is proved here. Thus
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Figure 7.
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(1+£] 7 (52a)

Itis seen here (eq. 52) that, in order to keep magnet end misalignment small, { must
remain small, lateral magnet end stiffness (magnet support and shell stiffnesses) should be
large, and K, should not be large. Since K, ~ K and, as will be seen, buckling of bellows
occurs at pressures that are proportional to K, the latter should only be as large as
necessary. The "slenderness ratio” for the bellows (D/¢) occurring in eq. 52 is determined
by the required geometry of the interconnection. For bellows dimensions considered for
magnet interconnections we may have 2d = ¢/1.5. If magnet end misalignment 2 d is to be
< 1 mm, ¢ must be < 1.5 mm = 0.06". Magnet support stiffness could be increased by
moving magnet supports closer to the bellows ends. However, this would most likely
interfere with assembly of the interconnections.

Bellows mounting misalignments can occur in random directions. The magnet
supports are considerably stiffer vertically than horizontally so that 2 d would be smaller
vertically for a given ¢. It must be remembered that ¢ must also remain small because
lateral bellows stiffness K, times ¢ is the force needed to adjust the bellows before welding
to the fnagnet ends. For ¢ = 0.06", K, could be = 500 lbs. This lateral force must be |
provided in addition to the force needed to precompress the bellows axially, namely K,
which, for instance, for K = 3000 lbs./inch and A = 0.5" becomes 1500 Ibs. Necessary jigs
will have to be provided, and the bellows end mounting designed to minimize ¢.

Some have suggested an aiternate way to mount the bellows, so that the latter would
not have to be distorted laterally. Figure 8 indicates the arrangement, by using ring sections,
-cut from cylinders at proper angles. The large axial compression force must, of course, sfill
be provided. It is not clear that this method, requiring additional welding, would result in
a substantial decrease of {. When internal pressure is applied, moments are produced on

bellows and magnet ends due to the asymmetrical mounting.
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A possibility to eliminate any offset of the bellows would be to butt-weld one end of
it to a narrow flange welded to one end of the magnet shell. (This possibility has been

tested successfully.)
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VL.  Bellows Interactions in Magnet Systems.

In Fig. 9 we show schematically three magnets and two bellows interconnecting the
magnets. Supports for the magnets are shown at locations x, t0 X,,. Support forces are F,
to F,;. The whole system is assumed to be preshaped (before applying forces) according to
a function y(x). Deflections y,(x) (1 < n £ 19) are to be measured, starting at y,(x), so that
the totat deviation from abscissa x is y,(x) + y,(x). Concerning y.(x), dipoles are circularly
curved, quadrupoles (packaged together with sextupole and corrector magnets) are straight,
but much shorter than dipoles, and interconnections are straight. y,(x) shall represent an

average curve of the system. For 1 < n < 18, forces F, will be expressed by
F -k3§, (53)
if the k, are the support spring constants, and having called é§, =~ y (x,). Forn = 19,
Flg = kigyg(xig)=kigéyy (332)
Note that forces F, act only approximately in the y-direction as shown in Fig. 9. For the
present problem (small deflections) this approximation is adequate.

Two bellows are located between x4 and x5, and x5 and x,,. At these locations kg ;4,4
= 0 so that there are no magnet support forces {(eq. 53). However, one can apply forces
Fg11214 for the purpo‘se of analyzing effects of "bellows catastrophes" on adjacent magnets
and other bellows. Such a “"catastrophe” may be collapse of a bellows due to buckling,
resulting in gross distortion of the bellows and therefore possibly large laterally acting forces
due to the internal pressure. When a bellows buckles, it will not necessarily rerlease the
pressure in it but rather deform the convolutions until they are either compressed till
contact or "straightened" to become a smooth surface.

In our calcuiations we assume that large diameter bellows are employed. Therefore
forces on bellows and adjacent components can become large. On smailer bellows the

" forces of concern to us are, of course, also smaller, decreasing proportionally to the average
bellows cross section.

In Fig. 9, the bellows ends are shown to be offset laterally from the magnet ends, at

X 71314 DY Ss7.13.140 and by angle ng45,, While adjacent magnets must be aligned within
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small tolerances, the offsets can be due to inaccuracies of the bellows end mountings or
welding procedures.

It has been shown in Section II, egs. 4a, 4b, that the effects of internal pressure p on
arbitrarily shaped or distorted cylinders or beilows can be calculated by merely applying end
forces +1D%/4 along the, however deflected, axis of the pressurized container. D, again,
is the inner diameter of a cylinder or average diameter of a bellows. Force components in

directions x and vy, if y(x) represents the bellows axis, are at x = 0

FO-I22 (1y0p)=202 -,

if y/(0) is small, and

2
F\0) - Z22y/(0) - Fy"0)

Replacing zero by length & gives corresponding expressions at x = ¢. If additional forces

act, we obtain eqs. 4a, 4b. Adding bellows precompression force AKX to F,, we define

D%,

F,-xk+ %2 3k +F,, (54)

which is to act (approximately) in the x-direction. (Fwy’) is to act in the y-direction, F  =F_

and F o= Fua y{(xl) are shown atx = x,, y = y, in Fig. 9. (Actually bellows precompression

force AK acts at axially fixed location x,, but for simplicity we shall locate it at x = x,, which
is unimportant for this calculation.) In order also to analyze the effect of unequal pressures
at magnet ends, as could be encountered during asymmetrical magnet quenches, it is
assumed, and shown at x = x,, that force -F,, acting at x,,, provides equilibrium (together
. with the relevant force in the y-direction) for F, at x = x;. From here on force

2

»Dp,

F,=XK+ ~AK+F,_ is to act, having replaced pressure p, by p, At
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X = X9, -Fy, = -F, must then act for equilibrium, and Fp= way{,,(xw).

As mentioned above, there are no supports at x = Xg4;5,, Where kg73374 = 0. Y67.13.14
indicate deflections at the bellows ends. This leaves magnet supports at the remaining
locations. Each of the three magnets is shown with five supports. The actal number of
supports for a given magnet can be adjusted by setting the k, # 0 at the support locations.
(Elsewhere k, = 0.) Magnet supports can thus be specified by entering known values for
the k,. We can then analyze SSC dipoles (D) (five supports for magnet to cryostat),
quadrupoles (Q) (three supports), RHIC dipoies (three supports), quadrupoles (two
supports). Thus any combination such as DDD, DQD, etc., can be studied. The SSC dipole
cryostat is to have only two supports to the floor. This will considerably decrease the system
stiffness provided by the five magnet-to-cryostat supports.

We proceed to derive relevant relations for analysis. Refer to Fig. 9. The sagitta s,
of our system, compared to cord length (x,, - x,) is found to be very small. Therefore we

can approximate the arc by a parabola which is given by

4s
yo(x) - ""zix (119 -X)
L9

having called x;, = 0. 4s, /x% is the curvature of the system which we shall, for our purpose,

merely call approximately equal to the dipole curvature ¢ = 4s/¢2, if s = dipole sagitta, ¢
= length. Therefore
V(%) = &x (xy5 - X) (54a)
Referring to Fig. 9, we can now write down differential equations for bending of the
magnet and bellows in the 18 regions (x,,, - x,). (1 £ n < 18.) For simpie bending, where
_length > height or width of a bar or, as has been shown, for bellows,
M

Ef,

L
Vo ==

Examples: for region (x, - x,):
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-M, - F (5, -yo(x) -y - Fa(x—xl) + Fw(y{(xl) + ¢.¥19)x (35)

F
5, = Fl' (see eq. 53)
1

F,-nD%, /4
E, = elastic modulus of magnet shell (including Poisson ratio)
I, = moment of inertia of magnet cross section (combination of shell and yoke
laminations).
For region (x; - x5): bellows:

6
_Mé-Fa(Gl-ya(x)-yﬁ)-E Fv(x_xv)

val

+ m("{(xz) + “19)-‘ +73 (56)
. [wx 2rx
] a7
GIP / .
¥y e-y,(x,) takes into account a torque exerted by the center support of the magnet
P

caused by distortion of the shell resulting in angle y4 at x,.

d, and d, determine the amount of prebend of the bellows before installation (see

Section IV, eq. 41). Similarly, for d4, d.; for bellows prebend in region xy, - x;3.
All otherd., d, = 0.
E, = E (see eq. 6a)
I = 1 (see eq. 6b)
A general equation, valid in all regions, can be written:
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y”_ 1
""E[,

=2, Fx-x,) + Fy(8,79,(10)=610) +V, +Fppyox]

val

A"
8 ‘ (57)

In this equation it has been assumed that the slopes yf,(x,,) are <@x,, (slopes at x,(=0) and

X, due to dipole curvature). v, shall be the sum of torques that may be exerted by supports,

such as v,

for n=12, v =0
32n<9, v, =7,
10sn<16, v, =1,+7,
175n<18, v, =7 3+Y 0+ 17

For v,4 7,7 replace y;(xs) by y{o(xm) ,y{,(xl.,) , respectively. Furthermore,

xD?
for 1sn<®: F, = F, = F, Foo=F,-~ Z z
10sn<18: F =FF,=F,

Equation 57 represents 18 second order differential equations, requiring
determination of 36 integration constants. In addition, values of the support forces F, must
be determined. These forces are, of course, known to be equal to zero where a support
spring constant k, = 0, such as at X,7,4 4 (unless F¢; 5, # 0). For the SSC magnets, there
are five supports for dipoles and three for quadrupoies, for RHIC, three and two,
respectively. Therefore, at most 15 additional quantities must be found, for a total of 51.

There are two equilibrium conditions for the system; (1) £ forces = 0, (2) = moments
= Q.

T forces:

o rD?
Y F, ) (PP} 12 =0 (58)
1
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Table 9: Results: node location, stiffness, force at p,,

node | x(i)in | k(i) Ibe/in | F(i) lbs
1 0.00 25000.00 87.70
2 135.69 | 25000.00 35.17
3 271.38 25000.00 22.81
4 407.07 | 25000.00 24.10
5 542.76 | 25000.00 27.57
8 608.38 0.00 0.00
7 615.68 0.00 0.00
8 8679.30 | 25000.00 27.41
9 814.99 25000.00 24.50
10 960.68 | 25000.00 25.73
11 1086.37 | 25000.00 24.89
12 1222.08 25000.00 27.42
13 | 1285.68 0.00 0.00
14 | 1294.98 0.00 0.00
15 | 1368.60 | 25000.00 27.57
16 | 149429 | 25000.00 24.10
17 | 1629.98 | 25000.00 22.62
18 1785.87 25000.00 35.18
19 1901.36 25000.00 87.70
FIGURE D2B
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plot file: 2DUAT[ROSSUM.BUC|FORC01.DAT;185
machine: SSC mode: ddd

Table 1: Input: beliows design parameters

7 in D; in din 3 fin per psi Ain Eb psi
0.060 14.300 0.500 0.094 9.300 450.000 1.000 3.297E+07
Table 2: Resuits: bellows properties
Nb rin Din Ain t in be in K lbs/in Kl lbs/in 1 int
26 0.072 14.800 0.356 0.025 0.342 2759.212 1.048E+04 3.151E+01
Table 3: Results: maximum bellows stresses at p,,
Trmes Psi oh psi Tpw1 P8 Cpuwz Psi Toe VYmas iD
1.523E+05 2.718E+404 6.640E+04 8.782E+04 2.967E+04 1.47T2E-03
Table 4: Input: bellows misalignments
¢B)in | ¢(T)im | C(13}in | €(14)in 7(6) 2(7) 7(13) n{14)
0.030 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Table 5: input: bellows initial shape
d,8in d,13 in d.8 in d.13 in
0.020 0.000 0.020 0.000
Table 8: Input: dipole properties
s in Lp in ovhp in Dp in tym in Im int Em psi
0.200 870. 63.6 10.5 0.188 111. 3.000E+07
Table T: Input: quadrupole properties
Leyin | ovhgin | Dyin tg in Iq ént Eq psi
210. 52.5 10.5 0.188 111. 3.000E+07

Table 8: Results: beliows maximum elongation at p.,

Pop PSi dl8 in dll3 in
3.000E+02 5.060E+00 1.002E+00
FIGURE D3A
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Table 9: Results: node location, stiffness, for;:e at pop

node | x(i)in | k(i) Ibs/in | F(i) lbs
1 0. 25000. 96.
2 136. 25000. 119.
3 271. 25000. -580.
4 407. 25000. -1808.
5 543, 25000. 8384,
6 808. 0. -12500.
7 616. 0. 12500.
8 568. 25000 -8502.
9 694. 0. 0.
10 721, 0. 0.
11 747. 0. 0.
12 773. 25000 2067.
13 828. 0. 0.
14 835. 0. 0.
15 899. 25000 731.
16 1034. 25000 -193.
17 1170. 25000 -30.
18 1308. 25000 45.
19 1441. 25000 69.

FIGURE D4B
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plot file: 2DUAT:{ROSSUM.BUC]FOR001.DAT;91
machine: RHIC mode: dqd

Table 1: Input: bellows design parameters

»; in D; in din 8 lin per psi Ain Eb psi
0.060 7.630 0.500 0.094 8.000 450.000 0.500 3.297E-+0T
Table 2;: Results: bellows properties
Nb rin Din Ain tin be in K lbsfin Kl in lbs I int
17 0.072 8.130 0.352 0.024 0.346 1784.528 4.915E+03 5.137E+00
Table 3: Results: marimum bellows stresses at poy
Tmes PH o pai Tpret PEi CTpw2 P8i Tya VYmaa 11
1.0866E+05 1.534E4-04 6.869E+04 7.013E+4+04 3.0T1E+04 1.548E-03
Table 4: Input: bellows misalignments
€@)in | ¢(7in | ¢(13)in | ¢(14)in n(6) 27 7(13) n(14)
0.030 0.000 0.000 0.000 0.000 0.060 0.000 0.000
Table 5: Input: beliows initial shape
d,8'in d,13 in d.6 in del3 in
0.020 0.000 0.020 0.000
Table 8: Input: dipole properties
sin Lpin ovhp in D in tm iD Im int Em psi
2.00 394, 55.4 10.5 0.188 111. 3.000E+07
Table 7: Input: quadrupole properties
Lyin ovhqg in Dy in te in Iq int Eq psi
170. 48.0 10.5 0.188 111. 3.000E+07

Table 8: Resuits: bellows maximum elongation at p,y

Pop PSi

dlé in

dl13 in

3.000E+02

7.511E-01

5.138E-01

FIGURE DR1A
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Table 9: Results: node location, stiffness, force at po,

pode | x(i)in | k(i) Ibe/in | F(i) lbs
1 0.00 25000.00 | 402.98
2 70.80 0.10 0.00
3 141.60 | 25000.00 | 276.46
4 212.40 0.10 0.00
5 283.20 25000.00 205.65
8 338.80 0.00 0.00
7 344.60 0.00 0.00
8 302.80 | 25000.00 | 146.29
9 41110 0.10 0.00
10 429.60 0.10 0.00
11 | 448.10 0.10 0.00
12 466.60 25000.00 149.27
13 514.60 0.00 0.00
Ta | 520.60 0.00 0.00
15 | 576.00 | 25000.00 | 205.64
16 | 646.80 0.10 0.00
1T | 717.60 | 2500000 | 276.49
18 | 788.40 0.10 0.00
19 | 869.20 | 25000.00 | 402.96

FIGURE DR2B
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plot file: 2DUAT:{ROSSUM.BUC|FOR001.DAT;12
machine: RHIC mode: dqd

Table 1: Input: bellows design parameters

riin Djin din a8 lin per psi Ain Eb psi
0.060 7.630 0.500 0.094 6.000 450,000 0.500 3.207TE40T.
Table 2: Results: bellows properties
Nb tin Din Ain tin be in K lba/in KI lbs/in [ int
17 0.072 8.130 0.352 0.024 0.346 1784.526 4.915E+03 5.13TE+00
Table 3: Results: maximum bellows stresses at p,,
Crman PSL oy psi Tpul psi Cpwl psi Tpe Ymes iR
1.066E+05 1.534E+04 6.869E+04 7.013E+04 3J.071E+04 1.54BE-03
Table 4: Input: bellows misaiignments
((@)in | ¢(7)in | €(13)in | C(14)in 7(8) ) n(13) n(14)
0.030 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Table 5: Input: bellows initial shape
d.6 in d,13 in d.8 in d.13 in
0.020 0.000 0.020 0.000
Table 6: Input: dipole properties
sin Lp in ovhp in Dpm in tm in Im int Em psi
2.00 394. 55.4 10.5 0.188 111, 3.000E+07
Table T: Input: quadrupoie properties
Lyin ovhg in D, in t, in Iq int Eq psi
170. 48.0 10.5 0.188 111. 3.000E+07

Table 8: Resuits: bellows maximum elongation at pay

Pop PSi

dl6 in

dl1ld in

3.000E+02

2.165E+00

6.724E-01

FIGURE DR3A
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A, B of eq.64. Function pfor() opens a file to which the fortran expressions will be written,
then calls dfor() described above, and also creates fortran expressions for C, D, Es, Ec and
G which are needed in addition to A, B in eq.64 to obtain y.
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The values for omega appearing in the solutions of the differential equations are then
defined. They are needed in the subroutine COEF which are the MACSYMA generated
coefficients called Q(i,j), the vector of right-hand sides is W. Q and W are copied into
arrays A and B and inverted using the numerical routines LUDCMP and LUBKSB from [6].
Upon inversion of the matrix, array B contains the solutions XA, XB, F which are needed
1o obtain the explicit expressions for deflections, slopes and curvatures y, y’, y”. Additional
coefficients E, G, D, which are needed for these expressions are generated by MACSYMA
are given by subroutine IND. Finally the maximum local bellows elongation DL can be
computed.

Subroutine PLOT produces four types of output in addition to a table of values.
Option 1 plots maximum local bellows elongation versus pressure, there are two curves, one
for each bellows. Option 2 piots support deflections for each support versus pressure.
Option 3 gives the deflected shape of the magnet-beilows assembly at pcr and pop. Option
4 provides the deflected shape of the bellows at pcr and pop. These are written in the plot
file FOR001.DAT. The Table containing ail the various design parameters and summary
of the output is in the file ECHO.TEX which must be further processed with the TEX
program.
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(c24) dispfunibcl,be2,bed,bed, bes bekeq)?

nl P2
(e24) bel() := £1 + £2 - fu (=== = ===}
ktl  kt2
fl f2 Kl
(225) bc2() = ml + m2 - fa (== - ==} + (£l = €W (~==}} 1
kl k2 ktl
nl
(e26) be3{) = cypl() - ==
ktl
| ¥]
(e27) bed() := cypl() - ===
k2
fl
(e28) bes() := expandiratsimp(cy(0) - 2 ~ ==))
ki
f2
(e29) be6() = cy(l) - -
k2
£l fu nl
fa(yx +yo - =) +flyx-——1x+nl
kl kti
{e30) eq() := expand(ypp = - ’
ei
(d30). done
(c31) dispfun(sol,pfor);
(e3l) sol{) := sol : part(solve(leq(), lunkj, i)
(e32) pfor() := {writefile("workcoef.for"},
detrig : trigsimp(denom(rhs{partisol, 1)})},
detrig
detsimp : egpand{--~——==s——a==], fortran{detere = subst(ls, detsimp)),
1 k1 k2 kti kt2

FOR k THRD 6 DO fortran(subst(is, s3(k))), fortran(cd = subst(ls, xd)), 131

fortran(cg = subst(ls, xg)), closefile())

FIGURE E4
{d32) done



(¢13) "derivative of y w.r.t. x"Sdispfun(yp,pab,hp,hep);
(cld) o
(eld) ypti, §) := pab(i, j) + hp(i, J) + bep(l, J)
(e15) pab(i, j) := - om(i) xa(i) sin(om(i) x(j)} + om(i} xb(i) cos(om(1) x(j))

{el6) hp(i, §) := ze(i) + 2 2d(i) x(3)

(e17) hep(i, §) := (IF i = 6 THEN xinit : x(6)
ELSE (IF i = 13 THEN xinit : x(13)), zes(i) pil cosipil (x(]) - tinit))

+ zec(i) (- 2 pil) sin{2 pil (x(j) - xinit))}

(d17) done
(c18) "list of unknowns"§dispfun(u);

(ci9)
{e19} u(i) := IF i <= 18 THEN ¥a(i) ELSE (IF i <= 36 THEN xb(i - 18)

ELSE (IF i <= 41 THEX f{i - 36) ELSE (IF i <= 46 THEN f(i - 34)

ELSE (IF i <= 51 THEN £(i - 32)))})

(d19) done
FIGURE E&
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{c50) "torsional rigidity of supports at center of the 3 magnets"$dispfun(qam);

(51}
(e51) gam(i) := IF i = 3 THEN gam3 ELSE (IF i = 10 THEN qanl0

ELSE (IF i = 17 THEN qgami7 ELSE 0))

(d51) done
(c52) "product EI for each of the 3 magnets"$dispfun(asl);

{c53)
(e53) aml(i) := IF i <= 5 THEK am ELSE (IF i = 6 THEN al

ELSE (IF i <= 12 TEEN aq ELSE (IF i = 13 THEN al ELSE am)))

(d53) done

(c54) "axial force"$dispfun(fab);

(ch5)
{a58) fab(i) := IF i <= 9 THEM fa ELSE fb
{d55) done

(c56) "useful functions of aml, fab"$dispfun(a,b);

(¢5N
fab({i)
{e57) a{l) ;= emee=-
anl(i)
sum(£(j), i, 1, )
(e58) b{i) = -
anl{i)
(d58} done

(c59) "function expressing the curvature of the magnet and derivatives"$dispfun(f0,f0p,fOpp):

2222; ‘ £0(i) 3= - p x(i) (x(i) = x(19))
{e61) £0p(i) := - {2 x(i) - x{19)) p
(e62) fopp(3) := -2 p

{de2) . done

FIGURE ES8
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(c28) "boundary condition at the supports relating force to displacement"$dispfun(ceq):

{c29)

f(i)

(e29) ceq(i) := IF i <= 5 THEN expand(y(i, i) = ====-)
sk(i)
fli+ )

ELSE (IF i ¢= 10 THEK expand(y(i + 2, i + 2} - ===—==-—-}
sk(i + 2)

. fli+

ELSE (IF i <= 14 THEN expand(y(i + 4, i + 4) = =====-=mv)
skii + &)
£{i+ )

ELSE (IF i = 15 THEN eypand(y(i + 3, 1 + 4) = ==eeme===}}})
sk(i + 4)

(d29) done

(c30) "boundary condition for continuity of deflection"$dispfun{eq):

{c31)
{e3l) eq{i) := = ab{i, i +1) +ab(i +1, i +1)

+ expandiratsimp(- h{i, i + 1) + B(i + 1, i +1))) - be(i, i +1)

+he(t +1,1+1) - zet{i+1)

(d31) - done
(c32) "boundary condition for continuity of slope"$dispfun{peq);

{cIh)
{e33) peq(i) := - pab(i, i +1) +pab{i +1,1+1)

+ expand{ratsimp(- hp(i, i + 1) + bp(i + 1, i +1))) = hep(i, 1 + 1)

+hep(i+ 1, 1+1)-et{i+1)

(d33} done
(¢34) "moment equation"$dispfun(mom):

{35}

£(10) f(19)
- weness = (f0(19} = £0{10)))
sk(10) sk(19)

{el5) mom() := (mom : expand{fd (

f(1)  £(10)
+ fa {wmmee = —mwme— - (fO(lG) - fO(l))));
sk{l) sk(10)

2
nom + sum{gam{i) - £(i) (x(19) = x(i)), i, 1, 19) + fwa p ¥ (19))

FIGURE E10
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Z moments:
18

Fb(610‘Ya(x19)+y51o‘619)‘; Fv(xw-xv)

) (59)
mDp,

2
+Fa(61-yo(x‘10)_610) Y3 Yot Y1 * @x19=0

In addition, we need 49 boundary conditions to solve for the mentioned 51 forces and

integration constants: as defined,

F
y,(&) =6, = k_"(l sn<18,n+6,7,13,14) (60)

n
This results in 18 - 4 = 14 equations. One additional equation must be

F
Yig(Xye) = k_l‘) (61)
19

Continuity (y, to y,,, "nodes”) equations are
Yust Cast)=C ot = Yal%a.) (62)
Inot@aat) = Mar = YalEnst) (63)
Equations 62, 63 are valid when 1<n<17, therefore result in 2 x 17 = 34 more equations,
for a total of 14 + 1 + 34 = 49, as needed. Only (1314 Mg71314 Will be #0 for the system
drawn in Fig. 9.
Note that, in Fig. 9, {7141M714 are drawn so that they must be entered as negative
values; for instance, y.(x,) - {, =y,(x,); since in Fig. 9 y,(x,) <y (x,), {, must be <0: for
“abrupt increases of y(x) (or y/(x)) with x, ¢ (or ) > 0 and for decreases ¢ (or n) < 0.
The solution for equation 57 is
¥, (x) = A cosw x + B sinw x + C,x + D x*

2r

64
+E _wsin [l;-(x -xn)] *+ EMCDS ['_'_ (x —I”)] + Gﬂ ( )

£

51



w,=(F,/EJL)

_ Cn"Fi Fv"F¢¢'x19’¢er19}
pt

1 "
Gu - 'F-[Fc'FpX’slG"yo(xm)) +F361 + ; vau + vn_z‘pEnIn-Fadcn

@

The A,,B, are to be determined, together with the F,, by solving eqgs. 58 to 63.
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VIIa. Numerical Results: Spring Constants, Wall Stresses and Deflections

The step by step bellows design procedure summarized in IIla was applied to obtain
the following numerical results. The input parameters that one is free to choose are given
in Table 1, the remaining bellows design parameters resulting from the preceding choices
are shown in Table 2, stresses 0,,,,, 0, at operating pressure p,, are shown in Table 3. The
ratio D,/d must be large for the theory to apply. The first three cases correspond to bellows
whose diameter is smaller than the shell of the magnet in order to reduce forces on the
magnet supports. In the last two cases, where the bellows diameter is larger than that of
the shell, it is assumed that the supports have been designed to carry the resulting loads.

When the bellows is internally pressurized the deflections and stresses are computed
following equations in ITTb. The system of 10 boundary conditions and three equilibrium
conditions (eq. 36a) is solved using techniques discussed in the section on the Numerical
Method. The maximum stresses in the two circular sections of a convolution, 0., 9,,,, and
in the straight section o, corresponding to eq. 40 appear in Table 3 along with the
maximum deflection of the straight section, denoted y,,,,. Plots of wall deflections w1, w2
in polar coordinates are shown in Fig. al for the first case of the table, corresponding
SITESSES Oy Opw, appear in Fig. a2. These must be added to o, t0 obtain the total
maximum stress. The total stress is large but admissible (for fatigue) to the manufacturers
for a number of about 2000 cycles.

The wall deflection y is shown in Fig. a3 and the stress o, appears in Fig. a4. It s
verified that y_,, is less than r, so that the convolution walls do not touch when the bellows

is pressurized (Table 3).
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Table 1: Input: bellows design parameters

i i D, in din 8 lin per psi A in Eb psi

0.060 7.630 0.500 | 0.094 | 6.000 | 450.000 | 0.500 | 3.297E+07

0.060 7.630 0.500 | 0.094 | 7.000 | 450.000 | 0.500 | 3.207E+07

0.060 7.630 | 0.500 | 0.094 | 8.000 | 450.000 | 0.500 | 3.297E+07

0.060 | 11.800 | 0.500 | 0.094 | 9.300 | 450.000 | 0.500 | 3.297E+07

0.060 | 14.300 | 0.700 | 0.094 | 9.300 | 450.000 | 1.000 | 3.297E+07

Table 2: Results: bellows properties
Nb | rim Din Ain tin | bein K lbs/in | KI Ibs/in T int
17 | 0072 | 8.130 | 0.352 | 0.024 | 0.346 | 1754.526 | 4.915E+03 | 5.137E+00
19 | 0073 | 8.130 | 0.356 | 0.026 | 0.342 | 2095.286 | 4.240E+03 | 5.516E+00
22 | 0.074 | 8.130 | 0.361 | 0.028 | 0.337 | 2410.052 | 3.734E+03 | 6.049E+00
26 | 0.073 | 12.300 | 0.356 | 0.027 | 0.342 | 2732.325 | 7.169E+03 | 1.943E+01
23 | 0.075 | 15000 | 0401 | 0.031 | 0533 | 2756.610 | 1.076E4+04 [ 4.080E+01
Table 3: Results: maximum bellows stresses at p,,

Tmes D8I oa pei Tpwl PSi | Opez P Tz Ymas 1D
1.066E+05 | 1.534E+04 | 6.869E+04 | 7.013E+04 | 3.071E+04 | 1.548E-03
1.03TE+05 | 1484E+04 | 5.042E+04 | G.OTIE+04 | 2.649E+04 | 1.246E-03
9.964E+04 | 1.345E+04 | 4.024E+04 | 5.047E+04 | 2.185E+04 | 9.405E-04
8.083E+04 | 2.157E+04 | 5.741E+04 | 5.873E+04 | 2.557E+04 | 1.184E-03
1.181E4+05 | L1.883E+04 | 7.946E+04 | 8.090E+04 | 3.719E+04 | 2.558E-03
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VIIb. Numerical Results: Spring--Supported bellows model

In order to obtain the bellows deflection y(x) (IV, €q.47), one must solve a system
of 6 equations formed by the six boundary conditions eqs.43, 44, 46a to 46d for the 6
unknowns, A, B, Mcl, M¢2, F1, F2. (See the Numerical Method section for details.)

The solution reveals that A and B have a common denominator which is the
determinant of the matrix shown in Fig. el along with the surface determinant=0 as a
function of pressure and stiffnesses. When the determinant approaches zero, y becomes
unbounded or indeterminate and the bellows is unstable. The determinant is, as expected,
a symmetrical expression with respect to left and right since the indices 1 and 2 can be
interchanged without altering its value. It is a function of Fa (both directly and through o,
eq. 47a) and of k1, k2, k,, k,. With this expression one can find the critical buckling load
of the bellows due to the support system only, that is the value of Fa (or pressure p) which
will reduce the determinant to zero for given stiffnesses. For simplicity, the realistic
assumptions that k,; = k,, and k1 = k2 are used from now on. The precompression is A =
0.

EXSEVESSEEERRESRS SSC SERSTBELFRBEREER

Fig. bt shows a plot of the maximum bellows elongation defined in eq.50 as a
function of pressure. The beilows was designed to have a critical load at 450 psi due to an
assumed initial sine shape (prebend). According to the last case in the preceeding three
tables, this determines an axial stiffness of K=2760 lb/in for a bellows of inner diameter D,
= 14.3 in and length 9.3 in, the supports have assumed stiffnesses of k;; = 3.e7 Ib in/radian
and k1 = 7¢3 Ib/in. There is a peak at 600 psi and one at 1875 psi. The expected peak, for
which the bellows was designed at 450 psi, is absent because y (€q.47) is indeterminate (zero
" appears both in the numerator and denominator). Nevertheless the bellows should be
designed as having a critical load at that value since deviations could lead to large
deflections. Seide [3] and Haringx [4,5] discuss and present experimental data on the
stability of internally pressurized bellows. Haringx shows that a bellows with clamped ends
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can fail at relatively low values for pressure. Keeping in mind that there can be a peak at
we¢ = 7, the spring model will be used here only to find the buckling load due to support
details.

We show next how the analysis of the determinant alone allows one to predict the
critical load due to the spring supports only. The determinant is solved first for the variable
k1, the solution is plotted for several values of k;, as a function of p in Fig. b2. Figure e2
shows the equation giving the value of k1 which will make the determinant go to zero for
various values of k,,. Asymptotic expressions where k,, goes to zero or infinity appearing
in Fig. e3 are plotted as curves 1 and 7 in Fig. b2. A horizontal line drawn at k1=7e3 [b/in
intersects the curve of solutions with k,, =3e7 Ib in/radian when p is about 610 psi. (Curves
are truncated at 20000 Ib/in.) With k,,=0, p is only somewhat larger, at about 650 psi.

An equivalent way to predict the buckling load is to solve the determinant for the
variable k,, as a function of k1 and p. There are two solutions since the determinant is a
quadratic function of k,;. The first one, denoted k,,, in Fig. b3, shows that a horizontal line
drawn at 3e7 1b in/radian would intersect the determinant=0 curve for k1=7¢3 Ib/in at 610
psi. The second root, denoted k,,,, in Fig. b4 shows that for all values of k1 the determinant
is equal 1o zero at 1875 psi when k,, =3e7 Ib in/radian. We have thus explained the origin
of the two peaks in Fig. bl: they can be traced to a given combination of support
stiffnesses. Figures.b2, b3, b4 can be used to ensure that peaks due to supports remain
always above the critical load for which the bellows is designed. Expressions for k1, ky,, kypp
which cause the determinant to be equal to zero are shown in Fig. 2. Limits when w=0
are given in Fig. e3 for the cases where k1=0 and k1 infinite.

We now give an example where the support peak occurs below the w¢ = = peak.
Figure b4 predicts that a peak could be obtained at 425 psi if k1=7000 Ib/in and k, = 1.e4
ib in/radian, this is verified in Fig. b5 which shows the 425 psi peak. In addition there are
“the peaks at 650 psi and at 1830 psi shown in Fig. b2 and/or b3.

Table 4 lists peak locations according to their origin for two values of k. The
influence of the mounting offset ¢ is to accelerate the rate of rise 1o the peaks, but not to

cause them. It is a multiplying factor of the numerator of y and does not appear in the
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denominator. The influence of ¢ can be seen by comparing figs.b6 and b7 which differ only
in that ¢=0.03 in Fig. b6 and zero in Fig. b7. The first support peak is no longer visible
when ¢ =0 but it could be large if ¢ were increased.

Table 4: Pressure (psi) values at peaks

ky 3e7 Ib in/radian led Ib in/radian |
we = 7 peak 450 450
@l = 27 peak 1800 1800
k1, k,,, peak 610 650, 1830
kv peak 1875 425

The effect of the sine shape of the bellows can be seen in Fig. b7 where d1=0.02;
the second support peak is larger than in Fig. bl. This effect is further accentuated in Fig.
b8 when d2=0.02 where there is also a peak at we =2r at 4 x 450 = 1800 psi which here
is masked by the second support peak. In addition to ¢ and dl, the presence of d2
contributes to the rise of the curve even at operating pressure. The corresponding bellows
deflected shape is shown in Fig. b9.

We determine next conditions for support stiffnesses such that support peaks remain
always above the we = x peak for any pressure. A conservative value for k,, is given in Fig.
¢3 by the limit of k,,, when k1 is infinite and w=0. This value is 3D°K/4 for any value of
k1, even infinity. A less conservative value can be obtained by using the relation between
k,;, and k1 given in Fig. €3 for w¢ = 7. The root k,, is zero at we¢ = x for all values of
kl. Figure b3 can be used to verify that no peak will occur below we = 7 if these
_guidelines are foilowed. Figure b4 indicates that the 3D?K/4 value for k,, is three times
higher than needed in that figure to avoid low peaks. The torsional stiffness for an SSC
dipole with two support posts is estimated in the next section at 1.5¢7 1b in/radian which
is much higher than the 4.6e5 Ib in/radian obtained from the proposed limit k,, =3D?K/4.
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Figure brl shows a piot of the maximum bellows elongation defined in €q.50 as a
function of pressure. The bellows was designed to have a critical load at 450 psi due to an
assumed initial sine shapé (prebend). According to the first case in the preceeding three
tables this determines an axial stiffness of K=1785 1b/in for a bellows of inner diameter
D,=7.63.in and length 6 in, the supports have assumed stiffnesses of k,;=3.¢7 1b in/radian
and k1=7e3 lb in. There is a peak at 800 psi and one at 1900 psi. The expected peak, for
which the bellows was designed at 450 psi, is absent because y (eq.47) is indeterminate (zero
appears both in the numerator and denominator).

- Nevertheless the bellows should be designed as having a critical load at that value
since deviations could lead to large deflections. Seide {3] and Haringx [4,5] discuss and
present experimental data on the stability of internally pressurized bellows. Haringx shows
that a bellows with clamped ends can fail at relatively low values for pressure. Keeping in
mind that there can be a peak at w¢ = w, the spring model will be used here only to find
the buckling load due to support details. _

We show next how the analysis of the determinant alone allows one to predict the
critical load due to the spring supports only. The determinant is solved first for the variable
k1, the solution is plotted for several values of k,, as a function of p in Fig. br2. Figure e2
shows the equation giving the value of k1 which will make the determinant go to zero for
various values of k,;. Asymptotic expressions where k,; goes to zero or infinity appearing
in Fig. 3 are plotted as curves 1 and 7 in Fig. br2. A horizontal line drawn at k1=7e3 lb/in
intersects the curve of solutions with k,, =3e7 Ib in/radian when p is about 800 psi. With
k, =0, p is 875 psi.

An equivalent way to predict the buckling load is to solve the determinant for the
variable k,, as a function of k1 and p. There are two solutions since the determinant is a
"quadratic function of k,;. The first one, denoted k,,, in Fig. br3, shows that a horizontal line
drawn at 3e7 1b in/radian would intersect the determinant=0 curve for k1=7¢3 lb/in at 800
psi. The second root, denoted k,, in Fig. br4 shows that for all values of k1 the

determinant is equal to zero at 1900 psi when k,, =3e7 Ib in/radian. We have thus explained
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the origin of the two peaks in Fig. brl: they can be traced to a given combination of support
stiffnesses. Figures br2, br3, brd can be used to ensure that peaks due to supports remain
always above the critical load for which the bellows is designed.

Expressions for k1, ky,, ki, which cause the determinant to be equal to zero are
shown in Fig. e2. Limits when w=0 are given in Fig. e3 for the cases where ki=0 and k1
infinite. 'We now give an example where the support peak occurs below the w¢ = 7 peak.
Figure br4 predicts that a peak could be obtained at 340 psi if k1=7000 lb/in and k,, = 1.e4
Ib in/radian, this is verified in Fig. br5. In addition there are the peaks at 875 psi and at
1700 psi shown in Fig. br2 and/or br3. Tabie 5 lists peak locations according to their origin
for two values of k. The influence of the mounting offset ¢ is to accelerate the rate of rise
to the peaks, but not to cause them. It is a multiplying factor of the numerator of y and
does not appear in the denominator. The influence of ¢ can be seen by comparing Figs. br6
and br7 which differ only in that ¢=0.03 in Fig. br6 and zero in Fig. br7. The first support
peak is no longer visible when ¢=0 but it could be large if ¢ were increased.

The effect of the sine shape of the bellows can be seen in Fig. br7 where d1=0.02;
the second support peak is larger than in Fig. brl. This effect is further accentuated in Fig.
br8 when d2=0.02 where there is also a peak at w¢ = 27 at 4 x 450=1800 psi which here
is masked by the second support peak. In addition to ¢ and dl, the presence of d2
contributes considerably to the rise of the curve even at operating pressure. The
corresponding bellows deflected shape is shown in Fig. br9.

Finally Fig. br10 shows the maximum elongation for a bellows of large diameter,
D,=11.8 in and 9.3 in in length for the same parameter values as in Fig. br8.

Table 5: Pressure (psi) values at peaks

ky 3e7 Ib in/radian led 1b in/radian
we = 7 peak 450 450
we = 2x peak 1800 1800
ki1, kn_, peak 800 875, 1700
k., peak 1900 340
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We determine next conditions for support stiffnesses such that support peaks remain
always above the w¢ = r peak for any pressure. A conservative value for k,, is given in Fig.
e3 by the limit of k,,, when k1 is infinite and w=0. This value is 3D*K/4 for any value of
k1, even infinity. A less conservative value can be obtained by the relation between k;,, and
k1 given in Fig. 3 for w¢ = . The root k,y, is zero at we = x for all values of k1. Figure
br3 can:be used to verify that no peak will occur below we = n if these guidelines are
followed. Figure br4 indicates that the k,=3D?K/4 value for k,, is three times higher than
needed in that figure to avoid low peaks. The torsional stiffness for RHIC dipoles is
estimated in the next section at 3e7 Ib in/radian which is much higher than the 83500 Ib
in/radian obtained from the proposed limit k,, =3D’K/4.
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VIic Numerical Results: Bellows interactions in Magnet Systems
M ivalent Stifs

In order to relate results from the magnet bellows system to the spring-supported
model it is desirable to have an approximate value for the equivalent lateral spring constant
and torsional stiffness of the magnet ends.

The magnet is modeled as an axially compressed beam with five supports to which
a force or moment is applied at one end. This is a classical statistically indeterminate
problem solved by applying the equations derived in VI for the magnet - bellows assembly
to one magnet only.

One of the major differences (of concern to us in this problem) between RHIC and
SSC magnets (and also between dipoles and quadrupoles) lies in the location and number
of supports which is adjusted by setting the relevant support stiffnesses to zero in the general
model with five supports. Entries in Table 6 show similar stiffnesses with the exception of
the last case; SSC dipoles are mounted on five supports inside the cryostat which itself is
mounted on two supports to the ground. (The cryostats are interconnected by bellows.) The
actual stiffness of the magnet cryostat assembly is between the two extreme cases of five
supports and two supports. Tests can be made to measure the stiffness of the magnet-
cryostat assembly. The lateral stiffness k, and torsional stiffness k, are practically linear

functions of the axial force equivalent to the pressure, but their increase is so small that they

can be considered constant.

Table 6: Magnet stiffness

Magnet k Ib/in k. Ib in/radian
RHIC quadrupole 6600 3.0 e7
RHIC dipole 7500 3.2e7
SSC dipoie 5 support 6300 3.0e7
SSC dipole 2 support 530 1.5e7
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Magnet bellows assembly

The first example of a magnet bellows assembly is for a dipole-dipole-dipole
combination with SSC dimensions. The bellows inner diameter is 14.3 in, its length is 9.3
in, and the axial stiffness which will produce a first peak at 450 psi is K=2760 1b/in, the
precompression A =1 in, the safety factor over the operating pressure of 300 psi is thus 1.5.
In Fig. d1 the maximum local elongation of the two bellows is plotted versus pressure, the
initial offset of the first bellows is ¢;=0.03 in, it has an initially bent shape with ds6=0.02
and dc6=90.02 in. The upper curve made of triangles corresponds to the first bellows, the
lower curve made of crosses corresponds to the second bellows. Maximum elongations are
denoted in the legend dla and dib for the first and second bellows respectively, all values
are truncated at 5 in for better dispiay of detaiis.

Figure dla summarizes the parameter values for the bellows, mounting offsets,
magnet parameters, shows the stresses and the maximum local elongations at operating
pressure. Figure d1b indicates where the supports are located, what their stiffnesses are and
what forces are exerted on them, bellows are located at nodes 6, 7, 13, 14.

Peaks

There is a small peak in the curve for the first bellows at 450 psi which requires a
fine mesh to be detected. It reveals the indeterminacy at w€ = w discussed in the spring-
supported model. The rate of rise to this w¢ = 7 peak is controlied by ¢, dsé and dc6
which are also equal to 0.02 in. There is a rising trend in the curve as it proceeds toward
the w¢ = 2r peak at 1800 psi.

The curve corresponding to the first bellows (which has the mounting offset) shows
a large rise to the first support peak at 600 psi. The second bellows has a smaller peak at

the same location but does not seem to rise below that. This indicates very little, if any,
interaction between bellows. Going back to Fig. b2, a peak at about 600 psi for large k,
would occur at k1=6000 lb/in. This number agrees with the 6300 Ib/in computed above

in the section on magnet equivalent stiffness.
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Mounting and shape of bellows

Figure d2 shows the ideal case where there are no mounting offsets and where the
bellows are almost straight. Accompanying tables are shown in figs.d2a, d2b. Comparison
with Fig. d1 shows that as with the spring-supported model, 571314 7671314 2nd ds6,13,
dc6,13 increase the rate of rise to the support peak. The effect of an initial angle 1 is
similar to the effect of ¢, for instance replacing ¢,=0.03 by ns=0.004 would leave Fig. d1
unchanged. If both bellows were mounted in the same manner and had the same inijtial
shapes, then the lower curve of Fig. d1 would coincide with the upper one. In the spring-
supported model (Fig. b6) there was no visible support peak when ¢=0, but there is one
here because the assembly was assumed to have an initial average parabolic shape due to
the magnets’ sagitta.
Bell . .

Figure d3 corresponds to the case where lateral forces ( f(7)=-(6)=12500 p/p,, if
P < pop and f(7)=-f(6)=12500 Ibs if p 2 p,,) are applied to the first bellows according to
Fig. 9 in order to simulate faiiure in a dipole-dipole-dipole assembly. The upper bellows
curve has exceeded the 5 in cutoff limit while the lower bellows curve remains flat denoting
no interaction between adjacent bellows at operating pressure. A more pronounced
interaction effect is visible in Fig. d4 for the dipole-quadrupole-dipole assembly where the
second bellows shows a maximum elongation of 0.5 in above the initial precompression of
1 in. Complete failure of one beliows does not cause adjacent bellows to fail.
Deflected shape of assembly and bellows

Figure d4 shows the deflected shape of the assembly corresponding to Fig. d1 at
operating pressure. In order to better see the effect of the internal pressure on the system,
only the departure y of the assembly from the initial shape has been plotted. The total final
shape is the superposition of the initial parabolic shape, the sine and cosine bellows shapes
'if they apply, and y. The Table in Fig. d1b can be used to identify bellows and dipole
locations. The 0.03 in offset marks the end of the first dipole and the beginning of the first
bellows. The offset can also be seen in the bellows deflected shape in Fig. d5, and in Fig.
dé.
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Additional
A possible alternate configuration is shown in Fig. d6 with a dipole-quadrupoie-dipole
assemnbly. Both bellows are mounted with offsets and prebent shapes in order to maintain
symmetry with respect to the center of the assembly and, as expected, both curves coincide.
The dipole-dipole-quadrupole configuration where the second bellows only is
mounted with the usual offset and bent shape is shown in Fig. d7. The second bellows curve

is higher than the first one because it is the one with the offset.

EZERTLARES RI_IIC EREEXRREEE

Magnet bellows assembly

The first example of a magnet bellows assembly is for a dipole-quadrupole-dipole
combination with RHIC dimensions. The bellows inner diameter is 7.63 in, its length is 6
in, and the axial stiffness which will produce a first peak at 450 psi is K=1785 Ib/in, the
precompression A =0.5 in, the safety factor over the operating pressure of 300 psi is thus 1.5.
In Fig, drl the maximum local elongation of the two bellows is plotted versus pressure, the
initial offset of the first bellows is ¢;=0.03 in, it has an initially bent shape with ds6=0.02
and dc6=0.02 in. The upper curve made of triangles corresponds to the first bellows, the
lower curve made of crosses corresponds to the second bellows. Maximum elongations are
denoted in the legend dla and dlb for the first and second bellows respectively, all values
are truncated at 5 in for better display of details.

Figure drla summarizes the parameter values for the bellows, mounting offsets,
magnet parameters, shows the stresses and the maximum local elongations at operating
pressure. Figure drlb indicates where the supports are located, what their stiffnesses are
and what forces are exerted on them, bellows are located at nodes 6, 7, 13, 14,

‘Peaks

There is a small peak in the curve for the first beliows at 450 psi which requires a
fine mesh to be detected. It reveals the indeterminacy at w¢ = = discussed in the spring-
supported model. The rate of rise to this w¢ = x peak is controlled by ¢, ds6 and dcé
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which are also equal to 0.02 in. There is a rising trend in the curve as it proceeds toward
the w¢ = 2x peak at 1800 psi.

The curve corresponding to the first bellows (which has the mounting offset) shows
a large support peak at 700 psi. The second bellows has a smaller peak at the same location
but does not seem to rise below that. This indicates very little, if any, interaction between
bellows., Going back to Fig. br2, a peak at about 700 psi for large k, would occur at
k1=5000 ib/in.

Mounting and shape of bellows

Figure dr2 shows the ideal case where there are no mounting offsets and where the
bellows are almost straight. Accompanying tables are shown in figs.dr2a, dr2b. Comparison
with Fig. dr1 shows that as with the spring-supported model, 51314 771314 and ds6,13,
dc6,13 increase the rate of rise to the support peak. The effect of the initial angie 7 is
similar to the effect of ¢, for instance replacing ¢,=0.03 by n,=0.004 would leave Fig. drl
unchanged. If both bellows were mounted in the same manner and had the same initial
shapes, then the lower curve of Fig. drl would coincide with the upper one. In the spring-
supported model (Fig. br6) there was no visible support peak when ¢=0, but there is one
here because the assembly was assumed to have an initial average parabolic shape due to
the magnets’ sagitta.

Bell . .

Figure dr3 corresponds to the case where lateral forces (f(7) =-£(6)=3000 p/pop if p
< Pop and £(7) =-f(6)=3000 lbs if p 2 p,,) are applied to the first bellows according to Fig.
9 in order to simulate failure in a dipole-quadrupole-dipole assembly. The interaction effect
on the second bellows is small since the second bellows shows a maximum elongation of
0.17 in above the initial 0.5 in precompression. Complete failure of one bellows does not
cause adjacent bellows to fail.

- Deflected shape of assembly and bellows

Figure dr4 shows the deflected shape of the assembly corresponding to Fig. drl at
operating pressure. In order to better see the effect of the internal pressure on the system,
only the departure y of the assembly from the initial shape has been plotted. The total final
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shape is the superposiu'o‘n of the initial parabolic shape, the sine and cosine bellows shapes
if they apply, and y. The Table in Fig. drlb can be used to identify bellows and dipole
locations. The 0.03 in offset marks the end of the first dipole and the beginning of the first
bellows. The offset can also be seen in the bellows deflected shape in Fig. dr4, and in Fig.
drs.
\dditional

A possible alternate configuration is shown in Fig. dr6 with a quadrupole-dipole-
quadrupole assembly. Both bellows are mounted with identical offsets and prebent shapes
in order to maintain symmetry with respect to the center of the assembly and as expected
both curves coincide.
Double peaks

In Fig. dr7 bellows with diameter D,=11.8 and length 1=9.3 in have been used with
a dipole-quadrupole-dipole configuration. The first bellows only is mounted with an offset
$¢=.03 in and ds6=dc6=0.02 in. This choice of bellows parameters accentuates the fact
that in general there are two peaks due to supports where there was one in the spring
support model. (Close observation of Fig. drl reveals that there are really two peaks which
are slightly offset at 700 psi.) Indeed mounting only one bellows with an offset introduces
an asymmetry in the probiem. In Fig. dr7 the first bellows becomes unstable first at 630 psi,
then the second beliows becomes unstable at 760 psi. A peak in one curve always coincides
with a lesser peak in the other revealing some interaction between bellows when they
become unstable due to the support system. When the asymmetry is removed by letting
¢14=-S¢ and using bellows with identical prebent shapes the two peaks now merge at 740
psi in Fig. dr8.

sssassssss G5O and RHIC ********»»
The two types of instabilities which can occur, the Euler-type of buckling and that
due to the support system have been identified. The support peak (or peaks) should always

be above the we = w peak, this is controlled mostly by ensuring a large value for the
torsional stiffness of the bellows supports. Interaction between bellows affects only support
peaks which are kept well above the 450 psi (w¢ = w).
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VIII. Numerical Method

Most of the aigebra required for this problem was performed using the symbolic
manipulation code MACSYMA. This code has proved to be of invaluable help both
numerically and anaiytically. Some of MACSYMA's capabilities and limitations are
illustrated in the following four cases.
Convolution wall stresses and deflections

The numerical part of the internally pressurized bellows problem rests on the
inversion of a 10X10 matrix which is performed analytically here using MACSYMA.
Eq.(36a) in IIb describes the linear system of 10 equations and unknowns which are solved.
These very long expressions are tranmslated into FORTRAN and written into a file for
further processing (graphics, parametric study) using conventional fortran code. In this
example where results are so lengthy, the availability of an analytical solution offers
marginal improvement over a numerical matrix inversion.
Spring supported bellows model

The numerical part of this problem is reduced to finding the six unknowns A, B, Mc1,
Mc2, F1, F2 using the six boundary conditions egs.43, 44, 46a to 46d.
Results are now of manageable size and can lend themselves to analytical investigation in
addition to the usual procedure of transiation into FORTRAN. The list of boundary
conditions and eq.47 appear in Fig. e4, function sol() solves the system, function pfor()
opens a file in which it writes the appropriate FORTRAN statements. pfor() also
rearranges the determinant of the system to produce the expression already seen in Fig. el.
In the section on Numerical Results it was shown how this determinant was solved for k1
and k,; and how this allowed us to predict critical loads. In this respect MACSYMA was
critical to the comprehension of the problem.
Bel] . .

' The numerical part of the problem in chapter VI is reduced to solving a system of
51 equations (eqs.58 to 63) and 51 unknowns which is written using matrix notation as:
X[Q]=W. Inverting analytically the matrix with MACSYMA was not attempted due to its
size, instead MACSYMA was used to find the coefficients of [Q] which is almost impossible
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to do by hand due to the massive amount of algebra involved. Given the list of 51
unknowns and 51 equations, MACSYMA gathers all the coefficients of the unknowns and
collects the terms forming W. The result is transiated into fortran and electronically
transferred to a numerical computer code where the matrix inversion is performed
numerically. A discussion of the code is included in the appendix.
Magnet lateral spring copstant

The lateral spring stiffness of one magnet is obtained by slightly modifying the code
for the previous problem since deflection, boundary conditions and equilibrium equations
are the same. Equations describing the first magnet only are kept: the number of supports
is reduced from 19 to 6 and functions describing beilows are omitted. A force or moment
is applied at the end of the magnet and the corresponding deflection or slope is computed,
thus giving lateral stiffness and torsional stiffnesses. This last example shows how the same
MACSYMA code can be adapted to two different problems with similar equations. One of
the drawbacks of MACSYMA is that results are presented in a form which is often not the
most concise. A considerable amount of effort must be exerted to reduce expressions to
their most advantageous representation.
REFERENCES

The most recent reference, ref. [3], contains an extensive historical review and
discussion of work related to internally pressurized bellows. It investigates the stability of
a cantilevered bellows with a movabie end which is permitted only to rotate about a fixed
point on the longitudinal axis of the beam. This case is not applicable to the present
problem.

The other two references, [4], [S] show that buckling can occur in internally
pressurized bellows at a relatively low pressure even when the ends are clamped rather than
'simply supported. The bellows stiffness is computed based on corrugations of rectangular
shape.

Roark [7] contains additional references than [3--5] and a discussion of internally

pressurized bellows.

75



References

(1]

(2]

[3]

4]

5]

[6]

7
(8]

S. Timoshenko and J. Gere, Theory of Elastic Stability, Mc Graw--Hill, 2nd edition,
p.143

S. Timoshenko and J. Gere, Theory of Elastic Stability, Mc Graw--Hill, 2nd edition,
p279

P. Seide, "The effect of Pressure on the Bending Characteristics of an Actuator
System, Journal of Applied Mechanics,” Sept. 1960, pp429—-437.

J.A. Haringx, "Instability of Thin Walled Cylinders Subjected to Internal Pressure,"
Philips Research Reports, vol. 7,1952, pp.112-118.

J.A. Haringx, "Instability of Bellows Subjected to Internal Pressure", Philips Research
Reports, vol. 7, 1952, pp.189-196.

W. Press, B. Flannery, S. Teukoisky, W. Vetterling, Numerical Recipes, Cambridge
University Press.

W. Young, "Roark’s Formulas for Stress and Strain”, 6th ed., MacGraw--Hill, 1989.

A. Laupa and N.A. Weil, "Analysis of U-shaped Expansion Joints", Journai of
Applied Mechanics, March 1962, p.112.

76



gozz

19 34n5I1g 191VE 100H0A<ONA NNSS0E>2vna sz

sd geaad

ea._uu ee.n— oooT 00! 00z1 0001 e_wn 2..0 e.w_v 002 0

i L i M A

at 000°0=2P
ut 000°0=1P |
ui/sq| §0+A0°L =21 .
ul/sq[ £0+30°L =TH
wsq L04+30° =2
uisq 20+30°€ =131 |
ar £0'0 =T -
at 9'ST =@
utl 0'09L2 =X
0SS

Y

eV
v v

a4
4

v .:._.m

| =g
QNTOET

T P ——]———T— T T T |- ®

said sa Buojp xow:Ppour smopag papioddns-—-burids

77



JUI=11 L
LO+H0T =11 9
90+30'T =TIA G
GO+I0E =TI ¥
S0+E0'2 =11 ¢
YO+A0'T =111 &

0=111

- wiggl =q
uy/sqio09.2 =M
0SS

<d HUNOIA

LLIIVE TO0N0A<INE ANSS0U>:L¥na$ze

18d sa1g
0002 0087 eme— em¢~ 0021 QJG— noe 009 . emv 003 [1]
M 4 A PR ST i o_ia U T i i aada a2 2 a2 & s 1 4
R K 1
n
X / AN {
- am ¥
- (gor =y Nl
4 AN o . " v A n “ b 4
1 _ _ g = xr
] (892 =ty ‘pay = 11y) L3t q LS
. mn T x |
i bg ¥ x L
ag ¥ X
] x® L 2
X ¥ ol
L] AR v Xx o
am ¥ . oo |
- ’. v X -] -
wn'x o
o “ " X ° i
x °
x Ddix °
o x \d
vy o7
A -
% o .X o® L
b R
Solo0 I
x ] ]
] P [
* 5 .
™ ~
x— vy [
x x
b4
T |
vy [
v N |
v |
v gb !
* an
v " [
vy B 1
] v W I
] ¥ ua b=
+ " =8
A S ) AO ED SEN  D p wmm A et S 5
; £=x
4 wy
1 aNzOTT
|
Y T 71 T N S S NN SN B B Shs St e mt o | ZNNL A S B SN S BREL BN SR SR

saLd sn py rpPpouwt parioddng Hursds

0008~

' 00002

00097T- 00002~

00007~

0009 [1)
uL/aqr M

oooot

ogo9t

78



¢d AUNODIS ZO1LYA 100404<0Ng  ANSSoN>Lvnadas

18d saxj

0022 0002 ee_n- OJQ- oe.v— oo.u- 0001 e-wn e_.uc =.~=. __z.-u L]

aeIpeI/aIsqy eyIn

" U] S
| o
N e / ' $
. (822 = 'y 'pa1 = 1y) (go1 + 'y ‘228 = 1) rm
] . 3
; [ 1
: '
1 [ &
o ¢
n -~
o 'S
‘ [
_ . [
_ 1 ¢ [®
_ [
| 8
=L oy |8
£0+40'6 =119 | oL
£0+30% =M G | S
| [ ©

£0+30C =M ¥
£0+30e =IAE |
£o+d0'T =112

0=11 1

™

T

138 2

wosl =a Jizs S

= | ©

ul/sqio09Le =A ]i:3 YA
0SS ﬁ..s: v/ e ="y wy |

T e - T T Ty

saud sn vy Ppout parroddng Hurads

79



Jar=1y .
£0+306 =119
£0+302 =T ¢
£0+d0°C =1 ¥
£0+d0'C =M g
CO+30T =12

0=T1 |

arQer =g
uy/sqio'09L2 =1
JSS

1

-+

— e

PO AUNDIS  4ALUVE 1008040 RNSE0>LVNA$2S

18d Baay

ooert OJQ- ua—vn oo_un ooor ooe 00 a0y 002
N P W S TP AP T VO R

PR Y

\..

Am&. = Iy 'gag = 1y)

(€32 =Ty ‘par = 1y)

J

—r——r—r—r— oy
000092T= 000000Z= 00009/88000090—

awrpws/aisql qI3

A DA S AR M S S SN S SE S SN SN Se S I SE S S S e e SR SN

saLd sa Q1o JpPepout pajsLoddng burads

0000920 0000008 O0OOOSLE 00000SZ OOHOOZT

80



¢ FHNDIA S£1Iva 100804<0n9 ANSS0E>Lvnaizd

1sd saad
000T 00 0021 0001 oos 009 oot 002 0
FEEE S NPV W ST U T B PR RSP SR NP TSR R " -

oozz o002z 008t
. P

g
ot [p

| |
_ o
]
|
ur 020°0=2P

ut 020'0=1P |
ai/sql £0+30°L =2 v o
ay/sqr g0+30°L =1 v
usqUpo+a0T =1 | T
aisq[ ¥0+40'T =11 | v v

at g0 =)oz TR —— {=v

a1 QGl =q | i
ur 0092 =A |
3SS |

LA JUEN U S e e |

saud sa buoja xow:ppowt smoag parroddns—burads




nozz

Az

ejwu

ooer
P

eo.o-

oovi
N N

94 JUNOI4

18d
oozy

saad

ooal
s 1o

ggiIva 1004 04<ONG ANSEON>:LVNasZE

ooy
il

-

|
— 4
| ]
| .
at 000'0=2P |
ur 020°0=1P |
ul/eqq gO+F0L =2% _
ul/sqi £04+30°2 =1
utsqq L0+90°¢ =
ursqy L0+30°€ =131 |
ur g0'0 =Pz
ar gy =q |
ul 0°09L2 =N
088

4

-
| |
«

UNIDdT]

-~

-

T

YT

T

—T T T

T

T

T

saud sa Huop rowjppow smopag pajioddns—Lursds



1

PO 't

28 HUNDIA  £0.Iva 100H04<ONE ANES0A>-LYNA$2$
saxd ™
oot >}

18d .
009T  00¥1 o0z oog 009  00% 002 0
FERES I S T S U S S P PRI WS I LA S P S . Y

i)

— 4

at 090'0=2P

ar 020'0=1P |
ul/sql g0+30°L =21
ul/sqi £0+30°L =11 |

usqq L0+H0E =2 |

aieq L0+30°'¢ =11 &

ut £0°0 =39z

ut g'et =@

ut 092 =X

-

<
daq

o

:
al [p

-~

[ 34

| I s S B S S R SEEL SN S RN A S A A e R

JSS

T

smojag pajioddns—Lureds

saud sn Huop row:ppour



00481
sl 4o

amo-

oarl
N

84 FUNOII LELVA 100404<2INT RNSSou>Lynadze

1ed

L

oozt
P

saxd

o001
P D

o0e
A

009
b .

ooy
.

002
s daa

0022
PR T

ut 020°0=2P

at 020°0=1P |
ui/sqq g0+30°L =24
uy/sql £0+30°L =1
uIsq[ 20+40°¢ =21

uIsqy £0+40°€ =1 | :
b ORI

a1 £0°0 =197
ar 9°sr =q
ur009ie =41
JSS

T

——r—r—

g 4
< aq

LI S |

r—r—r7 T

—r T

| =y
aNIDIET

-

T

saad sn Huoja xowippowr smopag parsoddns—Lursds

84



ai 020°0=2P

at 020°0=1P

uy/sq[ £o+H0°L =2
ui/sql £0+30°L =17
wisq( L0+30° =2
aIsq] 20+30°¢ =11
at go°Q =39z

ul 9'GT =@

ut 00922 =M

Jss

o1 8

6d 9YNDIA

oy x
S

P |

LB°LYQ 1004 04<DNE ANESOY>:LVa$2$

[=y

0000’0

9210°0

092070

) 00900  $2800
at (x)4

r—r
9290°0

pr—p—
0940'0

1sd ggg 10 X s fizjppows smopjpg pajpeoddns—burads

T

— T

T

T

T

L

T

T T

SL80°0

85



at 000°0=2P
ut 000'0=TP
ut/sqi £0+30°2 =21
ul/sqi go+A0°2L =1
uIsqf 20+30'€ =7
atsq L0+30°C =17
ut £0°Q =)oz

al §'g =g

ur 0°008T =}

OIHY

THE AUADII 29UV T00¥04<ONE RASSOE>2Vna$2$
18d saxd
0022 0002 0091 009T  OOWI 0021 0007 009 009 ooy 002 0
pu Al a s 3 o a1 a4 P T R R S o
T
v v
vV v
e
v
v
v
v
- -t
1 L B
b v m
. v B
- v |-t
| S
ONTIET
3
T L T « T T T - T ¥ T T T T T — T ™ T T L L L - A °

ANBELRE N NN B A S L SRR BN SR

sa.d sn Buojp rouLppow smopag papsoddns—-burids

86



JUI=13% 2
L0+30'T =T 9
90+30'T =IM G
cO+d0E =111 ¥
co+H0'2 =IM ¢
$0+30°T =M 2

0= 1

ar g =a
u1/sq10°0081 =)
JIHY

ZUE TUNDId  924va 100¥04<ONE NNSEOU>:2¥nased

18d saxg
0002 000t 009t 00%1 o0zt oo0t 008 009 ooy 003 0
L4 .1 Ly A P T bl PN B T S MEPETS B U S S B Y PEY w
[ -]
Q
] / &
] '
/ I~
) . g
{2ex (€32 = 1y ‘pa1 = y) (21 = 1y ‘gog = Uy) e
5 _
1r=0 o
15 :
1i=y 8
JNEDET )
-A 3
4 5 W
p F ©
_ |. + =
| ] [ 2
Q
- | ©
] T [
4 |
L-
- ] =
-}
p + F @
+ [ [
+ I
~ +++++T++ Im
F O
. : f
0 e e i e e e o ) -2
- 2 o
[
o
T T T g
1

satd sn jy :pppout pajsoddng Huruads

uy/sqr T

87



Ja=ix L
£0+¥06 =119
e0+dI0L =1A ¢
E0+40°¢ =1 ¥
£0+30't =11 E
E0+I0°'T =T ¢

=111
aurg =q

ul/sqi0°0081 =M

JIHY

EHd FUNDIA

009

00 . 002

SFILLY 100804<ONd ANBEON>LYNA$2$

.hun = :u:

"00008-

L i

 00084=00000T=

00092-

™

00053
TeTpRL/aIsq] T3

Y

18d saixg
ooz2 0002 o091 0001 ooF1 (111 411141
I TSP T..........F..P...Llj
/ \. /
/
] (gar = 'y ‘va1 = )
|y
n
1 A
] -
] | .
B :
5 |
]
A=y
=8
] 9=a
=0
E=x
=+
I=9
HINEDT1

sadd sa Dy PPpows pajsLoddng burads .

88



PHE FUNDIA 0V LIV 100HO4<ONT ANSSOU>LYNa$ZE

1ed saxg
0002 oo 2-0— . ._uc..v.-. . .ao.n- .ao.e—. . an._n . .2.5_ an.-_v ) .a..__u. - 0 .
[ T= 5
| / Hm
] . S
Aﬂm-h =1y ‘23p = -&_v Aﬂoh = 1y ‘pa1 = -ﬂw ,m
. &
-1 L ﬁ.m
. S
n | ©
Ill ,.. i
] " &
. L. S
] ," -0!.
1] !iiom
] F o
| ] | @
| ._.Q?T\:‘“mm
. = ™ -
=iy 2 ] v/ @ ="y Wy 5E
£0+40'6 =119 [P
£0+A0L =TAG | S
4 - ©
£0+30°C =11 ¥ [©
€0+30¢ =M€ | 3
€0+A0°T =M 2 ] 8
0O=IA T | i s
wurg  =q JLFJ Bl
u1/sqi00081 =4 | mm (8
Qmmum qaNIDET _.w
.|<q<.._4.._...-1.._...q......‘_..._.+.m
(=]

saLd sn Q3 :Ppows pajroddng bureds.

89



SHE AUNDIA  SLLYa 100803<ONE NNSS0U>LYnas2s
isd -
0021

0022 oooz
AP

saxd
ocot

eo.n- 00971 00F!
- PP B

Owu 2__0 e__=_

Ldeh

Oa.-n 0

hdh

——
q
< <99

ar 020°0=2P

ut 020°0=1P |
ui/sq| g0+30°L =24
uL/sqp £0+30°2 =13
ursqq $0+80°1 =2
aleqt $0+40°T =TI

ur 1p

90

utl £0°0 =127

arre =d

ur 0°'0081 =X
OIHY

4

—r T

| L A

T

L

) et

T

LA SRR A A Sme

| =7
qaNzoT1

-

sa.d sn Buoja xowjapout smopag pajpsoddns—bureds

T T T



0022 o002

gogt
PP

PSS Y

0097
sl

oUg AUNDIJ Y9'LVa 100404<INE AASSOL>:LYNAbZE

18d saad
0021 0001 0oe 009 ooy 002 0

oort
PR Y

— 4

at 000'0=2P
af 020°0=1P |
uL/eq[ 0+30°L =21 .
uy/sqi 04302 =1
wisq[ L0+30'C =2 |
ulsqp L0+40°C =1
ut 00°0 =Wz -
wWIg =q |
ut 0'0081 =X
OHY

LN S S

ar ip

1=V
Ny

T

A S

LN I S NS S S B S A S N

sa4d sa Hu0pp oW PPoOU smopag pajioddns—burlds



ooe1
P B

199 dHNDIA ¥OILYA T100H0A<ONH RASSOH>LVNA$ZE

saxd
0007

O R 1

18d
002 0
FEEEE WO S R 1

tov  oumt 009
hair A 009

oo¥
a2 i g

aa.o._. 009
- — e d 4o

at 000°'0=2P
ul 020°0=1P |
ul/sql €0+30°L =gX

uL/sq[ £0+40°2 =11 %
wsqf L0+30°E =¥ | .
uieqy L0+30°¢ =117
ur £0°0 =)9Z -
arrg =q |

ul 0’0081 =X

q 94
4 q

<

L. on

T

LA L R

JIHY

LI i e

T

saad sa Huojp xow:ppow smopg parioddns—burads

L NS RS R S S

92



amoﬁ

0007
1

Ao A A

995LYa 10DHOA<ING ANSS0U>:LYNA$2$

sHd JUNOIA

18d © - saxd

oov1

) NI TNl W T

ooz1 o&o- own

"

amt emﬂ

||
_ |
| ]
| |
al 020°0=2P

ut 020°0=1pP |
u1/eq[ £0+30°L =21 |
uy/sqq 0+d0°L =1
arsq[ L0+30'¢ =2
uisq[ L0+40°¢ =1
al §0°0 =492

a1 1'g =

ur 0'0081 =1

Oy

0002
.

PR

—TrrTT

q 99

LB LA (L e A R

dqq

<

T

T

r

i

twy

aad

T

L S

saad sn Huoje xow:PPOwL smonag pasoddns—burads

ur e

93



ut 020°0=2p

ut 020°0=1p

ui/eqi g0+30°L =2
ui/sql g0+30°L =1
utsqy 20490°¢ =
uisqp 20+40°€ =11
a1 £0°0 =jez

al g =(

ur 00081 =N

OIHY

6Ug FUNDOY O9ALvE 100404<Ina ANSE0Y>:LYNASZE

arx

o
-
L]

- ca

=
o

— l— ——— ——
F R S W e

| =y
NI

00000

" 9at10'0

' 9.180'0'
w (x)4

0290°0 00900

— v
0gL0'0

T y T v | — + T 1 T T 1T T T T T T L — LA |

wsd ggg 10 x sn Rapowt smopeg pajroddns—bursdg

oL20°0

94



otdg 3UNDIL 80°1Yd’ 100404<2NE NNEEOY>:L¥NA§2$

95

18d
Aok o 4

saxd
0021 oot 009 00y

aa.!. ee.'- e..wo

oozz aa.eu ea.n-

- o

a1 [p

| |
— 4
! ]
]
uy 020°0=2P
ay 020°0=1P
at/eql 0+30°L =21 o
ut/sq[ g0+d0°L =1 |
wisql L0+A0°E =21 |

uieqf 20440 =11 | '
oy ¢0°0 =322 A SRR

urggr=ad |
u o2eLz =9 |

,......q.-..<_...-...__...9

- T T

OHA
smoppg pajsoddns—bureds

4

v
v
v
v
v
v
v
v
v
v
v
| =9

T

saud sa Buoja rouwPpowt




1d JUNDIA 08.LVE T00NCA<ONT RASEoE>:LYNaS2e

18d s8a1g
0os 00e 0oL 009 oog ooy ooe ooz oot o

.......
..........
.....
......
.....
AN

ay/sqy 2'66L2 =N | !
5 00  =[E o
5q1 00 =(9)1 | ”
at 000'0=CISP | 2
ul 020'0=95p | v [
at 000'0=¥113 _ ”
a1 0000=E11° .w
uf 000°0=23°
at 000°0=97°
a1 000'0=¥11°2
Ul 000°0=E1I0Z ] we=s }
ut 000°0=1Z ] ddont
ut 0£0'0=919Z |
PPP JSS

-4.-.-.-44..—-.-.-.q..-.-<-..-.-...-..q-.g

NOLLVONOTH TVI0T SMOTTIHd XV



plot file: 2DUAT:[ROSSUM.BUC]FOR001.DAT;!IO
machine: SSC mode: ddd

Table 1: Input: bellows design parameters

r; in D; in din a lin per psi Ain Eb psi
0.060 14.300 0.500 0.094 9.300 450.000 1.000 3.297E+07
Table 2: Results: beliows properties
Nb rin Din Ain tin be in K Iba/in Kl lbs/in Iint
28 0.072 14.800 0.356 0.025 0.342 2759.212 1.048E+04 3.1561E+01
Table 3: Resuits: maximum bellows stresses at p,,
Tmes DSi on psi Tpul PSi Tpuy PH Ope Vmas il
1.523E+05 2.778E+04 8.640E+04 8.782E+04 2,96TE+04 1.4T2E-03
Table 4: Input: bellows misalignments
(8)in [ ({T)in [ C(13}in | C(14)in | n(6) 27 | #(13) | n(14)
0.030 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Tabile 5: Input: beilows initial shape
d,6in d,13 in d.§ in d.13 in
0.020 0.000 0.020 0.000
Table 8: Inpui: dipole properties
sin Lp in ovhp in Dpm in tm in Im int Em psi
0.200 870. 83.6 10.5 0.188 111. 3.000E+07
Table T: Input: quadrupole properties
Ly in ovhqg in D, in t, in Iq in* Eq psi
210, 52.5 10.5 0.188 111. 3.000E+07

Table 8: Resulis: bellows maximum clongation at psy

Pep psi dl§ in dli3 in
3.000E+02 1.262E4-00 1.000E+-00
FIGURE Di1A

97



Table 8: Results: node location, stiffness, force at p,,

node x(i) in k(i) Ibafin | F(i) 1ba
1 Q.00 25000.00 87.54
2 135.89 25000.00 35.69
3 271.38 25000.00 24,72
4 407.07 25000.00 17.59
5 542.78 25000.00 -12.71
6 808.38 0.00 0.00
T 815.88 0.00 0.00
8 679.30 25000.00 115.28
9 814.99 25000.00 -13.68
10 950.68 25000.00 18.37
11 1086.37 25000.00 28.95
12 1222.06 25000.00 27.80
13 1286.68 0.00 0.00
14 1294.98 0.00 0.00
15 1358.60 25000.00 27.45
18 1494.29 25000.00 24.13
17 1629.98 25000.00 22.63
18 1765.67 25000.00 -35.16
19 1901.36 25000.00 87.70

FIGURE D1B
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plot file: 2DUAT:(ROSSUM.BUC|FORO01.DAT;92
machine: SSC mode: ddd

Table L: Input; bellows design parameters-

7 in D in din Jel lin per psi Ain Eb psi
0.080 14.300 0.500 0.094 9.300 450.000 1.000 3.29TE+07
Table 2: Results: bellows properties
Nb rin Din Ain tin be in K lbs/in Kl lbsfin I int
28 0.072 14.800 0.356 0.025 0.342 2759.212 1.048E404 3.151E+01
Table 3: Results: maximum bellows stresses at p,,
Fmes PSi oy psi Opwl Pai Tpwi psi Tpe Umnes iD
1.523E+05 2.778E+04 8.640E+04 8.782E+-04 2.967E+04 1.472E-03
Table 4: Input: bellows misalignments
¢6)in | {(T)in | C(23)in | €(14)in | n(6) a7 | n(13) | n(14)
0.000 0.000 0.000 0.000 6.000 0.000 0.000 0.000
Table 5: Input: bellows initial shape
d,6 in d,13 in d.8 in d.13 in
0.000 0.000 0.000 0.000
Table 8: Input: dipole properties
s in Lp in ovhp in Dy in tm IN Im in* Em psi
0.200 670. 63.6 10.5 0.188 111. 3.000E+07
Table T: Input: quadrupole properties
Lyin | ovhg in D, in iy in Iq int Eq psi
210, 52.5 10.5 0.188 111. 3.000E+07

Table 8: Resuits: bellows maximum elongation at p,,

Pep P dl8 in dl13 in
3.000E+02 1.000E4-900 1.000E+-00
FIGURE D2A
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Table 9: Resuits: node location, stiffnesa, force at poy

mode | x(i)in | K(i) lbs/in | F(i) lbs
1 0.00 25000.00 87.70
2 135.69 | 25000.00 35.17
3 271.38 25000.00 22.81
4 407.07 25000.00 24.10
5 542.76 | 25000.00 21,57
6 £08.38 6.00 0.60
7 615.68 0.00 0.00
8 679.30 | 25000.00 27.41
? 814.99 | 25000.00 24.90
10 950.68 | 25000.00 25.13
11 1086.37 25000.00 24.89
12 1222.06 25000.00 27.42
13 | 1285.88 0.00 0.00
14 1294.98 0.00 0.00
15 13568.60 25000.00 27.57
1a 1494.29 25000.00 24.10
17 | 1629.98 | 25000.00 22.62
18 1765.67 25000.00 35.16
19 | 1901.38 | 2500000 | 87.70
FIGURE D2B
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plot file: 2DUAT:[ROSSUM.BUC|FOR001.DAT;185
machine: SSC mode: ddd

Table 1: Input: bellows design parameters

r; in D; in din 8 lin per psi Ain Eb psi
0.060 14.300 0.500 0.094 9.300 450.000 1.000 3.29TE+07
Table 2: Results: beilows properties
Nb rin D in Ain tin be in K lbs/in Kl 1bs/in I int
26 0.072 14.800 0.368 0.025 0.342 2759.212 1.048E+04 L151E+401
Table 3: Results: maximum bellows stresses at p,,
Cmen P8i oy psi Tpwi PSi Cypwa PSi Tpn Ymaa iR
1.523E+05 2.7T8E+-04 §.640E+4-04 6.782E-+04 2.96TE+04 1.472E-03
Table 4: Input: bellows misalignments
¢6)in | S(Min | C(13)in | €(14)in n(6) 77) 7(13) | n(14)
0.030 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Table 5: Input: bellows initial shape
d,6 in d,13 in d.6 in del3 in
0.020 0.000 0.020 0.000
Table 6: Input: dipole properties
sin Lp in ovhp in Dp in tm in Im int Em psi
0.200 670. 63.8 10.5 0.188 111. 3.000E+07
Table 7: Inpui: quadrupole properties
Lyin ovhg in Dy in 1y in Iq int Eq psi
210. 52.5 10.5 0.188 111. 3.000E+4-07

Table 8: Results: bellows maximum elongation at p.,

Pop Psi di8 in dll3 in
3.000E+-02 5.000E+-00 1.002E+00
FIGURE D3A
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Table 8: Resuits: node location, stiffness, force at p,,

node x(i) in k(i) Ibs/in { F(i) lbs
1 0. 25000. 112.
2 138, 25000, 114.
3 271. 25000. -548.
4 407. 25000. -1681,
5 543. 25000. 7975.
6 606. 0. -12500.
7 6186, 0. 12500.
8 679, 25000. -71870.
9 815. 25000. 1686.
10 951. 25000. 594.
11 1086. 25000. -51.
12 1222. 25000. -3.
13 1288. 0. 0.
14 1295. 0. 0.
15 1359. 25000. 33.
16 1494, 25000. 23.
17 1630. 25000. 23.
18 1766. 25000. 35.
19 1901. 25000, 84,

FIGURE D3B
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plot file: 2DUAT:(ROSSUM.BUC|FOR001.DAT;10
machine: $SSC mode: dqd

Table 1: Input: beilows design parameters

r in Dy in din 8 lin pcr psi Aln Eb psi
0.060 14.300 0.500 0.094 2.300 450.000 1.000 3.297TE+07
Table 2: Results: bellows properties
Nb rin Din Ain tin be in K lbe/in Kl lbs/in I int
26 0.072 14.800 0.356 0.025 0.342 2750.212 1.048E4-04 3.15LE+01
Table 3: Results: maximum bellows stresses at p,,
Tmaes PSi ox psi Opwi PSi Tpy3 PN Tpe Ymae i
1.523E+05 2.778E4-04 6.640E4-04 6.782E+04 2.967TE+04 1.472E-03
Table 4: Input: bellows misalignments
¢@)in | ¢(Min | {(13)in | ¢(14)in n(8) o7) 7(13) n(14)
0.030 0.000 0.000 0.600 0.000 0.000 0.000 0.000
Table 5: Input: bellows initial shape
d,8 in d,13 in d.6 in d.13 in
0.020 0.000 0.020 0.000
Table 8: Input: dipole properties
sin Lpin ovhp in Do, in tm in Im int Em psi
0.200 870, 63.6 105 0.188 Il1. 3.000E+07
Table T: Input: quadrupole properties
Ly in ovhqg in D, in i, in Iq int Eq psi
210. 52.5 10.5 0.188 111. 3.000E+07

Table 8: Resuits: bellows maximum elongation at pa,

Pop P8I dlé in dll3 in
J.000E+02 5.000E+00 1.502E+00
FIGURE D4A
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Table 9: Results: node loeation, stiffness, for;:e at Poy

mode | x(i)in | k(i) lbejin | F(i) lbs
1 0. 25000. 96.
2 138. 25000. 119.
3 271. 25000. -580.
n 407. 26000, -1808.
5 543. 25000. 8384
8 608. 0. ~12500.
7 618. 0. 12500.
8 668. 25000 -8502.
9 G94. 0. 0.
10 721, 0. 0.
11 747, 0. 0.
12 773 25000 2087.
13 826. 0. 0.
14 835. 0. 0.
15 899. 25000 T31.
16 1034. 25000 -193.
17 1170. 25000 -30.
18 1306. 25000 45.
19 1441. 25000 69.

FIGURE D4B
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plot file: 2DUAT:(ROSSUM.BUC|FOR001.DAT;91
machine; RHIC mode: dqd

Table 1: Input: beilows design parameters

» in D; in din Jij lin per psi Ain Eb psi
0.060 7.630 0.500 0.094 6.000 450.000 0.500 3.29TE+07
Table 2: Results: bellows properties
Nb rin Din Ain tin be in K lbe/in Kl in ibs [ int
17 0.072 8.130 0.352 0.024 0.346 1784.526 4.915E+03 5.137E+00
Table 3: Resulis: maximum bellows stresses at poy
Cmes P8 oy psi Tpwi PH Tpw3 PSi Tpe Ymas 10
1.066E+05 1.534E404 6.869E+04 7.013E+04 3.0T1E+04 1.548E-03
Table 4: Input: bellows misalignments
¢(8)in | ¢(7)in | €(13}in | ¢(14) in 7(6) n7) n(13) n(14)
0.030 0.000 0.000 0.000 0.000 0.000 0.080 0.000
Table 5: Input: bellows initial shape
d,8'in d,13 in d.6 in dc13 in
0.020 0.000 0.020 0.000
Table 8: Input: dipole properties
s in Lp in ovhp in D in tm iR Im int Em psi
2.00 394, 55.4 10.5 0.188 111. 3.000E+4-07
Table 7: Input: quadrupole propertics
Lyin | ovhg in Dy in 1y in Iq int Eq psi
170. 48.0 10.5 0.188 111. 3.000E+07

Table 8: Resulta: bellows maximum elongation at pep

Pep Psi

dl6 in

dlld in

3.000E+02

7.511E-01

5.139E-01

FIGURE DR1A
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Table 9: Results: node location, stiffness, force as p,,

mode | x(i)in | k(i)lbe/in | F(i) ibs
1 9.00 25000.00 404.58
2 70.80 0.10 0.00
3 141.60 | 2500000 | 280.09
4 212.40 0.10 2.00
5 283.20 | 25000.00 | 168.42
8 338.60 0.00 0.00
7 344.680 0.00 .00
) 302.60 | 25000.00 | 213.01
9 411.10 0.10 6.00
10 429.%0 0.10 6.00
11 448.10 0.10 0.00
12 | 468.80 | 25000.00 | 120.71
13 | 514.60 0.00 0.00
i4 520.60 0.00 0.00
15 576.00 25000.00 199.74
16 | 646.80 0.16 0.00
17 T17.80 25000.00 278.03
18 | 788.40 0.10 0.00
19 | 859.20 | 2500000 | 403.15

FIGURE DR1B
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machine: RHIC mode: dqd

plot file: 2DUAT:(ROSSUM.BUCIFCR001.DAT;93

Table 1: Input; bellows design patameters

riin Dy in din 8 lin per psi Ain Eb psi
0.080 7.630 0.500 0.094 8.000 456.000 0.500 3.297E+07
Table 2: Results: beliows properties
Nb rin Din Ain tin be in K lbs/in Kl lbe/in Iint
17 0.072 §.130 0.352 0.024 0.346 1784.526 4.915E403 5.13TE+00
Table 3: Results: maximum bellows stresses at p,,
Cmas PSi op pai Tpwy PSi Cpwi P8 Ope VYmaea ill
1.066E+05 1.534E+04 6.860E+04 7.013E+04 3.071E+04 1.648E-03

Table 4: Input: bellows misalignments

¢@B)in | ¢(Nin { {(13)in | ¢(14) in 7(6) n(7) (13} | n(14)

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Table 5: Input: bellows initial shape
d,6 in d,13 in d.6in d.13 in
0.000 0.000 0.000 0.000
Table 8: [nput: dipole properties
s in Lp in ovhp in D, in tm iD Im int Em psi
2.00 394. 55.4 10.5 0.188 111. 3.000E+07
Table T: Input: quadrupocle properties
Lyin | ovhgin D, in t, in Iq int Eq psi
170. 48.0 10.5 0.188 111. 3.000E+07

Table 8: Resuits: bellows maximum elongation at gy

Pep Psi di6 in dl13 in
3.000E+02 5.081E-01 5.062E-01
FIGURE DR2A
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Table 9: Resuits: node location, stiffness, force at pop

mode | x(i)in | k(i) lbefin | FY(i) lbs
1 0.00 2500000 | 402.98
2 70.80 0.10 1.00
3 141.60 | 25000.00 | 276.48
4 212.40 0.10 0.00
5 283.20 25000.00 206.85
8 338.60 .00 0.00
7 344.60 0.00 0.00
8 392.60 | 25000.00 | 149.20
9 411.10 0.10 0.00
10 | 429.60 0.10 0.00
11 | 448.10 0.10 0.00
12 466.60 25000.00 140.27
13 514.60 0.00 0.00
14 520.60 0.00 0.00
16 | 576.00 | 25000.00 | 205.64
18 | 646.80 0.10 0.00
17 | 717.60 | 25000.00 | 276.49
18 788.40 0.10 .00
19 | 869.20 | 25000.00 | 402.96

FIGURE DR2B
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ul 000'0=E119Z
at 000 0=/392

ul 0g0°'0=9192
pbp OIHY

£8d HUNDIA Z1LYE 1004 04<ONE RNSS0A>2vnadzs

15d saxg
002 009 005 (1114 00¢ 002
2l 4 " | IR |

PR S Y S T Y S T

PAT UV R T B S T |

o001 0
)

PR Y

rid=+
UNIDT

NOLLVINOTH TVIO0T1 SHOTTIE XV

—rr—r—r— &

118



plot file: 2DUAT:(ROSSUM.BUC|FOR001.DAT;12
machine: RHIC mode: dqd

Table 1: Input: bellows design parameters

7 in Diin d in 8 lin per psl Ain Eb psi
0.080 7.630 0.500 0.094 6.000 450.000 0.500 3.20TE+07
Table 2: Resuits: bellows properties
Nb rin Din Ain tin be in K Ibs/in Kl ibefin [ int
17 0.072 8.130 0.352 0.024 0.346 1784.5268 4.915E+03 5.137TE=+00
Table 3: Results: maximum bellows stresses at p,,
Tmas P51 o psi Tpwi PSi Tpwa PSi Tpe Ymas iD
1.066E+05 1.534E+04 6.869E+04 T.013E+04 J.OT1IE+04 1.548E-03
Table 4: Input: bellows misaiignments
(@)in | ¢(Nie | ¢(13)in | ¢(14) in 7(6) 7(7) 7{13) n(14)
0.030 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Table 5: Input: bellows initial shape
d,6 in d,13 in d.6 in d,13 in
0.02¢ 0.000 0.020 0.000
Table 8: Input: dipole properties
s in Lpin ovhp in Dy in tm in Im int Em psi
2.00 394. 55.4 10.5 0.188 111. 3.000E+-07
Table 7: Inpui: quadrupole properties
Lyin | ovhgin | D,in ty in Iq in* Eq psi
170. 48.0 10.5 0.188 111. 3.000E+407

Table 8: Results: bellows maximum elongation at pe,

Pop DSi di6 in dll3 in
3.000E+02 2.185E+00 6.724E-01
FIGURE DR3A
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Table 9: Results: node location, stiffness, force at pop

node x(i) in k(i) lbs/in F(i) lbs
1 0. 60000, 447,
2 Tl. 0. 0.
3 142, 60000. -725.
4 212. 0. 0.
5 283. 60000. 3457.
8 338. 0. -3000.
7 345. 0. 3000.
8 393. 60600, - -3641.
9 411. 0. 0.
106 430. 0. 0.
11 448. 0. 0.
12 4867. §0000. 1485.
13 515. 0. 0.
14 521. 0. 0.
15 576. 60000. 327.
16 647. 0. 0.
17 718. 60000. 233.
18 788. Q. 0.
19 859. 80000. 395.

FIGURE DR3B
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uL/sql oyaL) =X
QI 00 =(CI)
sq1 00 =(9))

ul 000°0=CI8p
uf 020°0=9sp
af 000'0=¥17°
a1 000°0=ET11®
U1 000’0=L1°
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ul/sq[ GFRLT =N
8q1 00 =€)
sqQI 00  =(9)
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ui/sqq G'¥eLI
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Appendix: MACSYMA code for magnet bellows assembly

There are 19 supports and 10 nodes between supports. On Fig. e5 the deflected
shape of the bellows is defined as a function of i (number of the span between two supports)
and j (node number on this interval). For instance if there are 10 nodes between supports,
¥(18,10) denotes the deflection of the last node of the eighteenth span between supports 18
and 19. y is defined in terms of three functions: one function containing the unknowns (xa,
xb corresponding to A, B in eq. 64), one function which is a polynomial expression of x
(denoted h), and one function of trigonometric expressions of x. y is split into three
expressions to reduce the number of operations that MACSYMA has to perform, this will
be shown later.- Similar functions are defined for y’ in Fig. e6. One could have used a
command to differentiate y each time that y’ is called but in order to minimize the number
of operations that MACSYMA has to perform, explicit expressions for y’ are provided. On
Fig. €7 the functions which are called in the polynomial part of y are defined. ZG, ZC, ZD
correspond to G, C, D, in eq.64.

Figure e8 shows various functions, the initial shape of the whole system denoted by
y0 in the text is called here {0, all its derivatives are also explicitly provided to increase the
speed of execution of the program. On Fig. €9, one finds the bellows offsets ¢ and n, and
E,, E, of eq.64 . Fig. e10 shows the boundary conditions and the moment equation. In eq.62
two expressions of y for adjacent intervals but at the same x location are subtracted. Since
the trigonometric functions do not cancel, operations are performed only on the polynomial
part of y (function h), thus saving unnecessary operations and justifying the initial definition
of y in terms of three functions.

On Fig. el1 one finds the function be(i) calling all the boundary conditions starting
with ¢q.58 which expresses equilibrium of forces. Function dfor() first calls a bquhdary
condition equation be(i), then isolates with the command coeff all the coefficients of the
‘unknowns ufi) which it denotes by q(i,j) in the fortran expression created for further
processing. These coefficients, multiplied by the corresponding unknowns, are subtracted
from be(i) to obtain the remainder w(i). w(i) is the ith component of vector W in the final

matrix equation X [Q]=W which will be inverted numerically to obtain vector X containing
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A, B of eq.64. Function pfor() opens a file to which the fortran expressions will be written,
then calls dfor() described above, and also creates fortran expressions for C, D, Es, Ec and
G which are needed in addition to A, B in eq.64 to obtain y.
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Appendix: Fortran code for magnet bellows assembly

The numerical method consists of a simple matrix inversion. The system of three
magnets and two bellows is modeled by a grid of 19 points. Bellows are located between
nodes 6 and 7 and between nodes 13 and 14. Although there is a total of 19 nodes
corresponding to the assembly of three magnets with 5 supports each, one can set the
support stiffness to zero and achieve the desired combination of dipoies and quadrupoles
with any number (less than 16) of supports. The program treats RHIC and SSC magnets
and all applicable combinations of dipoles and quadrupoles.

The main program starts by defining the size of the matrix to be inverted, the bellows
can have bent shapes of sine or cosine functions, dsé and dc6 refer to the sine and cosine
components for the first bellows while the index 13 refers to the second bellows.

The values f(6), f(7), f(13), f(14) of array f define the external forces which are

applied at the bellows nodes used to study interaction between bellows.
All other values of f are the support forces on the posts. The critical pressure per is the
pressure at which the system will first become unstable, by setting a safety factor one gets
an operating pressure pop. The bellows is then designed to fail at this critical pressure.
The options for machine type and magnet sequence are given next.

Subroutine GEO defines node location and material properties using the previously
selected options. Subroutine AX specifies all the bellows design details to build a bellows
whose axial stiffness is such that it will fail at the previously defined critical pressure.
Subroutine INT applies only if one wants to know what the stresses in the bellows are once
they are internally pressurized. INT calls COEFINT where MACSYMA generated
expressions for the constants of integrations are given. It also calls PLOTINT and ENCINT
for plotting the deflected shapes and stresses.

MAT gives the material properties. In order to clearly see the peak at the critical
‘pressure, the mesh is refined between pressures pin2 to pfin2 which are centered around
pzo=pcr. Alternatively one could have a uniformly fine mesh of icm points by setting
inu=1. The overall mesh starts at pin and ends at pfin. Subroutine FORCE simply sets up

the array pres of pressures with variable mesh described above.
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The values for omega appearing in the solutions of the differential equations are then
defined. They are needed in the subroutine COEF which are the MACSYMA generated
coefficients called Q(i,j), the vector of right-hand sides is W. Q and W are copied into
arrays A and B and inverted using the numerical routines LUDCMP and LUBKSB from [6).
Upon inversion of the matrix, array B contains the solutions XA, XB, F which are needed
to obtain the explicit expressions for deflections, slopes and curvatures y, y', y". Additional
coefficients E, G, D, which are needed for these expressions are generated by MACSYMA
are given by subroutine IND. Finally the maximum local bellows elongation DL can be
computed.

Subroutine PLOT produces four types of output in addition to a table of values.
Option 1 plots maximum local bellows elongation versus pressure, there are two curves, one
for each bellows. Option 2 plots support deflections for each support versus pressure.
Option 3 gives the deflected shape of the magnet-bellows assembly at pcr and pop. Option
4 provides the deflected shape of the bellows at per and pop. These are written in the plot
file FOR001.DAT. The Table containing all the various design parameters and summary
of the output is in the file ECHO.TEX which must be further processed with the TEX

program.

129



Appendix: File names of additional Codes

The main program is in BEL.FOR, the common block is in BELCOM.FOR, output
routines are in the file BELOUT.FOR, material and geometric properties are in
BELGEO.FOR, bellows design parameters and output are in BELAX.FOR, the numericai
algorithm for matrix inversion are in BELNUM.FOR, the MACSYMA code
BELLOWS.MAC generates the coefficients which are in BELCOEF.FOR. BEL.COM is the
command file which compiles the main program and links all the other subroutines. The
bellows design parameters are computed in the main program for one bellows, they are also
available for a number of cases in BELDES.FOR which includes BELDESCOM.FOR.

The spring-support model deflected shape is computed in SPRING.FOR which calls
‘the subroutine generated by the MACSYMA code SPRING2.MAC, SPRINGCOEF2.FOR
and includes SPRINGCOM.FOR as the common block. This routine also computes the
three roots of the determinant=0 equation which are created by the MACSYMA code

DET.MAC.
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(c24) dispfun(becl,bc2,be3,bed,bes,be6,eq);

w2
(e24) bel() = £1 + £2 = fw (=== = ===)
ktl  kt2
fl 2 ul
(e25) be2() = ml + B2 - fa (=== ==) + (fl = fu (===}) 1
kl k2 kti
nl
(e26) be3() := cypO() = ===
ktl
| ¥
(e27) bed() = cypl(}) = ==~
kt2
£l
{e28) beS() := expand(ratsimp(cy(0) - z - ==))
k1
f2
(€29) beé() = cy(l} - --
k2
fl fu nl
fa (yX + y0 = ==) ¢+ f1 X = ===== ¢ + @i
k1 ktl
(e30) eq() := expand(ypp = - )
ei
(d30) done
{c31) dispfun{sol,pfor);
(e31) sol() := sol : part{solve{leq({), lunk), 1)
(€32) pfor{) := (writefile("workcoef.for"),
detriq : trigsimp(denom(rhs{part(sel, 1)))},
detrig
detsimp : expand(----=======e-ee)  fortran(determ = subst(ls, detsimp)),
1kl k2 ktl kt2

FOR k THRU 6 DO fortran(subst(ls, s3(k))), fortran(cd = subst{ls, d}),
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fortran{cq = subst{ls, xq})), closefile())

FIGURE E4
(d32) done



{c5) "deflected shape y, i is the interval and j the node number"$
(c6) dispfun(y);

(e6) yi, ) := abli, 3) + b(i, 3) + he(d, j)

(dé) done

{c7} "ab contains the trigonometric functions of x"S$dispfun(ab);

(c8)
(a8) ab(i, j) = va(i) cos(om(i) x(j)) + tb{i) sin(om{i) 1(j))
(d8) done

{(c9) "h is a polynomial expression of x"$dispfun(h);

(c10)

2
(e10) b(i, j) := ze(i) x(j) + 2d(i) x () + za(i)
(d10) done

{c11) "he contains the trigonometric expressions due to the prebent shape™$dispfun(he);

{¢12)
{el2) he(i, j) == (IF i = 6 THEN xinit : x(6)

ELSE (IF i = 13 THEM xinit : x(13)), zes(i} sin{pil (x(j) - xinit))

+ zec(i) cos(2 pil (x(j) - rinit)))

(d12) done FIGURE ES5
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“(¢13) "derivative of y w.r.t. x"$dispfun{yp,pab,hp,hep);

(cld)

(eld) ypi, J) := pab(i, 3) + bp(d, 3) + bep(i, )

(el5) pab(i, j) := - om{i) xaii) sin(om(i}) x(3)) + om{i) xb{i} cosfom(i) x(i})

{elé) hp(i, ) := zefi) + 2 wd{i) x(§)

(e17) hep(i, j) := (IF i = 6 THEN xinit : x{(6)
ELSE (IF i = 13 THEN xinit : x({13)), zes(i) pil cos(pil {x(j) - xinit))

+ zec(i) (= 2 pil) sin{2 pil (x(§) - xinit)))

(d17) done
{c18) "list of unknowns"$dispfun(u);

{cl9)
(el9) u(i) := IF i <= 18 THEN ya(i) ELSE (IF i <= 36 THEN 1b(i - 18)

ELSE (IF i ¢= 41 THER f(i - 36) ELSE (IF i <= 46 THEN £(i - 34)

ELSE (IF i <= 51 TEEN £({i - 32)))))

{d19) done
FIGURE E6
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{c69) "functions called by functions h and hp"$dispfun(zg,g,2c,2d);

(€70}
q(i) - 2 d(i)
(@70) zg{i) := (xgC : we=wmwmeeeeaee IF | = 6 THEN yqc - dcé
a(i)

ELSE (IF i = 13 THEN xqc - dci3 ELSE uqc))

. fa £{1)
(e71} g{i) := (IF i = 1 THEN gin : ====-=-
sk(1)
f(10}
ELSE (IF 1 = 10 THEN gin : fb (==—=e + £0(10))
sk(10}
£(1)  £{10) gin + sun(gam{3) + £(j) x(j), 3, 1, 1)
+ fa (w==m= = === - f0{10}}), )
sk(l) sk(i0) aml(i)
b(i) p x(19) fua
(e72) 2c(i) 1= === - p £(19) + mmemcccam
a(i) fab(i)
{e73) 2d(i)y :=p
{d73) done

FIGURE E7
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{¢50) "torsional rigidity of supports at center of the ) magnets"Sdispfun(gam);

(c51)
(e51) gam{i) := IF i = 3 THEN gam3 ELSE (IF i = 10 THEN qaml0

ELSE (IF i = 17 THEN qaml7 ELSE 0))

{(ds1) done
(c52) "product EI for each of the 3 magnets”$dispfun{aml);

(c53)
(e53) aml{i) := IF i <= 5 THEN am ELSE (IF i = 6 THEN al

ELSE (IF i <= 12 THEN aq ELSE (IF i = 13 THEN al ELSE am))}

(d53) done

{c54) "axial force"Sdispfun(fab);

{c55)
{eb5) fab{i) := IF i <= 9 THEN fa ELSE fb
{ds5) done

{c56) "useful functions of aml, fab"$dispfun(a,b);

{c57)
fab{i)
(e57) a{l) 1= emme—-
ami(i)
sum(f(i), 3, 1, i}
(e58) b(i) = -
anl{i)
(d58) done

(c59) "function expressing the curvature of the magmet and derivatives"$dispfun(f0,fop,fOpp):

(c60)

(e60) fo(i) == - p x(i) (x() - x(19))
(e6l) fop(i) := - (2 (1) - ¥(19)) p
(e62) £opp(3) = -2 p

{dé2) | done

FIGURE E8
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{c63) "bellows wounting lateral and anqular misalignments”$dispfun{zet,et);

(c54)
(e6d) 2et{i) := IF { = 6 THEN zet6 ELSE (IF i = 7 THEN zet?

ELSE (IF i = 13 THEN zetl3 ELSE (IF i = 14 THEN zetl4 ELSE 0)))

(e65) et(i) := IF i = 6 THEN et6 ELSE (IF i = 7 TREN et?

ELSE (IF i = 13 THEN et13 ELSE (IP i = 14 THEN etld ELSE 0)})

{d65) done

(c66) "terms due to initial cosine and sine shape of the bellows"§dispfun(zec,zes);

(c67)
a(i)
dch (=====—=)
P
(2 pil)
(e67) zec(i) := IF i = 6 THEN = wee~wre———aa=
a(i)
1 - eooomess
2
{2 pil)
ali)
dcl] (-=we=esee)
2
(2 pil)
ELSE {IF i = 13 THEN - -==—==-wesceas== ELSE 0)
a{i)
l nnnnn
2
(2 pil)
ali)
ds6 {====}
2
pil
(e68) zes{i) := IF i = 6 THEN ~~==-———~
ali)
1 - oo
Z
pil
a(i)
ds13 (====)
2
pil
ELSE (IF i = 13 THEN -=wee====-= ELSE Q)
a(i)
1~ - 136
2
pil

FIGURE E9



(c28) "boundary condition at the supports relating force to displacement”$dispfun(ceq):

(c29}
£{i)

{e29) ceq(i) := IP i ¢= 5 THEN expand(y(i, i) = ==-==)
sk{i)
fii+2)

ELSE (IF i <= 10 THEN expand(y(i + 2, i + 2} = ==eweme==)
sk{i + 2)

. fli+4)

ELSE (IF { <= 14 THEK expand(y(i + 4, 1 + 4) = ==ww=s=e=e)

sk(i + 4)

fli+ 4
ELSE (IF i = 15 THEN expand(y(i + 3, 1 + 4) = ===m=====}}})

skii + 4)
(d29) done

{c30) "boundary condition for continuity of deflection"$dispfun(eq);

{¢3l)
(@31) eq(i) s= = ab(i, i +1) +abfi +1,1i+1)

+ expand(ratsimp(- B{i, i + 1) + h(i + 1, i + 1)) - he(i, i+ 1)

the(i+1,1i+1)-zet(i+1)

{d31) - done
(c32) "boundary condition for contimuity of slope"$dispfun(peq);

{€33)
{e33) peq{i) := - pab(i, i + 1) +pab(i +1, i +1)

+ expand(ratsimp(- hp(i, i + 1) +hp(i ¢+ 1, i +1))) - bep{i, i + 1)

+hep(i +1, i +1)~et(i+1)

(433) done
(c34) "voment equation"$dispfun(mom);

(€35}
f(10)  £(19

{e35) wom{} := {mom : expand(fb (e===== = =ee=== - (f0(19) - £0(10)))
sk(10) sk(19)

£(1)  £(10)
+ fa (e = ameees = (£0(10) - £0(1})}),
sk(1)  sk(10) 137

2
208 + sum(gam{i} - £(i) (x(19) - z(i)), i, 1, 19) + fwa p x {19))

FIGURE E10



_(¢38) "list of all the boundary conditions starting with equilibrius of forces"$dispfunibe);

(c39)
(e39) be(i) := IF i = 1 THEN sum(f(3}, J, 1, 19) - (fwa + fwb} x(19) p

ELSE (IF i <= 18 THEN eq(i - 1) ELSE (IF i <= 35 THEN peq(i - 18}

ELSE (IF i <= 50 THEN ceq{i - 35) ELSE mom{))})

(d39) done

(c40) "gather all the coefficients of the unknowns"$dispfun(dfor);

(cdl)
{e4l) dfor(i) := (s : 0Q, be : be(i), FOR j THRO 51

DO (zs : coeff(be, u(j)), IF 25 # O THEN fortramiq(i, j) = zs),
s : s+ 125 u(j)), smbe : ratsimp(s - be),

IF sgbe ¢ 0 TEEN fortran(w(i) = smbe))

(d41) done
(c42) "write coefficients in fortran to file"$dispfun(pfor);

(c43)
(e43) pfor{} := (writefile("belcoef5.for"), FOR i THRU 51 DO dfor(i),

FOR i THRU 18 DO (fortran(xc(i) = zcti)}, fortran(xd(i} = zd(i)),
fortran(xq(i) = 2q(i)), fortran(xeci} = zec(i)), fortran(xes(i) = zes(i))),

closefile{"belcoefs.for"}}

(343) done FIGURE El11
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