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ABSTRACT

A slightly reinterpretation of the Cryogenic Stability Criteria brings about
a close expression to calculate the copper to superconducting ratio needed to
satisfy these criteria. This ratio depends on the fraction of perimeter in contact
with the Helium, the power generated by the normal zone and the stationary
temperature of the conductor. This approach is applied to the proposed bus bar

conductor for the SSC.
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1. Introduction

The superconductor bus bar cable can make the connection of every magnets
along the chain of the collider ring accelerator.(1) This cable has a very long exten-
sion and it suffers of several perturbations during the operation of the machine.
When a normal zone appears in the conductor the heat may be transferred to
and removed by the Helium (gas or/and liquid depending on its thermodynamic
state) flowing on its surface. This mechanism is the only means for the cable
to recover its superconductor state, consequently, it can be protected from large
disturbances using a proper copper to superconducting (s.c.) ratio with passages
where the Helium can flow on its surface, or, turning the power supply off al-
lowing the current to decay fast enough through a dump resistance. This last
method requires the monitoring and detection of a normal zone incursion of bus
bar cable and to turn off the power supply any time there is a large disturbance
on this cable, making the operation of the accelerator less reliable. On the other
hand, because of the very small space available inside the magnet is difficult to
make passages inside or around the bus bar conductor for the Helium flow, mak-
ing difficult to assure a cryogenic stabilization of this conductor and requiring a
good estimation of the copper to s.c. ration which takes account the fraction of

perimeter in contact with the Helium.

Once a normal zone appears in a superconducting bus bar cable, we want
that this normal zone shrink itself under the action of the heat transferred to the
Helium. If the normal zone is large, the recovery of its superconducting state
will be possible if the copper to s.c. ratio, A, is big enough and there 15 Helium
flowing on the surface of the conductor which takes away the heat generated.
At this time, there are two cryogenic criteria to choose this ratio; the first
one was formulated by Stekly and Zar(?) and Stekly. Thome and Strauss;®) the

second one was formulated by Maddock, James and Morrist®) which is called

“The Equal-Area Theorem.”



A very brief discussion of both criteria will be given and with a slight rein-
terpretation of them, the copper to s.c. ratio will be given as a function of the

fraction of the conductor perimeter in contact with the Helium.

2. Review of the Cryogenic Criteria

Suppose that a normal zone appears in a superconducting cable because of a
large disturbance on it, then, most of the current will flow into the matrix copper
because of the very high resistivity value that the NbTi has in its normal state.
Let us calculate the relative current density flowing in the NbTi. Because the
voltage across the normal zone will be the same for the copper as well as for the
NbTi, then the following relation is satisfied

Lpeyh _ Lps Iy

Qe Asc

; (1)

where I} and I, are the currents flowing in the copper and the NbTi elements; L
1s the length of the normal zone; p.y and ps, are the resistivities of these elements;
ey and ag. are their respective areas. The density of current flowing in the NbTi
is given by

C’U.J
Jy = Bewl (2)
Psc

The total heat generated per unit time will be that one generated by the copper
and NbTi elements, using the relation (2), it can be expressed as

Pqu12 + Pst22 = .50f.'u.v]12 [1 + @'] ) (3)

Psc

but the ratio pey/psc is of the order 10™%, so, we can neglect the contribution of
the heat generated by the NbTi. The equation that governs the temperature in

the conductor can be written as

(5c)@ =V - (k(8)VE) + pJ* - W ,

ot (4)

where pJ? is the rate of heat density generated by the copper matrix; (6c) 1s

the average overall the conductor components of the density, é, times the specific
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heat, ¢; k{6) is the thermal conductivity; P is the perimeter of the conductor; h
is the heat transfer coefficient; f, is the batch temperature (assumed constant);
V is the gradient and V- is the divergent of the space; and A is the total cross

section area of the cable, given by
A =0+ as . (5)

First Criterion

This one can be state grossly in the following way, assume the temperature
does not depend on the coordinates (the first term of the right hand side of (4) is
zero) and assume that the variation of the temperature with respect the time is
negative (shrinkage condition) whenever this one is less or equal than the critical
temperature of the superconductor, 8., then the equation (4) transform in the
following relation
pJ*

m(l, (6)

A

the copper to s.c. ration, A, can be obtained from this relation.

Second Criterion

In the criterion (6) we ignored the complicated behavior that function “(8 —
8,)h” has with respect the temperature as it is shown in the Figure 1. Let us
now take account this behavior and consider we have an stationary state {the
temperature of the conductor does not change with time), then defining the

vector function S as

5(8) = k(6)V8 (

-1

and using the above considerations, the expression (4) is written as

1 dS?  (6—06,)hP

Oy (&)
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Figure 1. Heat transfer function between conductor and helium.

where S is the magnitude of the vector (7). Multiplying (8) by £(6) and inte-

grating with respect the temperature, we have
&1
515%61) = S%60)| = (I8 0hP/A = pTIh(ONIE. (9)
fo
Assuming now that the flow of heat is constant along the conductor (5(8;) =
S(6,)), we get
8,
f[(s — 6, YhPJA — pJ?]k(8)d8 = 0 (10)
8.
furthermore, the function k() is a positive function of the temperature ,so the

relation (10) is equivalent to the expression

&
/[(9 — 0,)RP/A — pJdo =0 (11)
&

]



which is called “the equal-area theorem” because it expresses explicitly the fact
that the area generated by the heating process is the same as the area generated
by the cooling process. This, in turn, implies that the conductor will have a
stationary condition where its temperature will not depend on the location on
the conductor. In practice, however, the thermal conductivity spread the heat of

the normal zone along the conductor returning into a superconducting state.

In what follows it will be assumed that the Pool-boiling!®) heat transfer
function, plotted in the Figure 1, will be valid during the time that the Helium

1s flowing on the surface of the conductor.

3. Calculation of A using a modified First Criterion

According to the equation (4) if the temperature in the conductor does not
depend on the position, the evolution of the temperature with respect to time is

given by

(5c)% = p(8)J% — (8 — 8,)Ph(6 — 6,)/A , (12)

where we have written the dependence of the resistivity and heat transfer with
respect the temperature. Figure 2 shows the qualitative values of the joule heat-
ing term pJ? with respect the temperature. From this figure we see that above
the temperature 8,42 (Fmaz = Omaz — 8,) the joule heating remains constant, but
for higher values than this one it starts to grow very fast and the consideration
about having a constént batch temperature 8, {because of the Helium flow) may
not be valid. For this reason we will restrict ourselves to consider the case where
the temperature of the conductor is not higher than 8,4, (it is about 20X for

copper with a residual resistivity ratio, R R R, less than 300).
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Figure 2. Temperature dependence of the joule heating.

Let & be the temperature reached by the conductor after a large disturbance.
This temperature is between 8, and ez, and we want that this temperature
decreases as the time evolves, that is, we want the relation (12) be negative
for any temperature in that interval. This condition is expressed through the

following relation

pJ? — oh(s)P/A <O, | (13)

where & 1s given by

o=0-20, (14)

and the relation between batch temperature, 6,, generating temperature, 6,, and

critical temperature, 8., is shown in Figure 3.
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Figure 3. Critical current density as a function of temperature showing the

temperature at which the ohmic heat generation starts, 8,

Assuming we have a cylinder conductor, its perimeter can be expressed in

terms of its cross section area as
P =2(VmA (15)

where £ is the fraction of the perimeter in contact with the Helium. If the copper

area is given in terms of the copper to s.c. ratio, A, as
Aoy = AGge (16)
we can use these relations in (13) to obtain the following expression

M-dA-¢ >0, (17)



where ¢ is defined by

q= 24
2¢tadl? Vrah{o)

(18)

being I the current flowing in the conductor. The left hand side of the rela-
tion (17) represents a polynomial of fourth degree with respect to A, it has two
complex roots, one negative root and its positive root which has the physical

meaning, is given by

R?/? _ 4q2/3 5,.201/2
Mo, €) = il [1+\/1+( 2R } (19)

2R1/6 R2/3 _4q2/3)3/2

where R is defined as

(20)

>
-

4 )
R:%lw 1+ ‘56}.

27q

The relation (17} tell us that the allowed values for A are any higher or equal
than A; as it is shown graphically in the Figure 4. The behavior of A; with
respect to o is shown in the Figure 5 for the inner cable of the SSC dipole
magnet (a5 = 5.1383 mm?, T = 6500 A, p = 2 x 1071%Qm) and for several £
values. As we can see from these plots , the naive application of the criterion (6)
for £ = 0.25 and o, = 2.8, give us the value of \; = 66 which is unneeded too
high. However, taken the more flexible condition (17), we are able to allti)w.the
conductor to have higher stationary temperatures reducing, consequently, the
amount of copper we need to put into it. A safe selection is any value such that

o < 12KK. For the values £ = 0.25 and ¢ = 9.2K, we have A\; = 15,
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Figure 5. A, values as a function of the fraction of perimeter in contact with the helium, &.
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4. Calculation of A using a Modified Second Criterion

Using the expressions (5), (15) and (16) in (11), the equal-area theorem is

expressed by the following relation

Bma:r

oI’ _ 2\/Fah(o)] ) _
/ [agcv ase(l + A) 46 =0, (21)

g
but because the first term inside the integral is constant, this relation can be
transformed in the following expression

M-gr-ql=0, (22)

where ¢, is defined by

e '
4= — £ . (23)
2a§£“\/7_rﬁ 1 fﬂm“” ch{o)do

Tmaz—Tg v Uyg

7y and Tpmer and are given by

and
Tz = Omae — B . (24b)
The solution of (22) has the same form as (19) has, that is

2/3 P 5.9 p1f2
VR —4q2/3 242 R}
M(€) = 4/ [1+ 1+ T iEai (25)

~ aRl/® 3% 44273030

with the substitution of ¢ by ¢, wherever it appears in {20).
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Let us apply this expression to the inner bus bar conductor for the SSC
using the following values £ = 0.25, o, = 1.5K and ome; = 13K in the rela-
tions (23),(24) and (25), the copper to s.c. ratio obtained is A. = 14. Figure 6
shows the variation of A, with respect fraction of perimeter in contact with the

Helium, £, for this particular example.
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Figure 6. A. values as a function of the fraction of perimeter in contact with the helium, £.

5. Conclusions

Because of the reduced space available in the magnets, to use the cryogenic
stability criteria to calculated the copper to s.c. ratio needed for the bus bar
conductor in accelerator rings, is required the consideration of the fraction of
perimeter in contact with the Helium. This restriction was considered using the
first and second criteria, the assumption (15) and the slight modification (13)
bringing about the expressions (19) and (25). As we can see from the Figures 5
and 6, the copper to s.c. ratio increase very rapidly as the fraction of the perimeter

in contact with the Helium decrease, in fact, this rapid increase correspond to
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the increase of the “¢” value, relation (18) or (23) (it is not difficult to see that
A >~ ¢* when ¢ > 1), thus, given the operating current and the fraction of
perimeter in contact with the Helium, we may choose the copper with the highest
residual resistivity ratio (RRR) as possible to reduce the A; value. Although a
cylindrical shape has been considered here, these results can be applied to any
closed connected cross section shape with the same area and perimeter as a

cylinder has (equivalent shape).

A poor heat transfer process is equivalent to a small fraction of perimeter in
contact with the Helium, then, especial attention must be taken to the form of the
heat transfer function as shown in the Figure 1. If the fraction of the perimeter
in contact with the Helium is close to zero, the above considerations can not be
applied, consequently, the bus bar conductor has to be protected against normal
zone growing (quench), one way to do this is selecting the copper to s.c. ratio 1n
such a way that, once a normal zone is detected and the power supply is turned
off, the maximum temperature of the normal zone is not allowed to exceed more
than a selected value(®) depending on the characteristic current-time-decay of

the circuit.
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