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At the time of the 1986 CDR, it was known that the linear aperture could be greatly

restricted by nonlinear fields in the IR quads, 1 because of their relatively large strengths, and
because of the very large values of 8 at the quads, which magnifies the nonlinear effects. Also, it
is not possible to rely on statistical cancellation of random multipole components, even in non-
allowed multipoles, because of the small number of IR quads. It was found that it would be
necessary to correct b, b3, by, bs, a2, a3, a4, as, and the existence of trim-coils within the guads
for local cancellation of all these multipoles was postulated. Correction by at least an order of
magnitude is desired.

Since the CDR it has been found that using small discrete correctors distributed properly
between the dipoles in the arcs can be sufficient for cancellation of dipole-induced

nonlinearities, 2 and such correction is currently planned for the SSC (and LHC). 3 An
extension of that method for the IRs, using small discrete elements distributed between IR quad
elements, is also possible and can replace the need for some or all of these internal trim coil
elements. In this note, this approach is discussed and a sample calculation is presented.

For an initial example, we consider a sampie SSC IR triplet; parameters are displayed in
Table 1 and betatron functions are displayed in Figure 1. The IR center has p*=0.5mand a
magnet-free drift of 20 m leads into the triplet, where betatron functions vary up to maxima of
~8000 m in both transverse dimensions. The total quad length is 51 m, and the mean focusing
strength is 215 T/m (for 20 TeV protons).

We consider a 12-pole systematic multipole error (bs) of unit strength (104 of the
focusing field at 1 cm). bsis chosen since it is a multipole which is allowed in quadrupole
symmetry and therefore can have a large systematic value, it directly causes amplitude-
dependent tune shifts, and it is the highest order term for which correction is needed (and
therefore the most difficult to correct).

To set up a correction configuration, we split each of the F, D, F triplet units into two
half-length magnets and place short corrector elements in the center gaps between those magnets,
as well as at the ends of the F, D, F units (see Fig. 2). The correctors are powered to cancel the
total nonlinear field quasi-locally in the quad units following Simpson's Rule
Ssep =-(1/6, 4/6, 1/6) B'bs L p.

There are four first-order amplitude-dependent tune-shift terms driven by bs. There are
also five momentum-dependent terms; however these all contain powers of the dispersion
functigilf which is near zero in the IR quads and are initially ignored. The amplitude-dependent
tune shifts are:
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where Ix and Iy are the horizontal and vertical actions, which are related to the amplitudes Ay,

Ay, by Axy = V2Bx y Ixy, Bx, By are the betatron functions, B'bs is the multipole strength and the
integrations are over the quads and correctors. These are dependent on the integrals over the

quads of the four factors: Bi, Biﬂy, Bxﬁi, 133 multiplied by the nonlinearity strengths.

The correctors contribute to the tune shifts as sums of strengths weighted by the same
betatron function factors; they cancel the IR quad contributions to the same accuracy as the
integrals over quad units are accurately approximated by Simpson's Rule.

Table 2 shows comparisons of the F, D, F quad integrals and correction factors. Most
terms are corrected by factors of 100. One integral (the integral of ﬂi over the D quad) misses by
25%, however that D quad contribution is a very small part (< 5%)of the total corresponding tune
shift term. The next worst term (the integral of B?, over the D quad) misses by only 8%. The

largest tune shift terms are due to coupled motion integrals (Bx2]3y, Bxﬁyz); these largest terms are
all reduced by two orders of magnitude. Overall, correction by ~two orders of magnitude is
obtained, much better than necessary. Correction of bs was demonstrated; correction of lower
multipoles should be better.

The momentum-dependent tune-shifts would also be corrected by similar factors: these
terms would be initially at least an order of magnitude smaller because of the small dispersion.
Because beam crossings are at an angle, the beams pass through the quads with off-center
displacements. This displacement implies significant feed-down multipoles. Tune shifts from
the feed-down multipoles will also be compensated by ~ two orders of magnitude.

Resonance driving terms are also represented by integrals of betatron factors times phase
factors over the quads. They are also reduced by orders of magnitude by the present method .
(Note, the phase factor parts of the integrals vary little over the IR triplet because of the large
betatron functions.)

In this example, we have compensated the effects of a systematic multipole component.
The method should be modified for compensation of "random” muitipole content, particularly
when the random variation is between quads in the same F or D focusing units. A "trapezoidal"
rule should be used to obtain corrector strengths. Correction of the random content would not be

2



quite as good; however random content effects are aiready reduced somewhat by the random
variation.

Since the correction is better than necessary, a sparser correction algorithm could also be
considered. In particular, correction of the first F quad (nearest the IR) can be reduced, since the
beam is not sufficiently magnified in that first quad to cause large tune shifts. Also, variation of
correctors from integration rule values to cancel dominant nonlinear terms has not been
considered. Non-local correction using elements outside the triplet has also not been included.
These and other variations should be explored before final specification of a correction system.

In summary, we have demonstrated that lumped quasi-local compensation of IR
nonlinearities is possible. A specific high-order example (correction of systematic bs) has been
evaluated and obtains correction by two orders of magnitmde.

Table I - Elements of Triplet

Element Length B'/Bp
Drift 20m 0

F-Quad 15m 0.0032
D-Quad - 24m -0.003075
F-Quad 12m +0.003237



Table II - Tune Shift Terms in IR Triplet

Element, Term vy, y (bs = 104, gy = g5 = 10-8) Av (corrected)
F1, Bx3 0.000019 -0.0000001
Fi, ax2a% 0.0017 0.000013
F1, BxBy 0.00216 -0.000043
F1, By3 0.00011 -0.000014
D, Bx3 0.000248 -0.000059
D, Bx2 0.0208 -0.00026
D, Bxp 0.0572 0.00086
D, By3 0.00505 -0.00042
Fa, B3 0.00220 0.0000001
F2, BxBy 0.0496 -0.000043
Fy, BxBy? 0.0334 0.000038
Fy, By3 0.000676 -0.0000094

€y and €x are the emittance in M-R and re related to the amplitudes and actions by

Axy2 VPBryExy and ex,y = 2 Ix y, respectively. 10-8 m-R corresponds to A =2 mm at p = 400 m,
a typical maximum value in the arcs. In the uncorrected Av calculations, signs have been ignored.
A negative sign in the corrected Av numbers indicates the particular term is overcorrected by the
3-point correctors.



References
1) SSC Conceptual Design, SSC-SR-2020 March 1986 (p.159).

2) D. Neuffer - Nucl. Inst. and Meth. A274, 400 (1989).
D. Neuffer and E. Forest, Physics Letters A135, 197 (989).

3) G. Brianti, International Conference on High Energy Accelerators, Tsukuba, Japan, August
1989.

Figures
1) Lattice functions By, By in the IR triplet.

2) Triplet layout with corrector locations (marked by C's).
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