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Introduction

In view of the recent attention given to the subject of beam-beam simulation,
an informal mini-workshop was held at the SSCL during 5/21-23, 1990. The
purpose of this mini-workshop was to (1) compare the techniques and results
of the various beam-beam simulation efforts and (2) evaluate what to do
next. There were three groups in attendance from SSCL, the University of
Texas at Austin, and Cornell University, No attempt was made to include
all the important beam-beam simulation efforts elsewhere. Highlights of the
discussions are summarized in this report.
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SSC effort

Coherent Dipole Beam-beam simulations have been performed to determine
the stability boundary of the beam-beam strength parameter £ versus the
total tune v of a collider ring. Details of the simulation technique can be
found in report SSC-62 [1]. The simulations can take into account both head-
on and long range collisions. In the current study only head-on collisions
are considered. This is a tool checking stage. Some further concerns for the
SSC are long range collisions, different number of particles in each bunch,
xz — y coupling, random changes in the tunes, and the effects of gaps in the
beam (i.e. abort, systematic, and random). Once this tool is checked, other
effects will be included for SSC runs.

The configuration consists of 4 equally distributed IR’s (interaction re-
gions) with 2 bunches per beam. The total tune, v, is scanned to determine
the £ — v stability boundary where v = 12 + v23 + 34 + v41 and vy refers
to the arc tune between interaction regions 1 and 2, etc... Two arc tunes
are fixed: vo3 and vyy. 142 and ey are set by 112 = vay = (v — 12 — va1)/2.

For unequal phase advances, 13 = 2.70 and vy = 2.25, a novel boat
sail shape is apparent (figure 1). Each point in the figure represents a single
tracking simulation. Particles in the unstable regions are lost within 100
rotations. For values of the tune hetween v = 8.50 — 8.75 a stable region is
bounded in £ between two unstable regions. This result is independent of the
particle initialization in the simulation and whether p—p or p—p collisions are
used. To check the tracking results eigenvalues of the transfer matrix were
calculated and the largest eigenvalues of the matrix were determined. Figure
2 shows the results of scanning the tune-shift parameter £ for value of the
total tune of 8.65. The results show a stable region between £ = 0.050 and
(0.080 bounded by two unstable regions. This is confirmed within numerical
accuracy by the results of the simulations at the same value of the tune.

When 123 = 2.25 and vy = 2.0, an island region is observed between
v == 6.6 — 7.0 (figure 3). Again a stable region is bounded in £ between
two unstable regions. When w3 = 2.5 and vg; = 2.0, standard triangular
stability curves are obtained. No stable regions are bounded in £ by two
unstable regions. When all four tunes are equal, the half integer resonance
disappears and a single triangular stability curve is obtained.

These results differ from matrix calculations of Keil [2]. Keil examined
the maximum eigenvalue for a single value of the beam strength parameter
£ = 0.03 and scanned in the total tune. Keil claims that at v = 0.5 the
stability boundary is vertical for the particular case shown in figure 12 from



reference [1]. This apparent discrepancy will need to be resolved.

UT Austin effort

The objective of this study is to determine beam-beam interaction effects on
particle dynamics using a collective plasma model at the interaction point. A
1 dimensional model is employed at the interaction point so only transverse
oscillations due to the counterstreaming beams are studied. The rest of the
machine is treated by simple harmonic transport (betatron oscillations). By
employing a fully self-consistent model at the interaction point it is hoped
that an assessment of the relative importance of collsions as a whole and
individual ”soft” collisions (collective effects) can be determined. One of
the fastest growing collective effects which can occur in a plasma is the
filamentation instability. There are two factors which determine its effect
on collective motion of counterstreaming beams. They are the timescale of
the interaction and the transverse size of the beam. The timescale of the
interaction Tin: Is determined by the length of the beam bunches Ly where
Tint = Lp/2c. The maximum growth rate of the filamentation instability for
large beams is 'y, = w3 /2 for p — p collisions and 2wy, for p — p collisions
where wp = /Amelny/ym is the beam plasma frequency, ny is the beam
density, v is the relativistic factor, and m is the proton mass [3]. The factor
[CrmezTint determines the fraction of the growth rate time the beams interact.
This number for the SSC is 0.05. So the beams interact for a small fraction of
the growth time of the instability. Therefore, the only way the filamentation
instability may be of some importance to the beam dynarmics is by repeated
interactions over many turns. The transverse size of the beam is another
factor limiting the effects of the filamentation instability. The typical scale
of the filamentation instability is the collisionless skin depth A, = c¢/w;. For
the SSC the ratio of the beam width wy to A, is & 2 x 1075, It has been
found that the filamentation instability is suppressed when this ratio is sinall
[4]. The simulations have shown that this does occur. Analytic calculations
are being carried out in the current 1 dimensional collider geometry.

Long runs of 1000 turns have been performed. In order to keep the time
between rotations reasonable (= 1000 time steps) a beam width larger than
the SSC was used. This is due to constraints of following light waves in
the electromagnetic code. The ratio ws/A is still small at ~ 1073, Mea-
surements of the tuneshift for both beams for small amplitude particles are
shown in figure 4. The tune-shift oscillates about an average of 1.87 x 103



and 1.93 x 102 for beams 1 and 2 respectively. The predicted tune-shift
for a one dimensional Gaussian beam using SSC parameters is 2.1 x 1073.
Power spectra of these oscillations show both high and low frequency com-
ponents (figure 5). The large peaks correspond to oscillations which occur
every = 6 rotations. Larger peaks which are not plotted occur at the high-
est frequencies and can be attributed to noise in the simulations, Poincare
sections in £ — z’ space have been generated for particles in various initial
positions in phase space. A preliminary investigation has shown what seem
to be resonance islands of 38th order.

Some comparison of short runs with various different dynamics has been
done. These simulations incorporated vacuum instead of periodic boundary
conditions obtaining closer agreement with theory. The aspects of the 1
dimensional fully self-consistent model were eliminated in stages (figure 6
for beam 1). The final stage involved non-moving particles for one beam and
a number of non-interacting particles for the other beam (labeled minimmum
code in the figure). This case is similar to the ” weak-strong” approximation
used in tracking codes. The main difference between the self-consistent
model and the ”weak-strong” model at least for the small number rotations
is the oscillations in the tune-shift. A comparison will be done for a large
number of rotations where collective effects may begin to play some role.

The preliminary conclusions are that (1) collective effect accurnulation
is weak at least over short runs, (2) the filamentation instability is sup-
pressed by the finite extent of the beam, (3) average values of the tune-shift
nearly agree with theory after substantial calibration efforts, and (4) some
oscillations are seen in the tune-shift and emittance.

Some of the shortcomings of this fully self-consistent method have be-
come clear:

e too costly/ small number of particles

e a large number of time steps are neccesary for one rotation. For
realistic SSC parameters the simulation time step size At is about
3 x 10" % 7.

o only 1 dimensional collective effects are included

e need to look at ¢ — y coupling (betatron resonance) and z — y — 2
coupling (betatron-synchrotron resonance)

e need increased resolution and much longer runs.



Most of these items can be ¢liminated by incorporating a new mag-
netoinductive model where the displacement current is neglected (Darwin
approximation)[5). As a result At becomes comparable to T and a factor
of 10% — 10% increase in speed is possible. This will allow:

e extension to ¢ — y and z — y — z dimensions.
e investigation of betatron resonance and a 4D map comparison
o investigation of synchrontron-betatron resonance

Another method for increased smoothing, accuracy, and reduced cost is the
6f algorithm technique. In this method deviations from a steady Gaussian
6f are used in a smoothing process [5]. This method could be applied to
other simulations such as the Cornell ”strong-strong” beam simulations [6].
Future developments of the beam-beam interaction research include:

e comparison with ”weak-strong” simulation

e calibration with the theory and present results for the magnetoinduc-
tive model

e reduction to one time step for particle push for a given set of particles
in the other bunch and a few time steps to include the bunch length

e calibration with other existing machines
e applications to the SSC, or other machines

o diffusion model development (D vs. radius, etc...)

Cornell effort

DCI simulations

The goal of these simulations was to determine reasons for DCI results which
show saturation in the tune-shift versus current in a round beam configura-
tion (figure 7a). Round Beam B-factories with @ > .75, .25 achieve £ > 0.1
in simulations that included transverse motion. Based on this one would
have expected similar performance from DCI which had a close resemb-
lence to such round beam colliders. The limit for DCI was measured to
be €iimit & 0.018. Simulations have been performed for two machines with



parameters close to those of DCI. ONE is a one interaction region machine
with half the DCI circumference. It was primarily used to study resonance
structure and radiation damping effects. TWO is a two interaction region
machine with the same circumference as DCI. It was used to study the ef-
fects of betatron phase advance errors. The simulations did not include
dispersion or longitudinal motion. These approximations are justified by :

e the dispersion contributions to beam sizes are small when running on
the coupling resonance.

e > oL
e variation of @, is not important [7].

The simulations treat the radiation and coupling as uniformly distributed
along the arc (smooth approximation). A result is that there is coupling
only when the integer parts of the vertical and horizontal tunes are equal.
This is not the case for real machines. Transport between the IP’s was done
with a 4 x 4 linear matrix. Simulations of TWOQO allowed different phase
advances between IP’s,

There are four possibilities which explain the low £;pi: observed in DCI

e operating point

o radiation energy loss AE/E between crossings
e ¢ making

e optical errors

Radiation damping 6§ = AE/E was examined using ONE with @, =
.8625 and @y = 1.8625 just below % resonance. Only even order resonances
are important. The resonance strengths should decrease as the resonance
order increases. With fixed current and radiation damping 6th, 8th, and
10th order resonances were observed in decreasing strength. The tunes were
scanned over the 8th order resonance for different values of radiation damp-
ing 6. There is a small dependence on 6 for § < 2 x 10~° and an abrupt
change in behavior at § = 5 x 107°. Away from resonance the behavior is
the same, but there are differences near resonaces. Radiation damping has
some effect, but £, is maintained well above £ = 0.018 where saturation



was observed in experiments. Radiation damping alone is not sufficient to
explain results.

¢ making is given by properties of the synchrotron radiation. In general
€n » €y 50 emittance in the vertical direction was simulated by 1. random
and 2. coupling methods. This effect was not important.

Optical errors were examined using the TWO machine parameters. A
horizontal phase advance error, A(Q), was put into one of the arcs. The
other arc had the opposite sign error to maintain the tune @ at the nominal
value. One expects beam-beam resonances for 2p@Q = m where p is the
order of the resonance. If m is even, then the reduced Hamiltonian, H,.q4 is
independent of AQ. If m is odd, Hy.q x pAQ. @r = 3.725 is near 3%. The
4th order resonance is not excited if AQ = 0. @Qp, is also near 21-84-. The 8th
order resonance is excited independent of AQ. All other factors in limiting
£ influence the strength of the 8th except optical errors. The simulations
were done in two dimensions so @r, AQ#h, @Qv, and AQ, were set. AQ), was
varied and AQ, = 0. When AQ)} is introduced, this substantially affects £
level. When AQ = 0.004 — 0.008, results start agreeing with experiment
(figure 7).

There were no direct measurements of AQ in DCI. Also the errors in
the quadrupole magnets were never measured. The errors were measured
for similar quadrupoles used in a machine called super ACO. The errors
measured were og, = 0.002 and o9, = 0.0005 with < og,0q, >= —0.7. A
”2 sigma machine” was simulated with AQ, = 0.004 and AQ = —0.001.
The measured tune-shift limit 5 was 0.0195 which is close to the tune-
shift limit observed in DCI.

These simulations have shown that reasonable phase advance errors can
explain the DCI performance,

A puzzle from DCI performance which has not been resolved is a mea-~
surement of the limiting tune-shift versus tune where @y = @Q,. The ex-
perimental and simulation results seem to agree except for when the tune
is slightly above (1.8 where the simulation indicates a higher £1imi: than that
observed. It needs to be resolved whether the tunes in the data were mea-
sured tunes or from the quadrupole magnet settings. If the latter case is
true, then the extra point can be attributed to a shift of all points in the
tune to higher values.



Phase Averaging in the Beam-beam interaction

In the usual approximations, the longitudinal extent of the beam-beam in-
teraction is ignored and is treated as a delta-function. The consequence of
ignoring the Gaussian longitudinal distribution is calculated in a Hamilto-
nian model [8]. It manifests itself as a Gaussian form-factor in the expression
for resonance strengths. Physically this arises from the fact that the driving
force is applied not at a single betatron phase, but is spread over a wide
range of (the test particles’s) betatron phase. Hence, this phenomenon is
referred to as phase-averaging.

The Hamiltonian analysis can be extended to derive energy-transparency
conditions for asymmetric colliders {9]. If one requires that both beams see
the same set of resonances and strengths, then the constraints are stringent.
In particular, one energy-transparency condition requires to have propor-
tionally more particles in the low-energy beam.

Simulations that incorporate phase-averaging via a thick-lens treatment
agree well with the theoretical model. Simulations that in addition allow for
a Gaussian distribution of test particles predict an optimal bunch length,
oy = 3*, for round beam in a single-ring ete™ collider.

The latter simulations were also applied to compare flat and round pro-
files. For flat beams the tune-shift parameter decreases monotonically with
increasing o;/8". The maximum tune-shifts achieved in paramter scans are
= (.05. For round beams the tune-shift limit is 2-3 times larger.

The emphasis in all the work so far is on the nonlinear dynamics within
the framework of single isolated resonances.
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