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INTRODUCrION

Most contemporary electron and proton storage rings are
limited in their performance by the beam-beani effect. Consider
a test particle passing through a counter-rotating bunch of par
ticles at a nominal collision point of a storage ring-without a
hard collision. The test particle experiences macroscopicelectric
and magnetic fields which give its trajectory a nonlinear ldck.
For example, a proton displaced horizontally by X, passing
through a round Gaussianbunch of size a, receives an angular
kick

ar aX
where E,, the "tune shift parameter," is proportional to the
transverse charge density in the bunch. The strength of the kick
drops off like l/X at large displacements, unlike the polynomial
behavior of magnetic kicks, since the nonlinear field source is
localized at the center of the beam pipe. Small amplitude trajec
tories receive kicks which are linear in displacement. as in a
quadrupole, and are shifted in tune by -hence the name, tune
shift parameter. At large amplitudes the tune shift approaches
zero,and the situation is usually stable, again in contrast to the
magnetic case. Beam-beam resonances are strongestat inter
mediate amplitudes of a few sigma.

Accelerator physics is in good company when it considers
the problem of single particle stability in response to nonlinear
forces such as the beam-beam interaction. For example, the
question of the stability of the solar system is perhaps the best
known and longest standing problem in nonlinear dynamics.
Here is a system with an age of order 1010 periods years, which,
despite the best efforts of generations of mathematicians, has
not been proven to be stable. Rigorous mathematical results are
hard to come by in even the simplest nontrivial systems, like
the three body problem. More valuable than rigorous results,
however, are the analytic languages and tools which classical
dynamicists have established in their studies of differential
systems-systems which are naturally described by differential
equations.

The relatively recent advent of powerful computers caused
an explosion in the interest paid to nonlinear problems.
Computers, by their cyclical iterative nature, tend to make
problems look like difference equations. On the other hand,
analytic tools tend to make problems look like differential
equations, since they are usually much easier to solve than
difference equations, requiring only pencil and paper. Which
representation is truly appropriate depends on the nature of the
system involved. For example, it is natural to represent the
solar system as a differential system, since gravity acts smoothly
and continuously, while the beam-beam interaction is naturally
a difference system. since the nonlinear perturbations are well-
represented by brief impulses, separated by lengthy sections of
linear motion.
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Despite all the powerful analytic and numerical tools
available, it is still impossible to prove the long-time scale
stability of trajectories. At this point a physicist resorts to the
traditional defense that pragmatism is more important than
rigor. The solar system appears to be comfortably stable for 1010
periods. Proton storage rings such as the SI’S and the Tevatron,
with circulation frequency of about 40 kflz and storage times of
about one day, are conservative nonlinear systems which are
usefully stable for about 4.l0 periods. In contrast, the 55G. with
a revolution frequency of about 3.5 kHz the first man-made
audio frequency accelerator, needs stability for only about 3.l0
turns in order to provide collisions for one thy. While the time

I] span of the problem has shortened, the time span of the avail
able tools has lengthened-it Is no longer uncommon to follow
computer simulations of accelerator models for 106 turns.
Although simulations still fall short of the SSC tftne scale by
about two orders of magnitude, it is reasonable to accept their
predictions about the behavior of the SSC, if the simulations
agree with the real behavior of existing accelerators operating
under relevant nonlinear conditions.

The maximum operational tune shift parameter is of
order 0.02 per collision In electron rings, and of order 0.004 per
collision in proton rings. This order of magnitude difference is
largely due to the difference in transverse beam shape electron
beams are flat, proton beams are round, both are bi-Gaussian
and to the fact that electrons produce a lot of synchrotron radia
tion, leading indirectly to a stabilizing damping of the train-
verse motion. The SSC will be the first proton storage ring in
which synchrotron radiation is significant. with a damping time
of about half a day. Electron ring damping times are typically
measured in milliseconds. Somewhat different theoretical
models are used to successfully explain the beam-beam limits in
the two kinds of ring [1-51. Good quantitative agreement
between theory, simulation, and observation is obtained, in the
proton case, only when tune modulation effects are taken into
account [6-lot.

This paper concentrates on the problem of describing the
response of an accelerator resonance-beam-beam or other
wise-to an external tune modulation perturbation. In particu
lar, the qualitatively different responses in four separate regiots
of configuration space are quantitatively explained by merging
piecemeal theories which are individually valid in only limited
circumstances. At first sight this concentration appears to be on
a beam-beam effect of only limited scope-of limited relevance
to electron storage rings, for example. In fact. it is a subject of
broad general interest across nonlinear dynamics, describing,
amongst other systems, the behavior of the Josephson junction
as used in defining the standard Volt [11-14. The equations of
motion of both of these systems are analogous to these of a
gravity pendulum. driven by a sinusoidal torque.

THE DRIVEN DIFFERENTIAL PENDULUM

The most compact way to describe the motion of a differ
ential pendulum of mass M, length L, acting under the
acceleration due to gravity g. is by means of the Hamiltonian,

H = - MLgcose up2 - VcosO [2!
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where 9 is the angle the pendulum makes with the vertical, and
p is the angular momentum,

p = MI,2 !

Equation [2 is, by definition, shorthand for the equations of
motion

dO MI
dt

dt ao
Trajectories of the pendulum system follow contours of the
Hamiltonian function, because H is explicitly conserved, since

dli ÔH Hde
dt ÷

s 0

by substitution of the equations of motion [4. The rate of
progress along a contour depends only on the local slope of the
Hamiltonian function. A particular pendulum is conveniently
represented for many purposes by a single number, its free
oscillation frequency in the limit of small oscillations. This
quantity is called QI here, in a "tune" notation which is ready
for analogy with beam-beam resonances. Its value is

= i&1/2

When the pendulum Is drIven by an external torque of
amplitude T which is varying sinusoidally In time, it is no
longer so easy to describe the motion by means of a
Hamiltonian-although it is still possible in some cases, as will
be shown below. The equation of motion of the pendulum is
now

d
+ 2,vQp2sin0 = I cos2XQMt

So long as the motion of the pendulum is periodic, and not
chaotic, it is convenient to expand e as a double Fourier series
expansion, in the drive tune QM and in a free oscillation tune,
Qfree, which is in the range 0 to 01. depending on the amplitude
of the free oscillations.

It is conceptually natural to consider the free oscillations as
trivially superimposed on the driven motion, which contains
most of the interesting physics of the situation. This perspective
is also appropriate in experimental investigations of the system,
such as in the 778 nonlinear dynamics experiment [15-201. and
in the mechanical modeling of Josephson junctions 111-131.
Ignoring the free oscillations, then, there is a family of possible
periodic solutions labeled by the integer k,

9 = k2,tQt + Xcncosn2tvQrwt
nal

where the coefficients c are functions of the configuration
variables, T, QM. and 71. The pendulum rotates exactly Ic
complete turns in one modulation period.

In the accelerator representation of this system, where the
tune is modulated, the family of solutions corresponds to a
family of synchro-betatron sidebands, as will be shown below.
That is, particles in a tune-modulated accelerator are free to
oscillate about any stable member of a family of sideband
resonances, each of which has a tune 7k which is offset from a
fundamental resonance by an amount proportional to k.

Qk = +

Since the persistent signal due to protons trapped in a resonance
island is an experimental observable, then it is possible to
observe a signal at any of the Qk tunes, if the signal is strong

131 enough.

For a particular sideband to be observed in practice, it must
not only be stable, but must also be of significant size. Persistent
synchro-betatron signals with non-zero k have already been
seen in the analysis of 778 data taken in 1988, although not so
cleanly as to justify publication. It is expected that the more

41 sensitive electronics which will be used in the 4989 run will
compensate for the limited reach in the 778 configuration
plane. so that many such signals will be available for quantita
tive analysis.

Equation 171 also describes a Josephson junctIon, when it is
driven by a radio frequency current source at a frequency QM. In
this representation the angle 8 Is the quantum phase difference

[j across the junction. The voltage across the junction is propor
tional to the instantaneous rate of change of 0, with a multi
plicative constant which depends only on the fundamental
quantities e and h, the electronic charge and Planck’s constant.
After differentiating the solution [8, then, the voltage across a
driven Josephson junction is

= k + alternating terms [101C 4

where the alternating terms can be neglected. The precision
with which the family of these voltages is known can be used to
define the standard Volt Typically, frequencies of order 10 GHz,
and k values as large as 100, are used to produce voltages of
order 100 uV per junctIon 14. It is possible to lithograph as
many as lO of these junctions in series on a single chip, to
make well-known voltages of order I Volt. It should be noted
in passing that the voltages are stable despite the presence of
significant damping in the Josephson system. which is not
included in equation [71.

The simple and fundamental theme of this paper can be
defined by asking two questions in a context-free manner Is the
k-th solution of 18 stable for given 01. QM, and T? If it is stable,
doe It have a significant size or strength? It is nonetheless
convenient and approprIate to answer the questions in the
specific context of accelerator resonance. Finally, note that
although there appears to be three configuration variables, only
two of them are independent, since for example Ql can be
nonnallzed to one by redefining the unit of time. Such a nor
malization would be confusing to the intuition, since the
natural unit of time in the accelerator system is emphatically a
single turn, Therefore, in what follows, 01 is almost always
simply assumed to be constant, leaving land OM, or their
analogs to be the configuration variables.

ACCEI.ERATOR EQUATIONS OF MOTION

The simplest way to describe linear motion in an accelera
[SI tor is in terms of "normalized" phase space coordinates, x,x,

which are related to the "physical" coordinates by the transfor
mation

a = 2

Here 3s is the ‘betatron function" which characterizes the
linear optical focusing properties as a function of azimuthal
position. In this frame linear motion is generally described by

/ xs sin$s-SO
I =a0 1121
I x’s cosGs-$t3
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That is, motion from one azimuth to another is described by a Qo is justified by noting that it leads to an inconsequential sub-

J J
I I -I

I".t+I t

simple smooth rotation around a circle of constant radius, with
a rate of advance given by

d1
ds

So, in a normalized phase space description of linear motion the
trajectory fibers form a bundle which is circularly symmetric,
where all the fibers turn around the center of the bundle at the
same rate.

In order to describe nonlinear motion, it is convenient to
introduce "action-angle" coordInates. J andi, where

X an1’2sins

lxj = anu/2cess -

That is, the action J behaves very much like the betatron ampli
tude, while4 is explicitly the betatron phase of the trajectory
under study. It is usually possible to describe the motion from
turn t to t + I at a fixed azimuthal location in terms of a
"discrete" Harniltonian, H1.

+

aHt
aj t

The approximation sIgn is necessary here not only because the
function H1J,5 is typically only correct to first order in the per
turbation strength for example the beam-beam tune shift
parameter but also because the motion described is not area-
preserving, or symplectlc. This Is because of the discrete nature
of the motion, If the difference equation 151 were, instead, a
differential equation, as in [4, then the motion would at least be
proper, even if incorrect due to the approximate nature of the
Hamiltonian.

Five Islands-the Single Resonance Hamiltonian. I-Ic

When the amplitude of a trajectory is small-as J -* 0 -

the single turn phase advance given by 151 tends towards a con
stant, 2*Qo, where Q is the "base tune" of the accelerator. Since
Qo is typically not close to an integer, there Is usually a large
change of phase modulo 2* in one turn. However, if the frac
tional pan of the base tune is close to a rational fraction, 2/5 for
a convenient example, then after 5 turns around the ring the
net change in phase can be rather small, and resonant motion is
important.

If the strongest nonlinear elements are sextupoles. then
it can be shown [201 that when the motion in 151 is iterated 5
times-"when HI is averaged over S turns"-the leading
components of the "single-resonance Hamiltonian" have the
general form

H5 = ZxQj-. + V4 - V5J’12cosS+05

which is just shorthand for the five-turn difference equation of

J

1. I.
t+5 t

by analogy with equation 1151.

a.
+5

dH
aj

The meaning of the three terms in H becomes clear when
the partial differentiations in [171 are performed. For example,
the first term corresponds to a five-turn phase advance of 5 ‘2rc
IQo- 2/51, independent of the action. Subtraction of 2/5 from

where

traction of 4* from the five-turn phase advance. The subtrac
tion is motivated by makint the coefficient of J a small number.
Next, differentiation of V4 J’ with respect to J leads to a five-

[131 turn phase advance of 10 V4 J, linearly proportional to the
action.

V4 V4
01 = Qo+-J Qo÷-a2 [181

2*
Ihat is, there is an octupolar tune shift with action or
amplitude.

For comparison with the contours of equation [161. Figure
I shows the sinualated motion of protons stored in the levat
ron, when a Q = 2/5 resonance is driven by 16 specIal sextupoles

[14] under the experimental conditions of E778 1171. The tune drops
from about 19.42 at the center small oscillations, through 19 +

2/5, where five islands can be seen, down to 19 + 1/3, at the
dynamic aperture of the Tevatron in this particular
configuration. Note that the five Islands are distorted by the
triangular structure, which is abeent from the approximate
Hamiltonian description of equation 1161.

The action J1 at which QJ1 = 2/5 identifies where the its
onance Is found. Before examining the behavior of the term in
V5, it is convenient to make a coordinate transformation and

[151 rewrite 115 as an expansion around ft.

=
1.112 - Vcos55 [19]

= J-Jl.U = 2V4,V = VJ/2 201

and the value of $5 has been conveniently chosen. This resem
bles the pendulum Hamiltonian 21. and has the same form for
beam-beam resonances except that odd beam-beam resonances
are suppressed.

Substitution of this Hamiltonian into the equations of mo
tion 171 with J replaced by! shows that 14 a 0,0 is a fixed
point-a trajectory launched there is stationary. In some region
close enough to 1-0. then, H5 may be considered as represent
ing differential equations of motion, continuous in t, which

0.6 I

Figure 1. Surface of section plot of several trajectories, from a
numerical simulation of the 778 experiment. The value of
is approximately 100 meters. so the five islands at a
nonnalised amplitude of about 03 IO4 m1 /2 have a
physical amplitude of about 5.0 millimeters.
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agree well with the difference motion whenever t is an integer
multiple of five. In this differential perspective the
"approximately equal" sign a is replaced by an equality.

a. -

all5
dI

Except for factors of 5, this is just the familiar case of the pendu
lum. For small angles, 3$ cc 1/5. the solution of this equation
is just

V

SW

where It may be assumed that V and U are both positive. The
free oscillation island tune is given by

QI = -WV’ I

ready for direct comparison with the characteristic small angle
tune of the pendulum, given by 16-

This analysis can readily be applied to the round beam-
beam problem, since in that case the functions UJ and VnJ
are analytically well known 9, 21. Figure 2 shows the island
tune Q1 which results from a single round beam-beam interac
tion, using equation 23? with 5 replaced by n, the resonance
order for even order resonances up to order 12. The Stand
tune is proportional to the tune shift parameter, with a constant
of proportionality somewhat less than one. As the order of the
resonance Increases, the maximum value of Ql/{ decreases, but
occurs at a normalized amplitude which Is increasing. This
illustrates the intermediate range nature of the beam-beam
effect.

Experimental Observation of Resonances 115

FIgure 3 illustrates typical data obtained in Ens, by kicking
a Gaussian proton bunch into a phase space position which par
tially overlaps the fifth order islands shown in Figure 1. At first
the signal undergoes Gaussian decoherence. appropriate to the
spread of tune across the perturbed beam. However, there is
also a "persistent signal," which has a very small decay rate-it
is typically observed for tens of seconds, or millions of turns.
This signal is due to particles which do not decohere because
they are phase locked within the bounds of a resonance island.
If the base tune Qo is adjusted to maximize the persistent signal
strength, when aa- a. the persistent amplitude leads directly
to the resonance island width aw, through

ar,i5tent
=a lack

where C is a geometrical factor close to unity which is calcu
lated by numerical simulation 15, 161. The beam size a is
assumed to be well known, although in practice it fluctuates
from shot to shot. Once measurements of aw have been made
at several vaLues of aCt, the set of data pairs QQ,kick may be
analyzed to yield an accurate plot of tune versus amplitude.

What does theory give for the width of these islands? The
amplitude width is estimated by assuming that trajectories at
least as far as the separatrix follow I-Is contours. This is explic
itly wrong very close to the separatrix, which does not even exist
in the difference systernJ Since trajectories follow contours of
H5, and since the saddle point unstable fixed point is on the
boundary between resonant and non-resonant motion, the
height of the saddle point. Hs0.2,t/l0, is the same as the height
HsUw,0l, where 1w is the island half width. This gives
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Figure 2. The ratio of island tune to tune shift parameter as a function
of normalized amplitude, for a single round beam-beam
interaction. The amplitude is normalized relative to the size
of the opposing beam. As the order of the beam-beam
resonance increases, the maximum strength of the resonance
decreases, and the most potent amplitude increases. At large
amplitudes the island tune tends to zero, in contrast with the
case of magnetic resonances, whet Qi tends to infinity.
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Figure 3- Typical data from the £778 expenrnent, showing both
Gaussian decoherence and a persistent signal. a Raw turn-
by-turn data taken by one of the beam positionmonitors. over
4,000 turns. The signal strength initially drops very rapidly
after a transverse deflection of about 4 millimeters. finally
leaving five persistent signal lines with a very slow decay
rate. b The reconstructed amplitude over the first 500 turns.
showing that the initial decoherence is well fitted by the
solid line Gaussian. About 30% of the beam is trapped in a
resonance island at an amplitude of about 4 millimeters.

v
1w = 2u

which is readily converted to an amplitude width, aW -

The functions characterizing the simple Hamiltonian
theory. U and V. have appeared in three expressions. for the
tune shift with amplitude Qa 1181. the island tune Qi [23, and
for the island width 1w, above. Two of these three form a com
plete set of experimental observables, since it is possible from
any two to deduce the values of V and U at that amplitude or

I25
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action. It is natural to choose Qa as the first observable, since
its measurement is relatively fast and straightforward- The
experience of EflS implies, however, that the second observable
should be Qi. and not Lw, because the island width measure
ments are relatively slow, depend on the size of the proton
bunch, and, even in the best of all possible worlds, the island
width varies from island to island. In contrast, the island tune
Qi is explicitly the same for all islands, has a natural intuitive
definition independent of the details of the theory, such as the
presence or absence of triangular distortions and in principle is
fast to measure-

Measurements of Qi in the 1988 run of £778 were not
rapid, although great improvements are expected in 1989. The
most successful of the three different measurement methods
which were tried, and the only one independent of beam size,
was to observe the response of a persistent signal to tune modu
lations of varying amplitudes and frequencies. This explains
the primary relevance of tune modulation In the £778 expel
ment-although tune modulation phenomena are also
important in their own right.

TUNE MODULATION

if a set of quadrupoles is perturbed by a small sinusoidal
current, the tune of a small amplitude trajectory is modulated
according to

- + qstn2xQp4it tJ
where q and QM are the tune modulation amplitude and tune.
Power supply ripple like this is normally carefully avoided.
especially in proton colliders. where any source of noise
degrades the storage lifetime of the beam. Tune modulation via
the coupling of synchrotron oscillations with non-zero chro
maticity is an important internal source for the beam-beam
interaction, even in an otherwise perfect accelerator. Special fast
quadrupoles are used during slow extraction in the Tevatron,
responding to the difference between measured tune and
requested tune, to ensure a steady spill rate. It is these
quadnapoles which Efl8 uses in its investigation of resonance
behavior in the q, QM parameter space. As Figure 4 shows, the
q, QM plane is rich in dynamical features. The dotted line in
the figure shows the region accessible to the E778 experiment.
with maximum q and QM values of about 0.01.

Tune modulation is included in the resonance
Hamiltonian near a fifth-order resonance by adding a single
term to equation 191, giving

H5 = 2xqsin2tQtl + UI2 - Vcos5$ - Cr1

This 1-lamiltonian is still shorthand for two differential equa
tions, not difference equations, because of the very small net
motion in five turns. Unfortunately. H is now time depen
dent, and so is no longer conserved. The two first-order
equations of motion are now

- 5V sin50

x q sinQitQMO +

+ 2XQV2° = 21t2qQMcos21tQt - [I

This is directly analogous to the motion of a rigid pendulum. of
small amplitude natural tune Qr. shown in equation [71. The
factors of Scan easily be removed by a scale change.

The family of possible periodic soLutions in the absence of
free oscillations is labeled by the integer k.

1dl

I".
dt

or, as a single second-order differential equation in$ and

= 00085

Figure 4. Dynamical behavior in different regions of the tune
modulation parameter space QM.q. for a value of
Qi * 0-O5. The dashed line shows the region accessible to
the E7Th experiment, extending beyond the resonance pole at
QM * Qi for this particular value of the island tune. The
symbols represent points at which data were taken see
FigureS.

k2xQp4t+ Zcncoen2xQNlt [31
n-I

by analogy with [8J, where the coefficients cn are functions of q.
QMI and 2i. The tune of the k-th solution Li

consistent with the set of sidebands predicted by 19. Each side
band has five resonance islands, with centers at an action ‘k
given by QlIr Qk, so

= kt.

These are the locations of potential sidebands-a given solution
may or may not be stable, and may or may not have a significant
strength. Rigorous analytical results for the solutions exist only
in the slow and fast modulation limits, when QM is much
smaller or much larger than Qj. For large amplitude oscilla
tions in the intermediate region it is necessary to rely on
iterative solutions and on simulations.

The small angle Ii = 0 solution Is illuminating. It is given.

[I for all values of QM. by

Qt2 - QM2
cos2x Q14t

Qi2 is
I =

-

- sin2XQMt -

33’

Both expressions include the same resonance denominator, but
with different numerators. At constant q, the amplitude of the
action oscillation goes to 2irq/U for small QM and to zero for
large QM. while the phase oscillation amplitude goes to zero for
slow modulation, and to q/QM for fast modulation. This

2 QM
S [31
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explains the "amplitude modulation" and "phase modulation"
labels in Figure 4. The small-angle approximation is only
appropriate below the boundary line

__

I
QI2-QM2 = 5

which is the solid line in Figure 4 showing the ‘resonance" pole
atQM=Q,.

Rigorous analysis in the slow modulation limit below
shows that when QM <<QI this solid line is also the boundary
of stability for the k = 0 solution. Both simulations and a
numerical iterative solution to C291 agree that ust below the
"resonance" condition, QM S Q. this line marks the limit of
stability of the k = 0 fundamental, but that just above resonance
the k = 0 solution is stable for all values of 9. This shows that
the small angle boundary has different physical implications
above and below the resonance. Preliminary results from the
numerical iterative solution indicate that none of the k * 0
sideband solutions are stable below the resonance IS,7. In con
trast, all of the sideband solutions appear to be stable above
resonance QM Qj, with the possible exception of a small region
near the resonance.

Rigorous analysis in the large QM limit also below shows
that, although the sidebands may be stable, the size of the
islands is insignificant below the small angle boundary- If the
sideband islands are big enough to overlap with each other and
the fundamental chain of islands, there is large-scale chaos.

Stow modulation-the amplitude modulation reton,Th ss

If the tune is changing so slowly that the motion is adia
batic, it Is reasonable to approximate the rate of change as
constant. As will be seen, the most stringent conditions come
when the rate of change is Largest, so the most interesting
approximation to the Hamiltonlan in equatIon 27 is

H5 S ZiO2qQt.gtl+ Uf2_Vcos5.

This Harniltonian is still time dependent, but now it is
possible to go throujh a canonical coordinate transformation.
from I,$, H5 to I, j, l4, that produces a dine independent
Hamiltonian which can be graphically understood. Specifically
[221, the generating function

with

F314,t = - lj - - e23

- c2x2a4
= 25V’

C-

gives by its definition,

and

- 3F3 -I a - - = l+et, * * -‘

dF3
e H5

+ =
UP -Vcos5-ej -

While the old phase and the new phase are identical, reflecting
the suppression of phase modulation in this region, the new
action drifts relative to the old action at a constant speed.

The new l-{amiltonian has an extra term, linear in the
phase. which has serious consequences for the stability of the k
= 0 fundamental island chain. NZote that, as a consequence of
linearizing the rate of change of tune, solutions with k * 0 are
explicitly impossible in this picture. Pictorially, this non-peri
odic term corresponds to a constant slope of the quadratic valley
of Hamiltotsian contours, along the direction of the valley If

dl
[341 sin5$’ + c ‘ 0V

J[o

this slope is steep enough, there are no longer any local mm
inn. There are minima, and the k = 0 solution exists, if there is
a solution for the stable fixed point IEV. Fp

401

where the overbars have been dropped. If the Ic = 0 islands exist,
their centers are at In’ = 0, with a shifted phase. There are no
stableislandsatallif tel >5’, thatis,if

[41!

This condition corresponds, in the slow modulation limit, to
the small angle boundary in equatIon [341 -

Figure $ shows the effect that entering the chaotic region
has on the decay rate of persistent signals observed in the E778
experiment. A set of symbols of a particular kind represents a
single constant value of q. at a series of QM values, correspond
tttg to the data points plotted in FIgure 4. A decay ttrne of 47,000
turns is approximately equivalent to one second in the
Tevatron. The decay rate Increases dramatically when the sta
bility boundary is crossed, consistent with a fit to the data of Qj =

0.0085. Unfortunately, this method of measuring Ql is time
intensive, since each data point corresponds to a two-minute
injection cycle of the Tevatron and the analysis is done off-line.
It is hoped that in the near future it will be possible to measure
Qi In a single machine cycle, opening up the possibility of a
rapid comprehensive scan of resonances across a relatively wide
range of tunes.

Rapid modulation - the phase modulation region. °M .Qi
In this region, instead of approximating the old

Hamiltonlan and then applying a generating function, a time
independent Hamiltonian Is found by first applying a generat
ing function and then making an approximation. The appro
priate generating function Is now

FigureS. The effect of tune modulation on the decay rate of a persistent
signal. Data taken at four vaLues of q reaches from the
amplitude modulation region just into the phase modulation
region. and into the chaos region. The decay rate of the
persistent signal increases significantly as the boundary
between amplitude modulation and chaos is crossed.
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and

bU4,t = - I j
-

cos2,v QMt I 421

which gives, instead of [38! and [39,

1’ = j,Øs $ + cos2tQ!.tt 43!

Fls = UT2 - VcosSj + cosQxQMt

= Ui2 - vEii &jcos5 + i2xQMt [44

where the J are integer order Bessel functions. In this trans
formation the action remains unchanged, but the phase is
modified, appropriate to the phase modulation region. The
Mamiltonian is made time independent by concentrating on the
vicinity of the k-th sideband, near an action tk. and then
averaging the sum in 441 over one modulation period.

In the limit of large QM. not very much happens during
one period, and only one turn in the sum survives the averag
ing. After resynchronising the Hamiltonian to concentrate on
the k-th sideband, and dropping the overbars, then

Hsk = UU-102 - V 1¼ &jcom$0 1451

which is tune independent, and differs from the simple reso
nant form 1191 mainly by the presence of the Jk factor. Whether
or not the k-th sideband is significant depends on the value of
this Bessel function. As a rule of thumb, Jk is approximately
zero if the absolute value of the argument is less than the abso
lute value of k. the order. That is, the sideband k is only
significant if

q>lkI4 [46

Theright hand side of this equation is the separation of the
sideband tune front the fundamental resonance tune. Equation
146! therefore corresponds to the sensible physical condition that,
in order for the resonance to be felt at actions near I the tune
of such trajectories must be modulated far enough to cross the
fundamental.

The preceding argument Implicitly assumes that the side-
bands can be isolated one from the other, and treated separately.
This is true if the sideband separation in action, 2vQç/5U
according to [321, is larger than the sideband width, If the side-
bands are typically wider than they are apart, chaos appears,
spanning the action range of the sidebands of significant size 6,
8, 10, 23, 24. It is easily shown by further approximating the
Bessel function, and substituting JkV for V in 251, that sideband
overlap is expected if 46! is true, and if

vt34 Sq114 ‘C -4j Qi
‘V

This boundary is shown as the second soLid line, nearly verticaL,
in Figure 4. Because of the "statistical" approximation of Bessel
funçions similar in spirit to approximating a sin function by
1 /‘12, this condition is rather qualitative. Depending on the
exact phase of the smdebands, some will overlap earlier or later
than the condition suggests.

A Beam-Beam Eivample of Sideband Overlao

Figure 6 shows the appearance of sideband islands when
tune modulation with QM > Qi is turned on, in the presence of a
single beam-beam interaction with a tune shift parameter just
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Figure & The creation of resonance sideband,, and their chaotic overlap,
by tune modulation. A smngle round beam-beam interaction of
strength petturbs the phase space, with a base tune near a
sixth order resonance. Plots a and b, on top, have * 0.C42,
while the bottom two plots have a slightly stronger value

* 0.0% - Plots a and c, on the left, have no tune modulation,
whilethoseonthenglithave Q?,4,q.U/194, 0.001.
Sidebands become visible when the modulation is turned on in
b. but the sidebands must overlap for massive chaos to occur, in
d. Amplitude a is measured in units of the beam size.

below and just above the critical value required for sideband
overlap [211. The success of equation 471 in predicting this
overlap can be seen as follows. Substituting the values QM =
0.0052 and qs 0.001, and replacing the resonance order S with 6,
then the equation predicts that if Qi is greater than 0.0018, chaos
ensues. Since the amplitude of the fundamental resonance is
held constant at 2.7 a in the simulation, then according to
Figure 2 the value of Qi/ is about 0.37, leading to a prediction
of about O.48 for the critical value of the tune shift parameter.
This is in surprisingly good agreement with the simulation.

WI considering the approximations which entered into the
derivation of 1471-
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