§SC~N-633
March 1989

Code Management for SSC Detector Development

Frank E. Paige

Physics Department
Brookhaven National Laboratory
Upton, NY 11973

Code management is crucial for maintaining large programs. Unfortunately, there is
no good machine-independent system for doing it. To maintain ISAJET, therefore, we
have adopted a hybrid system: the code is distributed to users in CERN’s Patchy format,
but the actual maintainance is done with DEC’s Code Management System (CMS) on a
VAX.

Patchy is a very old-fashioned system, but it is maintained by CERN for virtually
all computers, and it is available free. It provides facilites for handling common blocks
and other common material and for inserting machine dependent code. Patchy normally
stores all of the source material in a single file, although more than one file can be used.
The binary version of this file is called a PAM, and the card image version is called a
CARDPAM. The two contain the same information, and utility programs are available to
convert one into the other. Within the PAM lines of code are organized into decks, which
in turn are grouped into patches. The lines of code are interspersed with Patchy control
lines, which always start with a + in column one. The program YPATCHY reads the PAM
and creates a Fortran or other file from it. For ISAJET we make each subroutine a deck,
and we use patches for groups of subroutines which are logically related. We also include
the documentation in the PAM, allowing it to refer to the common blocks.

Since Patchy is universally available and is used to maintain GEANT, it seems a natural
choice for maintaining other physics and detector simulation programs.

We do not use Patchy for making changes to ISAJET. As a result, only a few Patchy
commands appear in ISAJET.CAR:



+PATCH, (name) Defines a group of decks. In ISAJET the main logical
groups such as the event generation code, the analy-
sis code, and the documentation are patches. Small
patches are used for controlling the selection.

+DECK, (name) Defines a deck. In ISAJET each subroutine is in a sep-
arate deck with the same name. Decks are also used
for parts of the documentation and for special groups

of common blocks.

+EOD Ends a deck or patch.
+KEEP, {(name) Defines a common block or similar material.
+CDE, (name) Inserts a previously defined KEEP of the same name.

+SELF, IF=(name) Begins conditional material, which can be selected by
+USE, (name). This is terminated by another Patchy

command, including a +SELF.

The following simple CARDPAM illustrates all the major features of Patchy used in
ISAJET.PAM:

+PATCH ,EXCOM. A COMMENT CAN FOLLOW THE .
+KEEP,ACON.

COMMOK/ACON/C1,C2
+KEEP,LUNS.

LUN1=39
+PATCH ,EXAMPLE.
+DECK ,EXAMPLE.
C Calculate black body flux per unit wavelength interval, for
c wavelength in cm, temperature in degrees Kelvin.
+CDE,ACON.
+CDE,LUNS.
+SELF, IF=VAX

OPEN(UNIT=LUN1,FILE=’ACON.DAT’,STATUS=’0LD’)
+SELF, IF=IBM

OPEN(UNIT=1,ACCESS=’DIRECT’ ,RECL=80,STATUS=’0LD’)
+SELF

READ(LUN1,’(1X,2F15.7)’)C1,C2

TEMP = 6000.0

DO 1 J=1,10

ALAM = 5.0%E-7 + 1.0E-7%(J-1)
F = BB(TEMP,ALAM)



WRITE(6,’ (’’ Temp,Lambda,F(Lambda)=’’,1P3E12.5)’)
$ TEMP,ALAM,F
1 CONTINUE

STOP
END

+E0D.

+DECK ,BB.
FUNCTION BB(T,AL)

+CDE, ACON .
BB = EXP(C2/(AL*T)) - 1.0
BB = C1/BB
RETURN
END

+EOD

Note that common blocks and code are kept in separate patches, that each subroutine
is in a separate deck, and that each common block is in a separate +KEEP deck and is
inserted with +CDE as needed. This organization is not required but it seems desirable.
For example, common block ACON can be changed in one place, and Patchy will propagate
the change throughout the program.

YPATCHY is the Patchy program which reads the PAM and produces the desired
output file, a Fortran source file for the above example. It is controlled by commands read
from an input file called a CRADLE. A confusing but useful feature is that the CRADLE
contains two types of selection. +USE,(name) causes Patchy to consider patch {name) in
creating the output file, while +EXE, (name) actually causes (name) to be written out. One
should normally +USE select all of the Fortran and common blocks even if one wants to
write out only a single deck. +USE is also used to select IF+ flags. Thus the CRADLE to

write out all the routines for the above example for a VAX is

+USE,EXCOM,EXAMPLE, VAX.
+EXE.
+PAM.
+QUIT.

To write out just function BB, you must still +USE select everything, but you +EXE select

only one deck:

+USE,EXCOM,EXAMPLE.
+USE, IBM.



+EXE,PATCH=EXAMPLE ,DECK=BB.
+PAM.
+QUIT.
Note that there can be several +USE or +EXE commands.
For complicated programs it is convenient to define “pilot patches” to select all the
pieces needed for a given purpose, for example all the source or all the documentation.

These traditionally have names beginning with *. A suitable pilot patch for the above

example is

+PATCH ,*EXAMPLE.
+USE,EXCOM.
+USE,EXAMPLE.
+EO0D.
If the above patch is added at the beginning of the CARDPAM, then one can use select

all the Fortran with

+USE, *EXAMPLE

While this is a trivial saving here, it can be quite helpful for complex programs.

Similar patches can be used to select machine dependent features. For example in
ISAJET we need double precision for some calculations on 32-bit computers. The CARD-
PAM contains code like

+SELF, IF=SINGLE.

REAL A,B,C
+SELF , IF=DOUBLE.

DOUBLE PRECISION 4,B,C
+SELF .

Then we have

+PATCH,CRAY.
+USE,SINGLE.
+EOD
+PATCH,VAX.
+USE,DOUBLE.

+E0D.



Saying +USE,VAX selects the IF=DOUBLE material and also any special VAX material such

as

+SELF, IFsVAX.
ITMLST(1)=ISBFT(%LOC(JPI$_CPUTIM),16)+4
+SELF.

Again this organization is not mandatory, but it greatly simplifies making a version for a

new compiter.

While Patchy is quite convenient for distributing versions of a program, it is exceedingly
clumsy for actually making changes. The commands to do this are line oriented, and the
syntax for conditional material becomes awkward in correction patches. Nor is it practical
to make changes by editing the entire CARDPAM as a single file. Therefore we now do the
actual code maintainance using CMS on a VAX. This CMS system is internal and is never
seen by outside users. In CMS the CARDPAM is broken up into decks, each of which is
a CMS element and corresponds to a single subroutine. These are kept in a CMS library
with an access control list. To modify a subroutine we first reserve it, preventing anyone
else from modifying it:

CMS RESERVE (name) "(comment)"

This creates a file {name).CAR in the current directory with the form
+DECK, (name)
SUBROUTINE {name)
END
+EOD
After editing this file, we can genera.te a Fortran file for testing with a procedure MAKFOR,
which is written in DCL and uses Patchy to expand the +CDE and other Patchy control
statements. Finally, when we are satisfied with the new version, we return it to the CMS
with
CMS REPLACE {name) "{comment}"

When a new version is to be released, another procedure fetches all the individual files

from the CMS library and combines them into a new CARDPAM. It also assembles the



changed files into a cradle which can be used with YEDIT, another Patchy utility program,
to make a new PAM file from the old one. At present this procedure is not fully automatic,
but we hope to make it so in the near future.

The combination of CMS and Patchy is admittedly not perfect, but we feel it is the
best system available for supporting a large program which is run by a diverse group of

users on many computers.



