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An analyticalderivation of thehorizontal smeardueto sextupolesand
octupotesis presented. A generalisedexpressiontot the horizontal
smeardue to all multipoles is derived. A two degreeof freedomcalcu
lation yields the smear due to sextupoles andoctupoles.Experimen
tal observationsof thesmearinducedby specialsextupoleshavebeen
madeat the Fermilab Tevatronand our calculationsagreevery well
with thedataovera wide rangeof condition;. The smeardueto ran
dom and systematicniultipole errorsin the dipoles, before and after
the insertionof lumped correctors, is calculatedfor the SSC lattice.
Finally the smear due to random and systematicmultipole errorsin
the Tevatrondipole. is computed.

Introduction
For an ideally linear motion, a particle trajectory in the phase

spaceat a certain location alongthe ring mapsout a perfect ellipse
which is an Invariant. In the presenceof nonlinearities,however,the
trajectory fluctuatesabout the ellipse from turn to turn. The rms
fractional value of this fluctuation is calledthe singleparticle smear.

In * collide ring the region aroundthe axis of the magnetswhere
theparticlemotion is sufficiently linear defines the linear apertureof
the accelerator. Basedon past acceleratorexperience[1], the linear
aperturefor the SSC has beendefined [2] quantitatively as the re
gion within which the smearis less than 6.4% and the on-momentum
tuneshift with amplitude is less than .005. These criteria were sub
jectedto experimentalverification during the beanidynamicsexperi
nsentElI’S [9] performedin the FermilabTevatron.Furthermoresingle
andmultiparticletracking calculationswereusedto predict the smear
for various acceleratorconditions. Thesepredictions werecompared
to the experimentalresults. The agreementis very good. However,
it is useful to derive an analytic expressionfor the smear.First, such
a calculation can be comparedto experimentaland tracking results.
Agreementamongthe threemethodswould enhanceone’s confidence
in the understandingof the particlemotion in the linear aperturere
gion. Second,one could use this formula for the computationof the
smearin a machine,without resortingto extensivetracking.

This paperpresentsanalyticalformula or the smearcomputation
dueto both field errorsand correctionmultipole insertions.First order
perturbationtheory hasbeenusedto calculatethe distortion of the
beamshapesin the two transverseplanesdue to the nonlinearities,
thus giving rise to the expressions for the smear. In the particular
caseof octupolesandsextupolesthe smearis expressedconveniently in
termsof Collins’ distortionfunctions [4], the contribution from the two
multipoles being separable. As we shall see, this is not the case if one
includes highermultipoles. A numberof applications of theseformula
are presentedat the end. Analytic derivation has beenperformed by
Forest 5] in the complicatedLie algebra notation. Our formula are
simple.

Smear Due to Normal Sextupoles
First we perform the one degreeof freedomanalysis. Consider the

situation of only sextupolesin the ring. For first orderperturbation,

thedistortionof thehorizontalparticleamplitudeA, at phaseadvance
is given by [3,6
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wherew is the Instantaneousbetatronphasesuchthat z = .4. cosçø,,

is the phaseadvance and B1, B3, arethe Collins’ distortion func
tions:

1
= 2 rv E -j-- cos*:a - 0. - wit.,

sin
. &

1
= 2sin3ra’,E .-j--cosz0e - - wu, 2

and the A’s are the derivatives of the B’s with respect to their argu
ment. Also is the strength of the kth sextupole defined in Eq- 7
below. The summations above areover eachsextupole located at the
‘modified’ phaseadvance Ø,, which is equalto the usual Floquet phase
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The single particlesmearat p. is definedas

Sx&.
EA.9113

where denotesthe averageover manyturn;, or, equivalently over the
instantaneousbetatron phase ‘ps. FromEq. 1, we getimmediately
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If we considerthe distortion functions as vectors K?’ = B,,A1 and
= B3, A3 then the smear can be expressedas
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Fromthe definition of the distortion functions,Eq. 2, we get
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Furtherinsight can be obtained from the following property of the
distortion functions: the distortion functionsat anotherpoint + P
downstreamaregiven by the vectors and J4 rotatedthrough
anglesAp and 3A respectivelyif thereis no sextupole betweenthe
two points. In passing througha thin sextupole of length L - 0 and
strength
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with horisontal betatron function $ and particle’s magnetic rigidity
B,,, the B,’sarecontinuouswhile the.4’sjump by an amountS2/4.
thus the smearwill be a constantbetweentwo sextupolesbut will have
a jump when a sextupole is crossed. This is demonstrated in Fig. 1
which is obtained by plotting thesmearasgivenby Eq. 6 Ma function
of thephaseadvancearoundthe machine. Sinteen sextupolesclustered
in two groups of eight located at phase advancesof approximately
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Smear Due to Normal Octupoles
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Figure 1: Smear versus phase advance, around the machine, as pre
dicted from perturbation calculation.

43 x 2w and 14.5 x 2w cause these jumps in the smear. In the special
situation of having only one sextupole in the ring, the smear becomes
a constant of motion.

Next we treat the two degree of freedom case. In two degrees of
freedom the distortions of the horizontal and vertical amplitudes A,,
A,, at phase advance ,, to first order In the sextupole strength, are
given by [3]

IA, = A[Ai 5mw,- B, cosip4+A3sin3rp. -B3 cos3w,]
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The distortion functions B, B, and P, are given by
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and the A’s are given by the derivative, of the B’s. Here 0± = 2’,,,±0,
and t’1 = 2w,, ± v.. The sextupole strength 33 is defined by

In two degrees of freedom one can define three different kind, of
smear:
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The one degree of freedom calculation is performed first. The distor
tion of the horizontal amplitude A, due to normal octupoles is given
to first order in the octupole strength, by

IA, = A[A1 sin4,, - B1 cos4w,+ 24, sin Zrp, - B3 cos 2w.] 16

where p, is the instantaneous betatron phase, and A, B,, A,, B, are
the Collins’ distortion function,. The B’s are defined by
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The octupole strength 3 is defined by
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In two degrees of freedom the distortions of the horizontal and ver
tical amplitudes, A, and .4, respectively, are given by

IA, = ..4[A, sin4w,-Bi cos4w. + 24, sin2çp,-B, cos2w,]
-3A,A[2As sin 2w,-Bs co.2w,,
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The distortion functions B,, B4, B,, B5, B, and B5 are given by
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Then the three different smears given by 12 are
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Hence the horizontal smear given by Eq. 3 is
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where the subscript P stands for X and Y. Using Eqs 8 and 9
one can express the three smears in terms of the Coffins’ distortion
functions as follows

six=

-f 4A’ + P’]- 2AA,A+ B1P,

lY
For the explicit expressions of the smear in term, of the sextupole
strengths and phases, see Ref. [7]. = ;AA[A + B - M + B:]. 28



Horizontal Smear Due to All Multipoles

In this section, we shall present a formula for the horizontal smear
with the contributions from all higher multipoles without resorting to
the use of distortion functions. The complete derivation can be found
In Ref. [7].

The irrotational magnetic flux density can be written in general as

B, + lB. = B0 Eb + ia,jz + I",
nnl
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Figure 2: Smear vs sextupole excitation. Comparison between pertur
bative calculations solid line and a experimental data E778, b
tracking calculations. The 3 curves correspond to 2.25, 3.6 and 4.5mm
In amplitude-

No correction.
b, 6,, 64 mdom sad systematic present.

7.09 ± 2.53

No correction.
Random__6,,_6,,_64_present.

7.07 * 2.50

No correction-
Systematic_6,_6,,_6,_present.

0.39 ± 0.00

Correct random and systematic 6,, 6,, 6..
Random and systematic 6,, 6,, 64 present.

0.43 ± 0.22

Correct random 6,, 65, 64.
Random_6,,_6,,_64_present.

0.43 ± 0.22

Correct random 6,.
Random_6,,_6.,_64_present.

0.71 1 0.25

Correct systematic 6,, 6,, 64.
Systematic_b,_6,_64_present.

0.0009 ± 0.00

Table 1: Summary of the results of the analytic computation of the
smear in the SSC, with and without correction elements.

tuned off performed as part of E778. For the same conditions, the
smear in the Tevatron due to systematic error,, as calculated from
Eq. 31, is S = 0.80%.

Finally we calculated the smear in the SSC due to random and sys
tematic 6,, 63 and b given in Ref. [7]. We assumed an ‘arcs only’ SSC
lattice with 320 cells and 12 dipoles per cell. The tune was 81.285
and the amplitude was 5 mm. Then we inserted correctors according
to Neufer’s three lumped correction scheme 8] and recalculated the
smear. The results are summarised in Table 1. The value of the smear
fluctuates by large amount depending on the seed used. As a tolerance
In design, one should allow the smear to vary by as much as say two
deviations from the mean within the good field region.
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where 6,, and a,, are the normal and skew multipole coefficient,, re
spectively, of order 2n + 1. For example,

30

In the above, the vertical bending magnetic flux density B0 as well as
the field gradients of the focussing F and I qua.ds have been excluded.
Thus, Eq. 29 contains the contributions of all field errors as well
a. other inserted correction multipoles only. Since we are concerned
with the isolated horizontal phase apace only, Eq. 29 simplifies to

=
Then the smear S due to all higher multipoles, is given by

m Arm_,cSm-I,2m_1 ,
"

2,, san2nv

42m153"S ,3,’ . 2
+! SE’ .

c2P+’0L . 312,= ,_, sm2p+1rv

Here .4 is the normalized amplitude, .4 = 21&’I’. Taking the thin
lens approximation we define the strength of the k-tb multipole, S, of
length L -. 0 as

= P! im ""‘3/311L] 32

where! = 2rn - 1/2rn for the 4m/4rn + 2-tb multipole. The coefficients
and are defined by

= 2rn
* 23"m m-pJ’

fZm 2P+l 12rn+1
p 22m+I2rn+1 rn_p 33

for the 4rn.th and 4m + 2.th multipole respectively.

Applications

The first application is on E778. Experiment E778 studied the non
linear dynamics of transverse particle oscillations. Nonlinearities were
introduced in the Tevatron by 16 special .extupoles. The smear was
measured for different sextupole excitations 0 to 50 amperes, differS
ent tunes 19.3$ to 19.42, and 3 kick amplitudes 5, 8 and 10 kV.
Tracking calculations were done to simulate the experimental condi
tions and the smear was extracted from these calculations. We used
Eq. 5 to compute the smear for the ETT8 Tevatron lattice or various
conditions. The agreement between observation and prediction from
perturbation theory is very good, as Fig. Za demonstrates. Also
Fig. 2b displays the comparison between perturbative calculation.
and tracking predictions. The agreement is also very good.

As a second application we chaD calculate the smear in the Tevatron
due to random and systematic errors in the dipole.. The Tevatron
dipoles contain higher order multipole harmonics. The mean value of
each multipole component is called the systematic error while the rms
value constitute, the random error. We used Eq. 31 to calculate the
smear and the errors are taken from Ref. [10. For 8o = 4.4 Teals,
at $o = 100 m with dipole length L = 6.12 m, at an amplitude of
.4 5 mm and tune of v = 19.23, the smear in the Tentron due to
random errors Is $ = 1.04%. This result is in very good agreement with
the measurements of the smear in the ‘bare Tevatron’ nonlinearities
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