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ABSTRACT

We evaluate the longitudinal coupling impedanceof a
toroidal chamberwith rectangularcrosssection in th! frequency
domain below the synchronousresonantmodes. With infinite
wall conductivity the impedanceis purely reactiveand consists
of a "space charge" term, proportional to y2, and a "curva
ture" term which survives at large . The curvature term is
well represented as a quadraticfunction of frequency,namely

= izQ2[A3B2]

where h is the height of the chamber,R is the trajectory ra
dius and u = wh/c. The constants A and B are of order 1.
Thus, IniZ/n from curvature is typically a very small fraction
of an ohm below the resonance domain, which begins where
xi > R/h’/2. Consequencesfor beam stability, if an arise
from high frequencyresonances,which can producevaluesof
severalohms for Z/n.

1. INTRODUCTION

We considera smooth toroidal vacuum chamberof rectan
gular crosssection, as shown in Fig- 1. A beamcirculating in
such a chambercan excite resonantmodesof the whole cham
ber that havephasevelocity equal to the particle velocity As is
discussedin Refs. 1 and 2, these synchronousresonantmodes
are at frequenciesgreaterthan w = nw0, where w0 = fJc/R is
the revolution frequencyfor particles on a trajectory of radius
R, and

n = rR/hw - LI

Fig. 1. Smoothtoroidal vacuumchamberwith rectangular
cross section.
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Here the beam is assumedto be centered in the chamber,
which has height ii and width u’ Thus, the synchronousres
onancesare typically at rather high frequencies,for instance
with h = w = 3 cm and fi = 1, we have f = w/2r > 100 GHz
for R> 12 m. Such frequencies are beyondthe frequencyspec
trum of a typical bunch, if the chargedistribution is smooth a
Gaussianor the like. Small ripples on a bunchcould give high
frequencycomponents,however,andit is thereforenot excluded
that a very largevacuumchamberimpedanceat high frequency
could be detrimentalto beamstability. Resonantimpedancesin
the presentmodel are indeedlarge. In Fig. 2 we show a graph
from Ref. 1 giving the real part of Zn, nw0/n for a chamber
having roughly thedimensionsof the SLC dampingrings- Here
Zn,u is the longitudinal coupling impedanceat longitudinal
modenumber it and circular frequencyw, for resistive cham
ber walls with the resistivity of aluminum. SinceZ/n for the
dampingrings is thought to have a broadband value of around
2.5 ohms in the region of a few GHz, the value of 36 ohms at
the first resonanceis ratherstartling.
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Fig. 2. The Tea1part of Zn,nw4/n in the high frequency
resonanceregion.

The presentwork is concernedwith a questionthat was not
treatedthoroughly in Refs. I and2; namely,thebehaviorof the
longitudinal coupling impedanceat frequenciesfrom zero up to
the first synchronousresonance.Sincethe problemis treatedin
greatdetail in a forthcomingpaper: we shall merelysummarize
results.

2. LONGITUDINAL IMPEDANCE AT LOW
AND INTERMEDIATE FREQUENCIES

It is convenientto work with a dimensionlessvariablepro
portional to frequency,

‘h 2rh
2.1

where /i is the height of the chamberand A is the wavelength.
The previouspapers1’treatedthe region r’ > R/ItI/i andalso
a small region near = 0. We are presentlyconcernedwith the
interval

0< ic R/h112 - 2.2

i’i’i-, f

StC Do’’pnga
‘.. 20

0

C
0

N.J

z

0

200 400 600 900 ac:

Cross Section

Presentedat the IEEE Particle AcceleratorConference,Chicago,IL, March 20-23, 1989



For typical parameters,the dimensionlesscoefficients .4. B are
of orderunity For F = 5.7 rn and $ = 1 we find the following
values:

A = 0.7153 , B = 0.6714 , w = 0.02 nih = 0.02 Tn
A1.009 , B=0.9766, w=0.O2rnh=0.01 Tn
A = 0.2531 , B = 0.2117 , w = 0.01 nih = 0.02 m 2.5

The first exampleof Eq. 2.5 correspondsroughly to the pa
rametersof the SLAC dampingrings. For this example.we plot
fritZ/n in Fig. 3. Thedashedcurveis anessentiallyexact evalu
ation of the impedanceusing high orderasymptoticexpansions.
while the solid curve is from Eq. 2.5. The quadratic formula
in Eq. 2.4 fits theexactevaluationto threedigits,
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Fig. 8. Reactivelongitudinal impedance due to curvature
in the subresonantdomain. Parametersare for the first
exampleof Eq. 8.5.

SinceA/B is close to 1, the reactiveimpedancehas a zero
near I’ = ir/3’/2. This is to be comparedwith the lowest TE
cutoff, which for a straight rectangulartube lies at

2.3 Ir h>w,
2.6

lrh/w, h<w.

Since Z is positive imaginary at u = 0, a zero is expected:Z
must be negativeimaginary just beforethe first resonance,
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The electromagneticfields are expressedin terms of Bessel
functions, in the cylindrical coordinatesshown in Fig. 1. The
impedancehas a fairly involved expressionin termsof the cross
productsof Bessel functions, In order to make that expression
understandable,or even to computeit numerically,one has to
invoke asymptotic expansionsof Bessel functions. The mat
ter of choosingappropriateexpansionshaspreviously caused
someconfusion. We have found that Olver’s uniform asymp
totic expansionsare appropriatefor p > R/h’/2, while the
Debyeexpansionssuffice for u c F/h’12. The manipulations
and estimatesrequiredto pick out the significant termsof the
impedancearesomewhatcomplicated,but the result is remark
ably simple.

For the presentstudy, we took the chamberto be perfectly
conducting,sinceit seemslikely that resistivewall effects have
the sameorder of magnitudeas in the caseof a straight beam
tube, Consequently,the impedancein the subresonantregion
is purely imaginary. It consistsof a part which vanishesas
y2 in the high energy limit ‘y - , usually called the "space

charge" term, anda part that survivesat large , which we call
the "curvature" term. The spacechargeterm, defined through
Eqs. 4.14 and4.23 of Ref. 3, hasthe sameorderof magnitude
as that for straight beam tube. As usual, it diverges logarith
rnically when the beam approachesan ideal line charge. The
curvatureterm is finite in the limit of a line charge. Its value in
that limit is, to a good approximation,

Zn, nw0 =

72

iz h2 { {i - exp{-2irb - R/h

- exp{-2irR - a/h]

x [i
Li2}

+ 0.05179- 0.01355
V2}

+ p

h - - i.’2
= z [A_3B_ ] +p

where Z,, = 120x ohmsis the impedanceof free space,and the
geometricparametersareas definedin Fig. 1. The constantsA
and Barenearly equalto 1. Theterm p, definedin Eq.4.24of
Ref. 3, vanishesexponentiallyas the aspectratio wIlt increases.
and is negligible for ui/h 2.

By numericalevaluation, we find that even when p is not
negligible, it is very nearly a quadratic-function of p. It may
then be combined with the first term of Eq. 2.3 to give the
simple generalresult
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