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Abstract

Several notes have recently been circulated concerning correlation
between room temperature and cryogenic measurements of low-order multipole
moments in S5C magnets.[l1,2] I will comment here on the experimental
results, as well as on the issue of how large a fraction of all magnets
must be measured in their cold state to assure, just from the standpoint of
statistical sampling alone, that the final magnet population has tolerances
within those specified by the SSC design. (3]

Nomenclature

Let us assume that we have both cold and warm measurements of some
unique multipole in a sub-sample of N magnets. Let us label any doublet of
these measurements for magnet i as ¢(i) and w(i), with i = 1,..,N. We can
define the means and standard deviations for this subset of magnets as

usual:
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where g, and aw contain contributions from both the measurement error and
the actual scatter due to differences in the construction of the magnets.
(Error due to measurement will presumably be quite small.) We can also

define differences between the cold and warm values as follows:
d{i) = c(i) - w(i) (2)

with the mean in the difference, and its standard deviation given by:

N
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the latter can be rewritten as follows:
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If the c¢(i) and the w(i) are randomly dispersed about their means, that is,
if their difference is only correlated on the average, then we get the

simpler (and hopefully incorrect!) result:
g, =0 _+ 02 (5)
In case of correlations, we have to obtain g, from the defining formula

(3).

Consequently, thus far we have the following picture:
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and for the difference we have:
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Predicting Values of Individual Cold Multipoles

Assuming that the difference measurements are Gaussian distributed, the
relation between any warm measurement and its predicted cold value for some

jth magnet (beyond the initial N) can be written as follows:

c(j) =w(j) + 4 + r*ad (6)

where r is a random variable of zero mean and of variance unity. The

square in the uncertainty for any predicted ¢(j) is then just:

)
-0 +'ﬁ""+0'2 (7)



where % is the measurement error on the wltipole for the warm magnet
{this can hopefully be made quite small: 00 £ Ud), Jd is the standard
deviation of the previocus difference measurements, and aleﬁ is the
uncertainty on d. From the last result, it is clear that, as long as
N 2 5, the size of the initial sample of magnets (N) will have little
impact on the confidence for predicting any individual c¢(j) from its
measured warm counterpart w(j). The best we can do Is state that

c(j) = w(j) + d, with an uncertainty of g4

Relation to Tolerances

Let us now review what we have obtained, and relate that to the
tolerances desired for all the magnets. From the N doublet-values, we can
determine ¢, w, d, and their uncertainties; the latter estimated by
UclJﬁ, UwIJﬁ and adIJﬁ. In addition, for Gaussian errors, we can estimate

the uncertainties in the ai as ai/vz . The value of ¢ corresponds to a

sampling of the average systematic multipole c_ for the entire final magnet

F

population, while o, corresponds to a sampling of the random variation in
the total population of multipoles (JF). The SSC must construct magnets

such that the entire population satisfiles the following criterila:

—ts 4 cp 'Y ts and aF {t

(8}
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where tg and t are, respectively, the allowed upper limits on the
systematic and random tolerances for that multipole.

Of course, we do not know ¢_ or ¢ but we have their estimates and

F F?

uncertainties from our sample of N measurements:

cp = UCIJﬁ and Op=0,* aclJfﬁ (9)



Consequently, our goal is to assure that:

-t < c % nacldﬁ <ty and g (1= n/v2N) ¢ t, (10)

where n is the number of standard deviations {corresponding to some level

of confidence we will demand) for compliance of EF with ts and UF with t .
r

The above can be rewritten as follows:
c + nac/¢ﬁ <t and g (1 + n/vV2N) < £, (11)

(The probability distribution is one sided for the limit on the random
tolerance, but essentially double sided for the systematic. That is, for a
given n, the level of confidence should be about a factor of two smaller
for random deviations relative to systematic ones. This statement is
clearly correct for the case that c ~ ts << ac ~ tr.)

Once estiﬁates of ¢ and ac become available from the data, then, given
tg and t.» We can evaluate the number of magnets (N) required to reach any
desired level of confidence (specified by n) in predicting that the final
sample of magnets will be within the required tolerances. It ;s clear,
however, that certain broad conditions must be satisfied, independent of
the value of N, Unless, for example, ¢ ¢ e and g, ¢ t.» no value of N
will help assure final compliance! Rearranging the above expressions, we

can write lower limits on the N values as follows:!

N> (o /(e -)1%  and N> (no VE(t_-0 )} (12)

Example

As an example, let us see whether we can use the recent cold

measurements of the skew 2, values for six DS8S magnets[l] to gauge the

approximate values needed for N. The experimental values are:

a, = 0.01 = 0.12, Ga = 0.30 £ 0.09; the desired values of the tolerances



are[3] tr = 0.6 and ts = 0.1. Putting these quantities into our two
expressions for N, we obtain the approximate values of N > 180 and N > 8 in
Expressions (12) for the outrageous level of confidence that only about one
magnet out of 15,000 will fail the prescribed criteria (corresponds to

n=4)., This is highly comforting, wit appropriate only for a Using the

x
measurements obtained for b2, we get far less gratifying results. The
measured parameters are: b2 = -2.2 * 1,1 and o, = 2.6 £ 0.8; the tolerances
here are ts = 1.0 and L, = 2.0 (prior to binning). If these were the final
S55C magnets, they would not all be deemed acceptable for SSC operation, and
would possibly suggest need for modification of the construction
procedures.

There is, of course, a general flaw in the present conclusions, because
we have ignored the uncertainties in the values of the above experimental
quantities. That is, we used N = 6 measurements to obtain data, which we
decided would be sufficiently reliable (for the case of az) only for
N > 180. Consequently, we must conclude that the present sample is not
large enough to use in deciding on the eventual value needed for N at our
chosen 0.00006 level of confidence. Had the DSS measurements been based on
a sample of about 400 magnets, and if the same parameters were found to

apply (with all uncertainties reduced by a factor of about V400/6 = 8),
then the conclusions would have been defendable. Consequently, from this
vantage point, establishing what number of magnets has to be measured in
the cold state must be regarded as an iterative procedure., (Start with 100
to get orientationl) We can, of course, alsc make certain assumptions about
limits to expect for any ¢ or ac’ and thereby get an estimate for the
required N. For example, since the criterion based on ts appears more

constraining, it is not entirely illogical to assume that we can obtain a



reasonable estimate for N by using g, =t and ¢ = 0.0 in the first
expression (ignbring the second one!). This yields, N > 64 for b2 and
N > 576 for a,. This is the kind of a priori estimate that was sought in

Ref. [2], but that, we believe, cannot be fully justified.

Tracking Quality

Another issue of Importance is how to assure on the basis of warm
measurements that magnet preoduction is on keel. Having measured N magnets
both warm and cold, and determined the correlations between warm and cold
multipoles, we now measure the next batch of M magnets in just their warm
state, and wish to know with some degree of confidence that the process has
not deteriorated. We will assume that the correlations will remain
reliable, although the absolute values of (both) parameters may deteriorate
in time. From the reported DSS5 measurements[l], there is absolutely no
doubt that correlations between warm and cold multipecles are exceedingly
strong. The reported values of d and 74 for b2 are an order of magnitude
smaller than the separate cold or warm values! Unfortunately, here again
one must rely on results of measurement, and not much can be said a priori
other than has already been mentioned in the above discussion, which we

enlarge upon below.

We have already found Expressions (6) and (7} for the values of the
extracted cold quantities from their warm measurements. For a new set of M

of these quantities, we can write:

ey = ‘}M + d , with uncertainties related by 0’2/1'1 = O'TI;ZIM + UilN (13)

where we have assumed that the new set of M measurements (determining EM
and aw') 1s not correlated with the previous N measurements. However,

because of the strong cold-warm correlation, we expect ad 4 Ué, and since

M { N, we gsee that ¢ ~ a;, where, of course, the prime refers to the



observed width of the distribution for the new sample of M magnets. We can
therefore obtain an estimate of the cold mean, the standard deviation, and
the appropriate uncertainties in these quantities, and now, as before,
require that these parameters be within some range. Because the "next"
sample will be smaller than the already available set, we can be somewhat
less restrictive in the level of confidence we set for rejection or for
panic. Perhaps n £ 2.6 (£ 0.01 confidence level) might be appropriate at
this stage of selection, while a level of n ¢ 3.3 (£ 0.001 confidence)
might be appropriate for the accruing sample.
Conclusion

The main conclusions that can be surmised from this note are the
following: (1) Deciding on how many magnets are required to assure
compliance with teolerance specs is an iterative procedure. Measurements
are needed to set the scales, and then to track the production. (ii) If
the correlations between cold and warm multipoles are as strong as observed
for DSS magnets, then we can expect 04 €4 Uw N o this impligs that warm
measurements are just as appropriate as cold ones for setting any
confidence levels, or for tracking and assuring the quality of magnet
production related to the multipole structure of the fields. (iii) To
establish the correlations between cold and warm multipoles will require an
initial measurement of a batch of magnets in both their cold and warm
states. Assuming that correlations will be comparable to those observed
for the sextupole (not quadrupole!) moments of the six DSS dipoles
(d = -0.60 * 0.09 for the normal, and -0.11 * 0.02 for the skew sextupole
terms), we anticipate that a sample of about 100 magnets will provide
sufficient statistics for determining the cold-warm corrections for the

normal sextupole term to a superb accuracy of about 0.02 units!
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