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Abstract

The method of Differential Algebra for the treat-
ment of beam dynamics in accelerators is discussed.
It allows a very straightforward computation of high
order transfer maps from an arbitrary tracking code.
For this purpose, all real number quantities depend-
ing on the coordinates of the particle to be tracked
have to be replaced by differential algebraic quanti-
ties. In practice this is facilitated considerably using
a FORTRAN precompiler which allows the use of a
new differential algebraic data type.

Having changed the tracking code, transfer maps
of arbitrary order can be obtained easily. In prac-
tice, orders between ten and fifteen can be achieved
within reasonable computer time. Contrary to nu-
merical differentiation techniques, the accuracy of
the expansion coeflicients is very high and only lim-
ited by machine roundoff.

The transfer maps so cbtained can be used to com-
pute quantities of interest like tune shifts, chromatic-
ities and invariants. Another use of the maps is fast
short term tracking. Examples for the use of the
method in the simulation of the SSC are given.

1 Introduction

There are several approaches to the complex of the
theoretical analysis of particle accelerators. The

simplest but nevertheless often very robust of these
approaches is probably the tracking of particles of in-
terest through the accelerator for many turns. This
technique allows some phenomenological answers to
question of stability and allows an estimation of the
dynamical aperture. It also can be used for a numer-
ical computation of nonlinear tuneshifts and smear.

Besides the tracking approach, there is quite a va-
riety of techniques based on Hamiltonian perturba-
tion theory which often allow some analytical com-
putation of quantities of interest. Since these tech-
niques are often used analytically (by hand or with
formula manipulators), they are usually limited by
the complexity of the system under consideration
and frequently only allow the study of simple sys-
tems which just deseribe the major characteristics
of the real system.

Finally, there are the perturbative techniques on
maps that describe the system by a power series of
up to a certain order - an approach originating in op-
tics, where the nonlinearities of the map, the image
aberrations, very directly determine the usefulness
of the instrument under consideration. In the ac-
celerator community these techniques have not been
able to attract much attention in the past, except
of course for the study of the linear system, which
from the earliest work of Courant and Snyder [1] is
described partly in terms of 2 by 2 matrices.

In principle, the map is a concept ideally suited
for the description of dynamical systems. It does not
exhibit any divergences, which are quite intimately



associated with certain forms of Hamiltonian pertur-
bation theory and the Eikonal or generating function
approaches. Furthermore, as long as the Hamilto-
nian of the system under consideration can be ex-
panded in a power series, so can the map. Contrary
to mere tracking and similarly to the situation with
the perfurbative or generating function approaches,
it is possible to associate certain properties of the
system with particular nonlinearities, thus providing
efficient clues as to how to correct undesired proper-
ties.

Finally, and perhaps most importantly, many
quantities of interest like tune shifts and chromatic-
ities, and to some extent invariants, are concepts
that can be expressed directly in terms of power se-
ries and hence in the same terminology as the Taylor
series map.

The major obstacle with the map techniques, and
besides historical aspects the main reason why map
techniques have not blossomed in the accelerator
field to the same extent as in the optical disciplines,
is the high order to which maps have to be available
to deseribe repetetive systems accurately enough. In
fact, most existing codes for the power series de-
scription of the map [2,3] only allow the computa-
tion of third order aberrations, and only recently
has it been possible to generate fifth order maps
from a kick code based on THINTRACK; this could
only be achieved because a hfth order concatenator
was available {3] and the physical model was simple
enough [4]. Using a special formula manipulator, it
was recently possible to generate a thick element li-
brary for commonly used beam line elements that
allows the computation through fifth order [5,6,7].

A very recent development, the differential -alge-
braic techniques [9,8,10) have proven very efficient
for the computation of nonlinearities of the trans-
fer map to much higher orders than with previous
codes. Besides the computation of the maps, these
techniques also allow a whole wealth of useful ma-
nipulations of the map. As was shown in {11}, the
whole concept of normal form theory which is a pow-
erful application of Lie algebraic techniques, can be
cast very easily into differential algebraic terminol-
ogy. Within this framework, the exact computation
of tuneshifts ts very simple. Also, pseudo invariants
of the system can be computed readily. As a byprod-
uct, it is possible to obtain the Lie algebraic repre-

sentation [13] of the map as well as a pseudo Hamil-
tonian describing the motion which might prove
helpful in Hamiltonian perturbation theory.

The map can also be used to compute generat-
ing functions describing the system to arbitrary or-
der [8]. Generating functions play a vital role in
symplectic tracking techniques, the underlying idea
behind which is that if we cannot track the real sys-
tem, than at least we want to preserve the major
symmetry there is in Hamiltonian systems, namely
symplecticity.

Much of the theory about differential algebras and
their use in accelerator theory has been described in
detail in papers cited above. Here, for the sake of
completeness, we give a short introduction to differ-
ential algebras, but mainly restrict ourselves to the
presentation of some first practical examples, using
the SSC as our object of study. In a way these ex-
amples provide a justification of the work described
in the previous papers.

While the authors believe that differential alge-
braic techniques are very helpful and a step forward,
they certainly do not provide the answer to the ul-
timate question in accelerator design, namely the
question of very long term stability. The quite de-
manding mathematical work in KAM theory only
providing a first framework of rigorous statements
not yet applicable in practice, it is the authors’ belief
that we are still far from a solution to this problem.

2 An Introduction to Differ-
ential Algebra

In this section we want to give a short overview of
differential algebraic methods. These techniques will
allow a very efficient computation of partial deriva-
tives and thus expansion coefficients of the transfer
map. The first studies of structures like the ones we
discuss here goes back more than a century [14,15].
Then the field lay dormant for a long time until new
interest arose around 196() with a related concept,
the field of non-standard [16,17] analysis. A cer-
tain connection between the two fields that we hope
will allow powerful applications in the future is non-
archimedean (18] analysis.

In order to give a feeling for the matter, we will



hiere vepeat the treatinent of the simplest differential
algebraic structure, For a more complete discussion,
the reader is referred to {9,8].

Consider the vector space R? of ordered pairs
{uo,u1), ug,u; € Rin which an addition and a scalar
multiplication are defined in the usual way:

(uo, u1) + (vo, v1) = (o + vo, 1y + v1) (1)

t - (uoyuq) = (¢ - uo,t - uy) (2)
for ue,u;,vg,v1,t € H. Besides the above addition
and scalar multiplication a multiplication between
vectors is introduced in the following way:

(uo, ;) - {vo,v1) = (ug - Vo, %0 - ¥1 + uy - vp)  (3)
for up, u1, vo,v1 € K. With this definition of a vector
multiplication the set of ordered pairs becomes an
algebra, denoted by ,Dy.

In the same way as in the case of complex num-
bers, one can identify (uq,0) as the real number uy,.

On the algebra D) one can introduce an order-
ing that is compatible with the arithmetic on the
algebra. We define the ordering as follows. We say

(a,b) <(c,d)ifa<cor{a=cand b<d) (4)
and similarly we introduce ">". With this defini-
tion, the algebra becomes totally ordered, i.e. either
(a,8) = (c,d) or (a,8) > (c,d) or (a,8) < (c,d),
and {a,d) > (c,d) => (a,b) + (e, f} > (c,d) + (e, f)
and (a: b) > (C, d),(e,f) > (0!0) = (aa b) : (eif) >
(C, d) ' (C, f)‘

Where in the complex numbers, (0,1) was a root

of -1, here it has another interesting property. From
the ordering relations we infer that

(0,0) < (0,1) < (r,0) for any positiver  (5)

which means that {0,1) lies between 0 and any pos-
itive real number, i.e., (0, 1) is infinitely small!

It 15 easy to verify that (1,0) is a ueatral element
of multiplication, because according to equation (3)

(190) ' (uU:ul) = (uosu‘l) : (110) = (uo,ul) (6)
It turns out that (ug,u;) has a multiplicative in-
verse if and only if uo is nonzero; so 1Dy is not a

field. In case up # 0 the inverse is

1 U
-1 _ 1
(10, 1) U ul

(1)
Using the above equations it is easy to check that in
fact (uo,u1)™! - (uo,u;) = (1,0).

Similar to the existence of the inverse, one can
find a "root” to {(up,u1) if and only if ug is nonzero.
In this case the root is given by

V(uosul) - (\/—1 \/——

which can be easily verified by squaring the right
hand side.

(8)

Besides the inverse and root, all functions based
on power series like the exponential, logarithm and
trig functions can be generalized to differential al-
gebra in a straightforward way. This is shown in
detail in references {9,8,18], and is based on defining
convergence on the new structure.

Instead of going into too many mathematical de-
tails, we illustrate the usefulness of this structure for
the computation of derivatives with the following ex-
ample function:

+
fle) = L2 0
The derivative of the function is:
1
f’(x) = _li}_‘/-_f (10)

x2

Suppose we are interested in the value and the
derivative at x = 2. We obtain

1+s/_

foy= L2 poy - Ly



Now take the definition of the function f in equa-
tion (10), replace all operations occurring in it by
the corresponding ones in differential algebra, and
evaluate it at 2 + d = (2,1). One obtains:

1+/(2,1)
(2,1)
14+ (V2 35)
(2,1)
‘ 1 1 1
= (1+V72, ‘2'7“:,2-) (3-7

1+v2 1+1V2
( 9 LI 4 )

f((2,1))

= (12)
As we can see, after the evaluation of the function
the real part of the result is just the value of the
function at = 2, whereas the differential part is the
derivative of the function at z = 2. This is not ac-
cidental; as shown in [9,8], one can compute deriva-
tives of arbitrary functions using this technique.

Even though the authors find the mathematical
concepts described here very appealing, we also want
to present a very down to earth approach to under-
stand how the differential algebra discussed here can
be used for the computation of derivatives. Suppose
there are two functions f and ¢, and both their val-
ues and derivatives at a certain point z are given.
We arrange these values into two ordered pairs:

(f(z), f(2)) and (9(a),0'(=)  (13)

Now suppose we are interested in the value and
derivative of the sum function (f + ¢g). Then, ob-
viously, the ordered pair describing the value and
derivative of the sum function (f(z) + g(z), f'(z) +
g(z)) is given as the vector sum of (f(z), f'(z)) and
(g(z),g'(z)). On the other hand, suppose we are in-
terested in the ordered pair describing the values and
derivatives of the product function. Then, accord-
ing to the product rule, this ordered pair is given
by ((z) - g(z), (=) - 9(=) + ¢'(<) - g()). But this
is precisely what is obtained when multiplying the
vectors (f(z), f'(z)) and (g(z), ¢'(z)) using the dif-

ferential algebraic multiplication (3).

In this light, the neutral element in the differential
algebraic multiplication, (1,0}, is just the ordered
pair representing the function that is identical to

one and hence has zero derivative. The multiplica-
tive inverse then is the ordered pair deseribing the
value and derivative of the inverse function; an in-
teresting side aspect is that the inverse can be found
purely algebraically using the definition of the dif-
ferential algebraic multiplication and no explicit use
of calculus rules is made. In a similar way one can
understand the square root.

In this view, the example showing the computa-
tion of the derivative of a function (12) can be un-
derstood as follows. One begins with the ordered
pair describing value and derivative of the identity
function at 2, which in our case is the pair (2,1).
Then, the root of this number is computed, giving
the value and derivative of the root function at 2.
To this, (1,0) is added, giving value and derivative
of (1 4 +/z) at 2. Finally, this is multiplied by the
inverse of x, giving value and derivative of the total
function.

Thus the differential algebraic operations act as a
particularly efficient and simple bookkeeping device
to keep track of values and derivatives of certain sub-
functions which occur in the process of computing
the final function.

Now it becomes quite apparent how the differen-
tial algebraic multiplication has to look for higher
derivatives and several variables. One first fixes
an ordering describing which derivative is stored at
what coordinate of the vector. Then for each of
these partial derivatives, one determines how it can
be written in terms of the values and partial deriva-
tives of f and g.

We note that using the right strategy it is quite
straightforward to generalize inverses, roots and all
other functions of interest to the new differential al-
gebraic structure. For details, we refer to [9,8].

3 Technical Aspects

From the discussion of the last section, we learned
that all that is required to compute the partial
derivatives of a function is to break this function
down into elementary operations and then perform
all the operations in differential algebra. Since FOR-
TRAN, which is the language most of the relevant
accelerator simulation programs are written in, does



not allow the use of a new data type, the differen-
tial algebraic operations can only be implemented as
calls to subroutines.

To automate the breaking down of a certain func-
tion into the subroutine calls, an interpreter was
written [19]. This interpreter understands full FOR-
TRAN formula syntax, including all relevant func-
tions, and is an extension to regular FORTRAN al-
lowing a new differential algebraic data type. The in-
terpreter takes extended FORTRAN and transforms
it to regular FORTRAN. .

The second major difficulty that had to be over-
come is the efficient computation of the product of
differential algebraic vectors. While we saw that in
principle it is trivial to figure out the product for
any order and number of variables, in practice this
requires sophisticated (and slow) logic that is not
very well suited for a computer environment. How-
ever, using a tricky addressing scheme, it was possi-
ble to overcome these difficulties. In practical cases,
the logic overhead now is down to an insignificant
amount of the time required for the arithmetic. For
details we refer to [9).

To conclude this section, we want to discuss how
to use these techniques for the computation of trans-
fer maps in practice. To be somewhat more specific,
suppose we are given a certain tracking code and
want to modify it for map extraction. We note that
the code (besides sometimes quite involved logistic
management sections) represents a functional depen-
dence between the final coordinates and the initial
coordinates, even though this dependence typically
is very complex and often involves hundreds if not
thousands of lines of code. Depending on the model
used, this dependence could involve kicks and dnifts,
or a numerical integrator. In order to compute the
derivatives of transfer maps, now simply replace each
and every one of these operations by the correspond-
ing on in differential algebra. The code will then au-
tomatically compute all the requested partial deriva-
tives of the dependence of the final coordinates on
the initial coordinates.

4 Examples and Results

In this section we will give some examples of the
use of the differential algebraic method in prac-

tice. Among other codes we enhanced the kick code
THINTRACK [4] to map extraction using the tech-
niques described in the last section.

We investigated an SSC lattice without random
errors, i.e., only identical cells with realistic cor-
rected errors in the six bends per half cell. We
computed the transfer map of one cell of the lat-
tice through eleventh order; higher orders should be
feasible if necessary,

Comparing the accuracy of the Taylor expanded
map with the result obtained by tracking individual
particles through the cell, we found that for particles
up to about 75 % of the dynamical aperture the
relative accuracy was about 10~%. This means that
the accuracy of the mathematical approximation of
using the eleventh order Taylor series instead of the
real map is well below the level of design errors and
thus tolerable.

This number suggests that the map can be used to
perform tracking through the system. And indeed,
as Figure 1 shows, there is hardly any detectable
difference between the tracking pictures using di-
rect tracking versus (the faster) tracking through the
power series map. In fact, for the case of particles
well inside the dynamical aperture, the agreement is
better than printer resolution. Figure 1 shows the
y— py projection of the motion of a particle launched
with z = p, = 0. Because of the good decoupling of
the z and y motions, the occupied phase space area
is almost onedimensional.

The very high accuracy in the description of the
map by its power series is a consequence of the high
order used. To demonstrate this, Figure 2 shows
the same tracking simulation as in Figure 1, but
with Taylor maps of order three and five, respec-
tively. As one can see, the accuracy of the third or-
der map is totally inadequate, the particle even gets
lost after a few turns. This picture shows a growth
of phase space volume, which is probably due to the
fact that the third order map is not fully symplectic.
It is likely that the picture would be more favorable
by carefully choosing a symplectification procedure
based on generating functions [8]. But even though
with symplectification the picture might look more
realistic, strictly speaking the accuracy will not im-
prove significantly. In fact, symplectification proce-
dures should be taken with a grain of salt and used
carefully, because they have a tendency to inake even
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Figure 1: The simulation of a particle tracked
through one cell of the SSC for 400 turns. The upper
figure shows the result obtained with direct track-
ing, and the lower figure shows the result using the
power series map. Note that the two figures agree
to printer resolution.
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Figure 2: The same simulation as in Figure 1, but
now using a map through third order (upper figure)
and fifth order (lower figure). The degradation of
accuracy due to the lower simulation order is clearly
visible.



inaccurate simulations look realistic.

As is to be expected, the accuracy of the same sim-
ulation done to fifth order, which is the maximum
order obtainable so far by techniques other than dif-
ferential algebra, is higher than that of third order,
but still some inaccuracies are clearly visible.

In Figure 3 we present the x — p, phase space plot
of the simulation shown in Figures 1 and 2. The
picture shows the z — p, motion induced by the re-
maining nonlinear crosscoupling. Again direct track-

_ing and tracking through a map are compared, and
no differences between the two pictures are visible,
which indicates that the (faster) tracking through
the power series map yields the same result to printer
resolution.

Altogether we have shown some examples in which
the tracking using power series yields results indis-
tinguishable from direct tracking, indicating that the
power series map in these cases contains all the sig-
nificant information about the system. It can be ex-
pected that similar results can be obtained for other
lattices, where possibly the order of the map has to
be adjusted to the degree of nonlinearity of the lat-
tice.

We should note, however, that whatever high or-
der we use, if we only track long enough, a difference
between the direct tracking and the tracking using
a map will quite likely become apparent. This is
particularly likely in the case of chaotic motion, in
which case particles initially close together in phase
space eventually move further and further apart, and
in which case this growth is often exponential.

In this respect, the (small) inaccuracies in the map
lead to similar effects than the {usually larger) ma-
chine errors or the inaccuracies of the physical model
of the accelerator or even the computer accuracy.
All these eflects sooner or later entail discrepancies
between the real and the computed particle coordi-
nates, a problem inherent to all tracking techniques.
One can hope, however, that while obviously individ-
ual coordinates cannot be predicted for large num-
bers of iterations, at least global aspects of the phase
space areas populated by the same particle are re-
produced properly. Experience shows that this is
often the case.

In order to put the mathematical inaccuracies of
the truncation of the power series into perspective
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Figure 3: The simulation of a particle tracked
through the SSC for 400 turns. The upper figure
shows the result obtained with direct tracking, and
the lower figure shows the result using the power se-
ries map. Note that again the two figures agree to
printer resolution,



with the inaccuracies of the kick model, we show in
Figure 4 the same simulation as in Figure 3, now
using two kicks per dipole instead of one kick per
dipole as in Figure 2. As we can see, the differences
are quite noticeable in that the phase space points
are not predicted in the same way. Still the total
phase space area occupied in the two pictures is very
similar, which is the reason why the predictions of
the kick model are not completely useless.

However, 1t is quite apparent that the accuracy
of the mathematical approximation (truncate power
series) is much better than the accuracy of the kick
model. Indeed, the authors believe that the wide
spread trust in the kick model is somewhat unjusti-
fied. Of course it automatically produces symplectic
maps and thus preserves the only universal symme-
try of Hamiltonian systems. This, however, can also
be achieved with other means, in particular with
all power series maps using symplectic tracking as
outlined above. The argument that on top of sym-
plecticity the kick model actually describes a "real”
physical system is somewhat misleading; indeed, this
model requires infinitely strong fields and infinitely
short magnets, and thus in this model obviously the
SSC would easily fit on the reader’s desk.

One of the main reasons why the kick model is
so popular is its ease of implementation, and, as a
result, the increase in speed which brings long term
tracking in the realm of current computers. More
exact techniques, like numerical integration through
realistic fields, are orders of magnitude slower and
thus make tracking quite inefficient. In this respect
the power series maps might have an advantage for
real long term tracking (with all the problems associ-
ated with it); in the case of maps it does not matter
whether the map was computed using a kick niodel
or a more realistic model. The tracking through the
map is equally fast in both cases. So it might be well
worth to invest a lot of computer time in a one turn
map that is as accurate as possible and then enjoy
more accurate and very fast long term tracking.

As we have argued before, the mathematical ac-
curacy of the power series truncation is not infinite.
We illustrate this with an example which shows a
similar SSC simulation than in the previous figure,
except that in this case the amplitude has been in-
creased into a very nonlinear region in which even
the onset of chaos seems to be detectable. Figure 5
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Figure 4: The same simulation as done in Figure
3, except that in the kick model the dipoles were
represented by two kicks instead of one. While the
"topology” of the picture is similar to that in Figurc
3, the position of the particle after the same number
of turns is very different. This shows a limitation
of the physical model, which here reduces accuracy
much more severely than the mathematical approx-
imation of truncating the power series map.
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Figure 5: The simulation of a particle tracked

through one cell of the SSC for 400 turns. Compared
to Figure 1, the amplitude of the particle is now ap-
proximately 75 % of the dynamical aperture. The
upper figure shows the result obtained with direct
tracking, and the lower figure shows the result us-
ing the power series map. Note that the two figures
agree very well, but due to the increased amplitude,
very fine differences due to the less accurate power
series representation are noticeable

shows the coordinates of the particle, predicted by
direct tracking and by tracking through the power
series map. The agreement is still very good, but
does not quite reach printer resolution any more. A
careful comparison of the two pictures reveals that
now the particle coordinates are slightly off. How-
ever, the discrepancy are still far below the model
accuracy which can be estimated from Figure 4.

It has been shown elsewhere [11] that it is quite
easy to implement powerful normal form algorithms
on the (differential algebraic) map with the differen-
tial algebraic techniques. With normal form proce-
dures the exact computation of tunes and tune shifts
to arbitrary order becomes quite simple and efficient,
and we have used such tune calculations on several
occasions.

Here we show another application of normal form
theory, namely the determination of invariants and
pseudo invariants. In essence, the normal form al-
gorithm which we are using here, turns an arbitrary
map of a Hamiltonian system into an integrable one,
i.e. one that has a number of invariants equal to
the number of position-momentum pairs. Obviously
not all Hamiltonian maps have this property, so the
invariants that are obtained in this way may indeed
prove to be only approximate {or pseudo) invariants.

In Figure 6 we show the motion of the particle
shown in Figure 5 in the new coordinates obtained
from the normal form algorithm. As we can see, the
complicated and perhaps chaotic motion has been
turned into a most regular motion: that on a circle.
The invariant (or pseudo invariant) is the radius of
the circle. We note that the coordinates show a very
small spread around a perfect circle. This can have
two reasons: either we indeed produced a pseudo
invariant, or the order to which the normalization
procedure has been carried is not yet sufficient. We
can not rule out the latter case, in particular because
also in the original tracking picture for this quite
nonlinear example the order of the map has not been
sufficient to guarantee a fully accurate prediction of
the particle coordinates.
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