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ABSTRACT

We present a design of the girder to accomodate injection of 1133
MeV kinetic energy H™ ions from the linac into the LEB. This design

is based on Colton and Thiessen’s designm for 600 MeV ions, and

does not require a modification of the current 2 LEB lattice.

* Operated by the Universities Research Association, Inc. for the U. $. Department of Energy.
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1. Introduction

The CDRY! specifies the injection momentum in the LEB to be p = 1.219
GeV/c and describes a lattice with a 250 m circumference. Because of a desire to

decrease the dispersion in that design, a new lattice has been proposed[z] with a
circumference of 343 m. For the nominal value of 1 x 10!? particles per bunch this
increase in circumference implies a substantial space-charge tune shift of —0.21
at injection, which means that many resonances are unavoidably crossed. Some
of these may cause emittance dilution due to phase-space distortion, with the
corresponding potential for degradation of the luminosity in the SSC. Although

tracking studies % show that this is not a serious problem if the lattice is properly
tuned, it is natural to consider the option of injecting at higher energy. This
would provide a safety margin and would also allow the possibility of operating
the SSC at higher current (say three times nominal) or at lower emittance (say
half of nominal). Since the space-charge tune shift varies roughly like 3=1v~2, a
modest increase in energy has a large payoff in reducing it. At a recent meetingm
a linac design was considered that would upgrade the kinetic energy from 600
to 1133 MeV with a corresponding increase in momentum from 1.219 to 1.847
GeV/c, and a decrease of the space-charge tune shift by more than a factor of 2.

In this note we present a design of the injection girder for such an upgrade.

We base our design on Colton and Thiessen’s design [ for 600 MeV kinetic energy.
Although our design has the virtue of fitting in the 6.23 m long drift space of
the present LEB lattice design, it does not have the simplicity of Colton and
Thiessen’s because it requires the orbit “bumps” to have different magnetic fields.
In fact, it requires the second bump to have a substantial field of 0.66 T.

Because of the desire to achieve controllable and possibly large currents in
the LEB, the CDR calls for multi-turn injection, in which the buckets are filled
gradually over many turns. This allows the possibility of using a linac with low
peak current and low emittance, but requires using H™ ions instead of protons.
The ions are coalesced with the existing protons in the bucket and are immedi-
ately stripped of the two electrons with a stripping foil. Since the extra electron
in the H™ ion is very loosely bound, requiring only 0.755 eV to strip, it is impor-
tant to pay attention to the magnetic fields in the trajectory of the ions. If the
magnetic field or momentum are large enough, the Lorentz force will strip the
lons prematurely. The magnets in our design are sufficiently weak that this not
a problem.

In Section 2 we present: (1) Colton and Thiessen’s girder design for 600
MeV ions; (2) a modification of this design, also for 600 MeV ions, based on
a shallower injection angle; and (3), our design for 1133 MeV ions. In Section
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3 we present relevant facts about the H™ ion and hydrogen atom lifetimes in a
magnetic field based on experimental measurements and theoretical calculations.
Section 4 contains a discussion of our results.

2. Girder Designs

The girder basically consists of a septum magnet, two orbit “bumps,” and a
stripping foil.
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Fig. 1. The trajectory of a charged particle through a bending magnet and
through an orbit bump. The bump is a juxtaposition of two magnets of equai and
opposite magnetic fields such that the trajectory is parallel-displaced. The mag-
nets have magnetic field B and length L, and the particle’s trajectory is a sector
of circle with radius p. The quantities B, «, h, p and L are not necessarily equal
in the bend and in the bump.

Consider first Fig. 1, in which we show the trajectories of a charged particle
through a bend and through a:bump: - The. bump censists of two juxtaposed
bending magnets of equal and opposite magnetic fields, so that the trajectory is
parallel-displaced. It is straightforward to show that

h L
2 =tan<, — =sina (bend)
L 2 P 5
h o L (2.1)
= tan 3 > = 2sina {bump)
- from which one obtains the radii of curvature
2 2 L?‘ 2
Ltk (bend), p = L+ (bump) (2.2)
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For a given momentum the magnetic field is obtained from
p=kpB (2.3)

where k ~ 0.2997925 (GeV/c)/T-m.

The girder design is specified by the magnets’ lengths, positions and magnetic
fields. Consider Fig. 2, which is a reproduction of Colton and Thiessen’s design
(Fig. 2 of [1]). We assume that the septum S is such that the H™ ions emerge
from it parallel to the closed orbit at a height h,, that the coalesced trajectories
emerge out of the bump Oy at a height k,/2 also parallel to the closed orbit, and
that bump O displaces the trajectory back to the closed orbit. The H™ ions and
the protons have the same momenta and we neglect their mass difference. Then
the geometry implies the equations

H-—h,‘ hi—ha

a _
= = —_ 2
tan a tan 3 (2.4)

For specified initial height H, distance d, septum length Lg and output height
h,, these equations determine the entrance height A; and angle . Then eq.
(2.3) determines the magnetic field for a given momentum p. In the small-angle
approximation (a € 1, or L < p), which is a good approximation in the cases
considered here, these equations readily yield

_ HLs +2h,d

- 2.
i Lg+2d (2:5)

and then eq. (2.2) determines the radii of curvature in the septum and bumps,

LY+ (hi—h,)’ _ 4L% 4+ Kl
T ki —he) = T gh,

(2.6)

where n = 1, 2 refers to bumps O and Os.

Colton and Thiessen’s design on Fig. 2 has the following values for the
parameters: H = 34.7 c¢cm, hi = 179 cm, h, = 535 cm, Lg = 1.5 m, d =
Ly = L = 1 mand a = 0.16667 rad = 9.55°. The separation between the
bumps 1s 50 cm, and the stripping foil is half-way in between. For 600 MeV
kinetic energy (p = 1.219 GeV/c), the magnetic fields and radii of curvature are
Bg =B =B2 =045 T and ps = p; = p2 = 9.03 m.
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Before attempting a design for a kinetic energy of 1133 MeV, we take an
intermediate step by modifying the above design for 600 MeV. We choose as
shallow an injection angle as possible, by having the transfer line from the linac
grazing the quadrupole magnet Q. Since the magnet is 6 high, we choose H =
7" = 17.8 cm, and leave the rest of the design as before. In particular, the septum
length and position, and the height &, remain unchanged. This is shown in Fig.
3. From the above equations we obtain hA; = 10.7 cm, a = 0.0711 rad = 4.07°.
For 2 momentum of 1.219 GeV/c we obtain Bg = 0.19 T and ps = 21.4 m. The
fields and orbits in the bumps remain unchanged.

Assume now that the ions have a kinetic energy of 1133 MeV, corresponding
to a momentum p = 1.847 GeV/c. The Lorentz force is larger than before so
there is the danger of premature stripping in the septum and in the first bump.
Therefore the magnetic fields must be smaller, which implies longer magnets in
order to achieve the necessary bending. Qur design is presented in Fig. 4. As we
show in the next Section, the magnetic fields are small enough that the premature
stripping is not a problem. The main difference with the previous design is the
length of bump Oy, which we now choose to be Ly = 1.5 m. The heights H, ki
and h, are the same as before, as is the length L of the second bump. Eq. (2.6)
yields ps = 21.1 m, py = 21.0 m and p3 = 9.35 m, so that, for p = 1.847 GeV/c,
we get Bs = 0.202 T, By = 0.293 T, By = 0.658 T. The large magnetic field of
O+ is not of concern for the problem of stripping because the ions are stripped by
the foil anyway. However, it may present operational problems that we discuss
in the last Section.

3. H™ lon and Hydrogen Atom Lifetimes
3.1 H™ IoN LIFETIME

When the H™ ion moves in a magnetic field B it experiences a Lorentz force
that bends its trajectory but also tends to break it up since the protons and
electrons experience it in opposite directions. Since the binding energy of the
extra electron is only 0.755 eV, this breakup can occur readily. The breakup is
a probabilistic process since it is essentially quantum-mechanical in nature. In
the reference frame where the ion is at rest, the stripping force is effected by the
electric field £ that is the Lorentz-transform of the magnetic field B in the lab
(of course the ion also experiences a magnetic fleld in its own rest frame). The
electric field is given by

£=r'pyB (3.1)

where x' has the same numerical value as &, but has dimensions of GV/T-m. Note
that £ is proportional to 3+, which is in turn proportional to the momentum.
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For the H™ ion (or the hydrogen atom) this equation is conveniently rewritten as

EMV/em] = 3.197 p[GeV /c] B[T] (3.2)

The lifetime of the ion in an electric field can be calculated by applying the

[5-7]

WKB approximation to the tunneling probability. It has also been measured

in several experiments{a—u] whose results, for the ion’s lifetime 7 in its own rest
frame 1s very well parametrized in the form

e (9) -

In the region of values of £ where they overlap, the measurements in (8],
(10] and [11] are fairly consistent with each other within errors, but are not
consistent with {9]. Ref. 10, which covers the range £ = 1.87 — 2.14 MV /cm,
has A = 7.96 x 107! sec MV/cm and C = 42.56 MV /cm, while Ref. 11, which
covers £ = 1.87 — 7.02 MV/em, has 4 = (2.47 £ 0.09) x 107!* sec MV/cm and
C =44.94£0.10 MV/cm. These two fits yield fairly similar results in the region
of values of £ of interest to us. Since the data in [11] span a wider range of values
of £ and is very well fitted by (3.3), we assume that this fit is more robust, so we
adopt it for our purposes, which require a slight extrapolation to lower electric
field values.

In order to calculate the mean decay length in the lab A, we multiply 7 by
the Lorentz dilatation factor v and by the velocity of the ion,

A= cfyr (3.4)
Thus for a given momentum p we compute 3 and +, then obtain £ from (3.1) or

(3.2), and X from the above equation. Table 1 below shows X and £ for an 1133
MeV kinetic energy ion in various magnetic fields.



B [T] £ [MV/cm] A [m]
0.2 1.18 4.28 x 1011
0.3 1.77 8.76 x 10°
0.4 2.36 1.15 x 10°
0.5 2.95 20.4
0.6 3.54 1.34
0.7 4.13 0.188
0.8 4.72 0.042

Table 1. Mean decay length in the lab, A, of an H™ ion with a momentum p = 1.847
GeV/c (1133 MeV kinetic energy) travelling in a magnetic field B. £ is the electric
field experienced by the ion in its own rest frame. These results are inferred from

Ref. 11.

For p = 1.219 GeV/c and B = (.45, as appropriate for Colton and Thiessen’s
design, the electric field is £ = 1.75 MV /cm. For p = 1.847 GeV/c and B = 0.293
T, as appropriate for our design, the field is almost the same, £ = 1.73 MV /cm.
This was the criterion we had in mind in our redesign of the girder, that the
ions should be as stable as in Colton and Thiessen’s case. A mean decay length
of 876 km for B = 0.3 T implies that fewer than 4 out of every 10° ions are
stripped by the magnets before they reach the foil, and therefore this problem is
not significant. However, because of the rapid variation of the mean decay length
with magnetic fleld, one should be cautious about this issue, especially because
of the possible effects of fringe fields.

3.2 HYDROGEN IONIZATION

The binding energy of the hydrogen atom in its ground state is sufficiently
iarge that it is extremely difficult to ionize it by a magnetic field in all practical
cases, so we present the expression for its lifetime for the sake of completeness
only.

Consider a hydrogen atomn in its ground state, at rest in an electric field £.
The probability for ionization per unit time, 7™}, can be expressed in terms of the
Bohr radius ag = A%/me? = 0.529x 10~1% m and the ground state binding energy
Ey = me*/2h? = 13.61 eV. The result of applying the WKB approximation to
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the tunneling probability yieldsm

- _if & 4 &
T 1 = 16 TO I (“S_) cXp (--g?) (35)
where
_ Ky e GV _h —16
50 = ean = Qa% = 2.57 -EI—I-;, = E_g =0.484 x 10 s3ec (36)

Note that the exponential factor, which is characteristic of the WKB approx-
imation, has the same form as in the experimental parametrization, eq. (3.3),
but that the prefactor is of the inverse form. We don’t know whether this dis-
crepancy is significant since the potential seen by the extra electron in the H™
is not Coulombic. We tried to fit the data with a formula of the form (3.5),
but the fit is not nearly as good as with (3.3) (this discrepancy is of no concern
for our present purposes because we require only a small extrapolation from the
experimental data for the H™ lifetime). The constant & is much larger than the
corresponding constant C in the H™ case on account of the larger binding energy
and smaller Bohr radius. As a result, the mean decay length obtained from eq.
(3.5) for an 1133 MeV kinetic energy hydrogen atom in a 10 T magnetic field
yields A ~ 0.07 light years, so the ionization of hydrogen is not an issue.

4. Discussion

The design of the girder we have presented here for 1133 MeV kinetic energy
ions fits in the 6.23 m long drift in the present design of the LEB, and is satis-
factory from the point of view of premature ion stripping. However, the second
bump has a substantial magnetic field, which is also different from the field in
the first bump and in the septum. This implies that O; has to be on a different
power supply circuit as the other two magnets. Thus the simplicity of Colton
and Thiessen’s design, in which all three magnets have the same field, is lost.

The present designs of the LEB ) and linac™ call for a 26-turn injection.
Since the revolution period of the LEB at injection is 1.44 usec, this means that
the magnets in the girder have to be simultaneously powered for 37.44 usec out
of the LEB’s cycle time of 0.1 sec. Although this means a duty cycle of only
~ 0.04%, the substantial magnetic field of 0.66 T in Oz may be a problem.
.However, it is easy to show, in the small angle approximation, L <€ p, that the
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magnetic field and magnet length of either bump satisfy
BL® =2h,2 (4.1)
K

Thus for a given momentum p and height h,, the magnetic field decreases as L=2,
so this possible problem may be avoided by a modest increase in magnet length.

Although we have not optimized our design, we have shown that a girder for
1133 MeV 1ons is possible within the present LEB design. The girder would fit
snugly, and its operation may be not as simple as for lower injection energy.
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