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Abstract

We have investigated the electro-magnetic behavior of a layer of super-stablized su-
perconductive composite conductors when switching instantaneously and uniformly to the
normal resistive state. The Laplace transform was used to solve the current diffusion
equation in the super-stabilizing material. The value of power dissipated per unit volume,
averaged over the layer thickness, was then computed using the “pseudo”-convolution the-
orem in the complex plane. Last, we present a simple interpretation of the phenomenon

with the help of two time constants.

* This work is part of “Longitudinal Propagation of the Normal Zone through Indi-
rectly Cooled Superconducting Solenoids,” a Ph.D. thesis completed at the Comimisoriat a

I’ Energie Atomique, CEN/Saclay, D.Ph.P.E./STIPE/STCM, 91 191 Gif-sur-Yvette Cédex
(France).



Introduction

When a superconductive composite material switches to the normal resistive state, the
larger part of the current diffuses from the filaments into the copper. Early in the period
following the transition, dissipated power is significantly higher than the residual power
remaining after the diffusion process has been completed. This excess power may affect
the stability of the composite material.!=* In the case of super-stablized conductors, such
as the “ALEPH” conductor,® in which the composite material is enclosed in large volume
of pure aluminum, the magnetic diffusion characteristic time becomes large in comparison
with the normal zone propagation characteristic time. The cryogenic stability problem is
thus compounded by propagation velocity considerations.

In an earlier paper,’ we have shown how the propagation velocity along a layer of
such conductors (see Fig. 1) can be related to the Laplace transform of the value of power
dissipated per unit volume, averaged over the layer thickness. We have also shown that an
asymptotic limit mode can be reached, in which the power profile to be considered is that
derived by assuming that the superconductor layer switches uniformly at time ¢ = 0. The

purpose of this investigation was to determine this power profile.

Geometrical Model and Computational Assumptions

The model and assumptions given in our earlier paper® were used again in this case.
Subscripts 1 and 2 refer to the composite and super-stabilizing materials respectively.

It was assumed that the electro-magnetic behavior of the conductor layer in Fig. 1
was similar to that of the set of infinite plates of Fig. 2. Therefore, electro-magnetic
values are dependent on variables y and ¢ only, and the Maxwell-Ampere équation for
quasi-steady states shows the only components of interest to be the magnetic lux density
component along Oz and the current density component along Oz. These two components
are designated respectively as B;(y,t) and Ji(y,t) wheret =1 or 2.

At any time t > 0, the composite material is regarded as a homogeneous medium
with equivalent longitudinal resistivity, p;, in which current density is uniform. This last
assumption is equivalent to considering that diffusion through the copper in the composite

material following a transition is instantaneous on the time scale of diffusion through the
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super-stabilizer. The range of validity of that assumption will be defined later. As regards

the super-stabilizer, it is characterized by its magnetic diffusivity:

Dm = p2/u0 (m23—1)

It was also assumed that a constant current I flows through the winding during the
whole process. We call J, the average current density across plate thickness 2L, and write
B, = —poJ,L, where J, and B, are constants. The flat plate model being extrapolated
from a large solenoid, we define half-space y > L outside the solenoid, where flux density
is nil, and half-space y < —L inside the solencid, where flux density is (—2B,). We then
establish symmetry with respect to y (in this case, odd as regards B and even as regards
J) by superimposing a uniform, constant flux density equal to B,. The investigation was
performed in the y > 0 half-space.

The numerical data used are those tabulated opposite; they relate to a model of the
“ALEPH" solenoid.*®

Throughout the following, the Laplace transform of a function f(t) is written f*(p).

Determination of Flux Density

1. Equations and Boundary Conditions
Inside the composite material, where current density is assumed to be uniform, By (y, ?)
varies linearly with respect to y. The odd symmetry conditions, and the conservation of

the flux density normal component at y = L, yield
Bi(y,t) = Ba(y,t) - Wy,0 Sy < Ly, 2 0
1

Inside the super-stabilizer, B3(y,t) is a solution of the magnetic diffusion equation (E)

& Bi(y,t) 1 0OBa(y,t)

9  Dn ot
with the three boundary conditions 1) at ¢ = 0, when current is still confined to the
composite: By(y,t = 0) = B,; Qyat y =L : Ba(y = L,t) = Bo; 3y at y = L,, where

VysLl Sy éL;Vt,t 20

conservation of the electric field tangential components affects current density according

to Ohm's law, and flux density according to the Maxwell-Ampere equation, giving
paly 8Ba(y = L1,1)
PL dy
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By(y= L1, t) =




2. Computation of the Laplace Transform
Multiplying equation (E) and condi_tions 2) and 3) by Y(t), the Heaviside step func-
tion, we derive the Laplace transform with respect to t. We then solve (E) as a differential

equation of the second order with respect to y. The calculations give
. T ch./T2p y

Bi(y,p) = Bo /= — T

p shy/Tp+ TiPchy/Tp Ly

oh (5% vP)
- sh /2P + /T1P chﬁ}

. B
B2(yap) = -p_o {1

where

2 ] 2

22 Ll L:
=(£2) 2L d -2
™ (pg) Dm an ”=D.

(1 and 3 have the dimension of time).

Note: in the case of interest, p3 < p1 and L) << L3, hence 1y << 7.

3. Computing the Original

The Laplace transform inversion formula is written
1 c+jo0 -
Biw=5= [ do enet)Bi(up) i=lor2
iT Je=joo
integrating along a straight line z = ¢, such that ¢ > o(B}) where o(B}') is the B}
summability abscissa, i.e., a point such that all the singularities of B} are located left of
that line.

From the above expressions, B} shows a pole at zero, and an infinitive number of
poles (Pn)nen on the negative real half-axis, given by p, = —a?/m where a, is the
solution of equation tg an = —may, located in the interval [(n + 1/2)7, (n + 3/2)x] with
m = (paLi1/p1L2). o(B}) is therefore nil, and any strictly positive real value is adequate
for c.

The integral is computed by considering the set of contours (Cn(Rn)) represented by
Fig. 3.7 Each contour consists of a circular arc with center 0 and radius R, (designated as
T'n(Rn)), two straight segments parallel to the real axis (designated as D,(R,)) and the
segment [—R,, +R,] of line z = ¢.



Note: Although it may look so, B is not multiform, and it is not necessary to make

a cut-off on the contours. We therefore have

B&y,t):ﬁgﬂ {-2-;1-;(/“ - / - fnn)dp exp(pf)B?(y,p)}

The integral over C, is computed by the method of residues; and it can be verified that
integrals over I'y, and D, tend toward zero when n tend toward infinity. We thus have:

Bi(y, t) = Reslexp(pt)B; (y,p),p = 0] + > Reslexp(pt)B; (¥, p),p = pn]

n={
Residue computation yields
+00 2
™ mexp (—ait/m)) vy
t ] ————— brute
By, t) B"{1+m +2 ; l+m+ (may)? | L,
and
- . L=
Ba(y,t) = Bo{1" 37 + 2 S ('5?!"") mexp (~aqt/n)
W= 1+m oy sin an 1 +m + (mas)?

To arrive at the right expressions for flux density, it is now sufficient to subtract B,.

Figure 4 shows B = f(y) curves for miscellaneous values of t.

Determination of Current Density

The Maxwell-Ampere equation for quasi-steady states is written:

-1_ dB;(y,t)
Mo By

Derivating the above expansions on a term-by-term basis, we have

i=lor2

Ji(y,t) = -

Lty =J, & {__m 42 f me"p(""?'t/r‘)}
n=0

Ly |1+m 1 +m+ (maa)?
and
L—
hwy=12E [ " 53 o8 (2 an) mexp(=adt/m)
3= oLy | 1+m = cos ap 1+ m+(ma,)?

J = f(y) curves for different values of ¢ are shown in Fig. 5.
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Also, J*(y,p) can be directly related to 6—3—75%12 by multiplying the Maxwell-Ampere
equation by Y (t), and deriving the Laplace transform with respect to t. We have

)= £ T ch./T2p
W)= °Ly \ p shyTp+ /TIP ch\/T2D

and

sl 3 oh (F5% V)

- = Jo 1
73 (.P) paly V p sh/mp + /TP ch\/TP
Determination of the Average Power Density

1. General Ezpression
Based on symmetry considerations, the power dissipated per unit volume, averaged

across plate thickness, is given by:

L
Pit) =1 {me(t)Ll v dmez(y,t)}

To compute P}(p), a first method consists on replacing Ji(t) and J3(y,t) by the
expansions derived above, and deriving the Laplace transform with respect to ¢. We thus
obtain a serie’s expansion of P}(p). The second method, which we develop here, consists
on using the Laplace transform directly, and leads to a simple analytical expression. Of

course, we have verified that these two computations gave coherent results.

2. C’omputz'ﬁg the Laplace Transform

P} can be expressed as a function of J{(p) and J3(y,p) by using the “pseudo”-
convolution theorem in the complex plane. This theorem relates the Laplace transform of
a function to that of its square.” We have

Pit) =t (5 [ de st -w)

B ha

-

L 1 ety
v [ (= [0 awssaie-w)]
Ly iT Je—jo

integrating along a straight line z = ¢, such that o(J{) < ¢ < Res(p) — o(J;)*. Since
the poles of J; are the same as those of B}, ¢(J}) = 0, and in the following we will take
¢ = Res(1/3p).



Replacing J7'(p) and JJ(p) by the expressions found earlier inverting both integrations
in the right side, and computing the integral with respect to y, P} can be written in the

form
. 1 Rea(}p)+5% Rex §p)+j™
P =g ([ 4] JE
“7 Res($p)—j Reo( {p)—j
where
9(u)
) =P
f(p,u) Ja = —p/2
with
L
Pro=py I I

(P, is the average density of dissipated power at time ¢ = 0.)

(u) = __]; /Il ch./T7u
gL = 2V u shy/mu + /Tu ch./Tau

Note: The poles of g(u) are zero, and the expansion (pn)nen, g(u) is therefore holomorphic
in the Res(u) > 0 half plane.

The poles of f(p,u)} with respect to u are p/2 and those of g(u).

In the following, we designate by I(p) (resp. K(p)) the integral along line z =
Res(1/3p) (resp. = = Res(2/3p)).

and

¢ Computation of K(p):
Let us consider contour Cx(R) of Fig. 6a, and call ['x(R) the fraction of this contour
consisting of the circular arc with radius R. We thus have:

K(p) T Rﬁ& {2:_“. v/Cx(R) du f(p’u) N 5.J};F Tx(R) du f(p’u)}
Since f(p,u) is holomorphic within the domain delineated by Ck(R), the integral over
Cx(R) is nil.

Further considering that th,/u =~ 1 for Res(u) > 0 and | u |— +oo, we have f(p,u) =~
~ Py /(2u?) for u € I'k(R) and R — +0o. Therefore uf(p,u) tends uniformly toward
zero over I'g(R) when R — +o0 which is sufficient condition® for the integral over [ x(R)
also to tend toward zero.

We therefore have: K(p) = 0.



e Computation of I(p)
Let us now consider C;(Y) in Fig. 6b, and call D;(Y) the fraction of that contour
consisting of the two straight segments parallel to the real axis. We thus have:

1 1
I -—hm{-—-—f du f(p,u f duf,u}+K
0 == lim g [ e =g [ dfew) + KG)
The integral over D;(Y') tends toward zero when ¥ — +4oc0, for the same reasons as the
integral over ['x(R).
Further, g(u) being holomorphic in the domain delineated by Cr(Y"), the integral over
C(Y) is computed by Cauchy’s formula

1 1 g(u)
—m du f(p,u) = == du P; = Py, g(p/2
fc;(?) fpyw) 27 Jewy) “u-—-p/2 (e/2)

We thus have:
1(p) = - Py, ¢(p/2)

and finally, for Pj(p):

Fitey= PJ"\/—\/ﬁsh\/— \/— ch‘/—

J. Computation of Original
The expression for P} being of the same form as those for B}(y,p) and J7(p), it

follows that:
-+o0

mexp(—2alt/m)
Pj(t) = Pjss + 2 Py, .
7 °n2_0 1+m+(mas)?

in which we have written Py,, = -f-_‘_i; Py, (Pras is the average power density at the end
of the diffusion process).

Figure 7 shows the curve P; = f(t).

4. Approzsmate Ezpression
An approximate expression for P;(t) can be derived by connecting a truncated ex-

pansion for ¢, close to zero, and an asymptotic expansion for ¢ close to infinity.
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The truncated expansion is derived from the original of an approximate expression for

P3(p), where Res(p) is large. Assuming that th(./P) is equal to 1, we have

1 1
Pi(p) = Pjp —= —e—————

where Res(p) is large.
A table of transforms’ thus gives:

Pji(t) ~ Pj, exp (;21- t) erfc | f;z-l- t

where t is small and where

2 [ 9
erfc(x) = v ds exp(—s*)

Note: Truncated expansions for Bi(y,t) and Ji(y,t) can be derived in the same way
for ¢ close to zero; in the super-stabilizer, however, a distinction should be made based on
closeness of y to L, or L.

The asymptotic expansion is derived by retaining only the first term of the above

expansion.

N m exp(—2adt/r;) .
Pj(t) = Py + 2Py, T T (n:a°)3 where ¢ >> 2ai/m

A plot of the above two expansions shows that they are connected, and sufficient to build
the profile of Fig. 7.

At this point, we can see that there are two phases in the decay of the average density:
a fast decay phase, with time constant 7;, and a slow decay phase with time constant 7.
The first phase may be interpreted as the forcing of the current out of the composite and
into the super-stabilizer; as was pointed out earlier, J}(p) and P}(p) formally have the
same expression. In particular, Ji(t) has practically reached its limit after a few tens of
1. This is because excess current has been driven from the composite during that period.
As for the second phase, it is simply a diffusion phase in the super-stabilizer. (See the
definition of 72).



This intepretation also permits determining the validity range of our uniform current
density model for the composite. In fact, the model only appears to make sense if 7, << =
which can be written:

m? << 1

The above relationship defines a super-stabilization criterion.

Conclusion

Using the Laplace transform, we have been able to solve the problem completely
without having to use a computer. Further, the results obtained are of a simple form,
which permits physical interpretations. Our method thus compares very favorably with
others, especially with the variable separation method.
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Table I

Nur_nerical Data

Li=11mm p1=4910"1° Om

L; =164 mm p3 =T7.148 10~ Qm

B,=-087TT J,=397 A/mm?

= 0.47 ms
T = 46s

Pro =11.8 10° W/m®
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Stabilizing
matrix (Al)

Superconducting
composife (NbTi/Cu)

Insulator

XBL 889-3285

Fig. 1. Sketch of a layer of ALEPH conductors.
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SUPER-STABILIZER

COMPOSITE

XBL 889-~-3286

Fig. 2. Infinite plates model.
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Fig. 3. Contours for the computation of Bi(y,t).
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Fig. 4. Profile of magnetic flux density.
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Fig. 5. Profile of current density.
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Fig. 7. Profile of average generated heat power density.
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