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Introduction

Inasmuch as all multipole magnets having a coil cross section
that is at least roughly circular are approximations to a cosine m8
configuration (one in which the lineal current density varies as
cos mB) , it seems useful to calculate the displacements and
associated field aberrations for an idealized thin cosine~theta
(ITCT) configuration. Such a configuration has been shown to give
results that are with 10 or 20% of those for real coils when
applied toc stored energy and inductance, total Lorentz stress, and
field strength per ampere turn; it would be a suprise if it didn’t
also give a good approximation for at least the lower—order field-
aberration multipoles resuting from azimuthal displacements.

In a 1980 report (Ref. 1), 1 presented calculations for
what seemed at the time to be a gond model of the ITCT
confiquration. The elastic modulus was assumed to be uniform
over the circumference. But that assumption doesn’t account far
the "wedges". In real magnets, the current per conductor is
uniform and it is the conductor density that varies as cosine
m8; the space between conductors is filled with wedges. The
uniform-modulus maodel would be applicable only if the modulus of
the wedges matched that of the conductors. If the wedgas are
infinitely stiff, then the effective modulus varies as 1/cos mB.

Results for both the uniform modulus and 1/cos m8 modulus
variation are presented. {It probably wouldn®t be too difficult
to consider the case of a finite wedge modulus; perhaps later.?
The general andysis presented in Part 1 of this series
considers a modulus that varies with stress, but not one that
varies with azimuth, so some modification is necessary.

| Parts I and 2 of this series were published as SSC-N-353%9 and
-541, respectively.



NOMENCLATURE

(Additional nomenclature is defined in the text.)

coil radius

iron inside radius

coil radial thickness

reference radius for multipole coefficients

fractional circumferential distance from midplane
toward pole

total Lorentz stress, positive when in —x direction

critical value of F; that for which @ =0 and §, =0

local Lorentz force distribution function

integral of f(x) between 0 and x

gtl)

integral of gi{x) between 0 and x

k(1) '

local stress, compression is positive

g1}, T at pole

prestress

local strain, compression is positive

local displacement, with respect to end at x=0, and
with respect to prestressed condition, positive
toward midplane

S

average value of & over one half pole

number of pole pairs for field multipole coefficients

number of pole pairs for magnet

Young’s modulus

permeability of free space

real or skew fi®ld multipole coefficient in teslas

imaginary or normal field multipole coefficient in teslas
fundamental field multipole coef. for magnet in teslas

fundamental field multipole just inside coil
A,/Bm
Bn/Bm

see text



Analysis
Displ acements

Again we represent the local Lorentz body force per unit
volume as

F {00

where, for the present case,

Fey =??-_— sin X (e.01)

glx)E \:F(ﬂd» = '%_'(l ~ Cos Trx) (6.02)
and

qu =1
as required. Also -

k(%) Eg‘ﬁ(x = (%- & sy (6.03)
and so

ke k@Y= % (G.04)

Effective modulus = E For this case the critical prestress
is (Ref. 1)

)
e, 2.0 (6.05)

F =

which was shown to apply to all symmetrical lorentz-force
distribution functions. The local displacement is given by
(Ref. 1)

o) =& (k% - k()] =-g- ok sinx (.06)
and the average displacement is

- ‘ F

2 = \b0dn = (G.07)

Effective modulus = E/cos mB Equilibrium considerations qive

T = g +F[-g060)

= o0+ 5F (1 + cos TR (¢.10)
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The change in striin from the prestress condition is, then

ety - € (a3y= TE-E cosgr

= JE._-[(d.‘a--‘z-F'-cr,., s Tx +J£F¢og¢rx.cos-gwj (©.12)

and so the local displacement is

56 = S:' [e) - &l5)|dx
- & [(a +F - o)L sin Te ri-r(sin%z + %sinégxﬂ ©.i2)

At the pole end, x=1, the displacement must be zero. That
condition yields

(I =B g R
G+ F-gp)E=-3x7F (6.14)
which substituted back into Eq. 613 gives

2 = E: em' (sm—-x- + sin 22 ;-" ‘!-) (¢.18)

The average displacement is

= _ ¢ F 4

® = \B(x\ dr =& '3m (€ 6)
For the critical condition, F= ? and &, =0, which gives

_~

F = % P (G-W)

Field aberrations

The field in the aperture can be expressed in the form
B, ‘=E (V'//.ﬂ“-' { Ancosnd - B, sinnd) (G21)
Be=2 (rp) (-Ansinng - B, cos nb) (6.22)

where r,8 are the coordinates of the point at which the field
:ompanents B,.,Bg are evaluated, /2 is a reference radius, and n
is the number of pale pairs assnc1ated with the particular
aberration component. A, and B, are the "skew" and "normal"
multipole coefficients, respectively.



The multipole coefficients produced by a single filament
ar r,8 carrying current 1 are

A.+iB. =K, 1(sinne +icosn®)

(6.23)
where iy
Kn 2522 (8) G, (c.24)
G2 t+{@asb)" (¢.25)
G= | +(a/0)" (for use later)

(6.26)
We are concerned here with only “normal” magnets, which have

a line midway between a pair of poles oriented horizontally, and
only ones having folding symmetry about the pole centerlines.
For such magnets

A.=0 for alln

5'_' =2 0 f-pr H#I‘H (I, N2 n-)

Bans KHI cosne  for nam(t,a,s),,,) (6.27)
A perturbation of 58 produces a perturbation of the
multipole coefficient in amount &B,.
AB, =-K.n 5innd §(6)

(L28)
We apply this to an element of the cosipe mB winding by
replacing I by

Ja de = J, o cosmO db

and integrating.

(6.1
Then for one half pole
T/ 2m
B, = Kade ag COS N8 LosMB de (6.32)
(-]
s
A5, =K, hban S sin nQ cos mO 5 )do (6.%3)

Integration of the expression for B, yields the result that

Bu=0 dfor n#Em (& .34a)
By = Kmdo 4 25, (6.346)



It is convenient to normalize the field aberration multipales
resulting from displacements to the fundamental multipocle.

~/am
ab s@_'z = _Kn a'mn sin NG LosME &(6)de {63%)
] " y(w‘ )
where 6&»15 the displacement at angle B. To convert

&x) to &(B) we replace x by 2mB/4Y , and multiply by —1 since
positive §(8) is toward the pole whereas positive & (x) is toward
the midplane.

For (effective E)=E The displacement §&(B) is
(@)= - £ s$in 2me (636)
E 2w )
which, substituted into Eq. .35 yields
F Kn 2Zm e
- _ n ———— H Y
ab, E T asm nB cOs MO sirt MmO db

Upon integration this becomes

F _Kn,, n/m -
T . aw for n/m= 1,3

g;t%\_ .37
o EG\" H/m = 5)7595 res
For (effective E)=E/cos m8 The displacement O(B) is
5O = - = (sinm + sin 3mS) |
= = e (sinm sir 2m (&.38)

which, substituted 1n%s Eq. 6.3 yields
2

/2
Ab,= = '::n B;T"Ssm nG Losmd (sm MO+ sin ZmSYcl®

Clever rascal that I am, I obtain the solution

. a - .y
ab,= £ Ky & | sin@w-2)7 _ sm(Bed)3
E Km 30 -2 L +2

L Sl - enm@+aL ]
2(2 -4) 2(8 +a)



which looks more like a problem than a solution. However the sine

terms have only values +1 or -i, alternating with n/m in strange
ways, and so this boils down to

F Kn ., Nsn | G 2+ 13 /2
— .m- -
€ Kn T (n fwaYd = 20(n /N> wodh ( ) (6.39)

the (-1)... is simply a shenanigan to make the signs come out
right.

ab, =

It is useful to express the total lorentz stress in terms
of the fundamental aperture field. In Reference 4 the following
formula for the total azimuthal force in one half pole is
developed.

- a |
T2 pmz = (640)
where: P = Ba (@.41)
24 0
Bia) is the fundamental field just inside the winding and is
given by -t
B(a) = B, (a/0) (%.42)

P is the magnetic pressure, or energy per unit volume,
corresponding to B(a).

The leading terms in Eq. .24 then become

Ko [Bm\ @ Gn (p\tm (ea3)
E R %)he: = (3)

Numerical results and discussion

Figure 1 shows the displacement as a function of position
in the coil for the two cases. A major part of the factor-of-2
ratio of maximum ordinates is a result of the overall average
stiffness ratio for the two cases, a factor of /2. The tail
of the lower curve at the upper end is horizontal because the
stiffness goes to infinity at the pole end x=1.

Table 1 presents the field multipole functions for the two
cases, talculated from Eg. 6.37 and &6.39. Note that for the
uniform—-effective—modulus case there are aberrations only for
the fundamental and the first higher—-order multipele. For the
case where the effective modulus is E/cos m@, there are
multipoles of all order, although the ones beyond the
fundamental and the first higher—-order one are very small. The
factor-of-2 ratio of first higher—-aorder multipcles is, again,

largely a result of the greater average stiffness for the
E/cos m@ case.

Table 2 presents the multipoles for coil parameters that
approximate those of the S5C dipoles.
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Fig. 1 Displacement functions for thin.idealized cosine-me
winding. x=0 at the midplane, x=1 at the pole. The displacement
iz YF/E in units of x. The uppar curve is for a uniform effective
elastic modulus; the lowser is for one that varies as l1/cos mé.

TABLE 1
The factor P in the table is used in the following faormula
to calculate field aberration multipole coefficients for a
magnet of any multipole order:

-G o

wm

n’m EFFECTIVE MODULUS
UNIFORM Escos 8
1 +,079577 +7.958E-02 -,036025 ~-3,603E-02
3 +,238732 +2.387E-061 -.138955 ~1,.399E-01
-] +0,. 800000 +0,000E+029 -,042887 -4,28B9E-02
7 +0.000800 +@.0Q00E+00 +.007642 +7.642E-03
9 +0.000200 +3,.020E+20 -.882915 -2.915E-023
11 +0.000000 +2.0QQE+0Q +.801452 +1.452E-03
13 +0.000000Q +P.9200E+00 -.9008835 -8.348E-84
15 +0.00000¢ +9.290E+Q@ +,000%26 +S_.26SE-@4



dipole.

but not negligible.
these results,

of all orders,

COIL MEAN RADIUS, a <(mmd.....
YOKE INSIDE RADIUS, & (mm>,
REFERENCE RADIUS,
COIL THICKNESS, h (mm).....
YOUNG’S MODULUS, E (psid.....

TABLE

LY

»
« s 8w
*

07, I

LI )

No. OF POLE PHIRS’ m.l..l'.l."l
FIELD MAGNITUDRE

AT REFERENCE RADIUS, Bm (T).

2

39
55.05
1@

20
15000080
1

£§.6

Multipole coefficients for a coil approximating the SSC

FIELD ABERRATIONS in units of 1E-4 x DIPOLE component.

MULTIPOLE
COMPOMENT
DIPQLE
SEXTUPOLE
DECAPOLE
14-POLE
18-POLE
22~POLE
25-POLE
30-POLE

The multipoles calculated for the S5C dipoles are small,
It will be interesting to see if the

multipoles calculated for a real magnet are in agreement with
as I think they will be.

Part 1 of this series,
Part 2 of this series,

EFFECTIVE MODULUS
UNIFORM Escos ©
+3.884683 +3,985E+09 +1.396459 +1.,396E+020
+, 813531 +8.136E-0¢ +.473529 +4,.735E-021
+Q.,000000 +0.PQBE+G@ +.015861 +1.586E-02
+Q, 200000 +0,Q000E+00 -.882313 -3.134E~-04
+Q,0000209 +0,022E+00 +.000813 +1,328E-0%
+2,002000 +0,.Q00Q0E+00 -.2200Q1 -7.347E-@7
+9,000008 +0,000E+P0  +.00800Q +4.695E-08
+0,800080 +0,000E+0Q -,000000 -3,290E-29
Conclusions

not merely dipoles.
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