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INTRODLCTION

In order to obtain a better understanding of how various
parameters affect coil stresses, displacements, and field aberrations
a simple, one—-dimensional analysis was undertaken. In this study, it
is assumed that there are no shear forces between the elements of the
coil or between the coil and its surroundings. A variety of Lorentz
body force distribution functions and stress—-strain relationships —-
linear, non-linear, non-equation—-of-state —— are to be investigated.

In this first part of the series, an analytical approach is
used. This approach is limited to rather simple, idealized systems,
but ones that are easy to understand and which lend themselves to
exploration of the effects of variations in the system parameters.
Later, numerical methods will be applied to the analysis of more
complex and more realistic systems. (The results of the analytical
approach also provide a basis for checking the numerical approach.)

Much of this first installment is based on work done between
1974 and 1980, most of which was reparted in LBL Engineering Notes.
It has been cleaned up and genaralized a bit. Presented hers are:
Analytical study of displacements for a general stress-—
strain relationship, not necessarily a linear one or one that can be
described by an equation of state,

Specialization of the above to a linear stress—-strain
relationship,

Examples of both, with brief discussion of the results.

ANALYTICAL MODEL

A simple one-dimensional model of the cgil is employed. The
madel is applicable to the circular cross—-section coils of SSC
magnets, cylindrical layer elements of such coils provided there are
no shear forces on the interfaces, coils of rectangular crass saection
such as the TAC superferric magnets, and perhaps others. The
transformation from a quadrant of a dipole magnet coil layer to the
madel is as indicated in Fig. 1.
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Figure 1. Correspondence between position on coil
and x coordinate.

Unit length is defined as the distance between fixed ends, and
x as the distance from the end toward which the Lorentz forces are
directed. For a circular multipole magnet, x=0 at the midplane, and
x=1 at the pole piece. The wedges ara assumed to be much stiffer

than the conductors, and so are removed from consideration. Positive
stresses and strains are compressive; positive displacements and
Lorentz forces are in the -x direction.

NOMENCLATURE

] dimensionless distance from end toward which Lorentz
forces are directed

F total Lorentz stress, positive when in —-x direction

£ (x) local Larentz force distribution function

g {x) integral of f(x) between 0 and x

k(%) integral of gi{x) between O and x

olix) stress, compression is positive

O prestress, compression is positive

€{x) strain, compression is positive

b0 displacement with respect toc end at x=0 from

prestressed condition
Note: displacements are positive when in -x direction

E Young’s modulus (applicable only for linear stress-~vs—
strain)
Subscripts: Subscripts O and 1 indicate "at x=0" and "at x=l"

respectively.

Hats: 4 subcritical condition, no displacement at x=1
~ critical condition, no displacement and no stress at x=1

~ supercritical condition, no stress at x=1



GENERAL STRESS-STRAIN RELATICNSHIP

Genaral Loading Condition

The local (=x)-directed component of the Lorentz body force per
unit volume is represented as

FEm (1.01)
whera F is a constant. He*define
g (x)= g{(xy Ax (1.02)
and scale things so that ¢
gt1)=1 (1.03)

Then F is the total body force per unit area, which we refer to as
the "total Lorentz stress".

Equilibrium considerations (Fig. 2) yield relations between the
local stress o (x); the stress at the midplane end x=0, o7 ; the
stress at the pole end x=1, o, ; the total Lorentz stress F; and the
distribution function g{x):

o (x) =g = Fqix) = 0 + Fl1-qew)] (1.04)
Fi@bﬂdx
%l = o
= ! ]

Fifcasdx
Tog—i _ —— e o ()
- x —

Figure 2. Equilibrium of stresses.

Inasmuch as non-linear and non-equation—-of~state material
properties are permitted, we express the strain as a general
function of stress,

&) = €l ()] (1.05)

where it is to be understood that path dependence is included if
applicable.



The local displacement with respect to the fixed end at x=0,
relative to the prestressed condition is

5(x)y = g[é(x%é(a;)]dx= \6Cx5d.x - €(e7)x (1.06)
e ©

Subcritical Ccndition (We use "<~ " to designate this condition.)

Far this condition

E=F<F (1.11)
5% %, =0 (1.12)
(o= & 20)

tipon application of the Lorentz forces F the stress becomes
that given by Eq. 1.04:

Ve - - s -
d"(x):o;-.F'q(x):o'l.;F‘[;-q(g)] (1.13)
so0 the corresponding strain is
E() = €[5 (0] (1.14)
According to Eq. 1.06 the local displacement is

X
S(x) = gé(“)dx-é(o;)x (1.15)

°

Applying the condition of Eq. 1.12 to Eq 1.15 we obtain
1

S E(xYdx = e(a3)n (1.16)
L4

This, evaluated from Eq. 1.14 and 1.13, gives the state of stress,
fram which the local displacement is evaluated using Eq. (1.1%5).

Critical Condition (We use the hat "~" to designate this condition.)

We define this condition as that for incipient nat displacement
at the pole end, that is,

S

F=F (1.21)
.

5 %, =0 (1.22)

K=o 2O (1.22)

Application of the conditipn of. Eg. 1.23 to Eg. 1.04 yields

&(x) = Fli-g(wy) (1.24)

4.



for which the strain is

HARKICICY) (1.2%)
From Eq. 1.137 we obtain thi local displacement

Applying the :anFiticn of Eq. 1.22 to 1.25 gives

= (1.27)

g e elr = €& (o3) 2
This, evaluated using Eq. 1.25 and 1.24, gives the critical

total Lorentz stress, from which the local displacement is evaluated

using Eq. 1.26. '

Supgrcritical Condition (We use "™ " to designate this condition.)

This condition is defined by

F=fx F (1.31)
(8, 20) |

r
g =0 ' (1.32)

Applying the condition of Eq. 1.32 to 1.04 yields

3‘(\0 = E {l-— q(xﬂ | (1.33
for which the strain is
&) = e[&-(gﬂ | (1.34)

The local d:splacement is, then, From Eq. 1.06

3(*\ g[&(x) E-(d',ﬁ che = ge(x)dx &(ep)x ~(1.35)

LINEAR STRESS~STRAIN RELATIONSHIP

General
For a linear stress-strain relationship, Eq. 1.05 becomes
€(x) = — o"(x\

which, for the stresses given by Eq. 1.04, becomes

el = --lE-:- { g+ 7l -q(xﬂ} {2.01)



and also

\
é?(c$)='zg'cr

- (2.02)
Then *
\ &(xYdw = -[-{a:x -+ F'[x- k(%)]‘} (2.03)
where o E )
k.3
k() 2 gq(xj dx (2.04)
-] .
Application of Eq. 2.02 and 2.03 to Eq. 1.06 yields
-1
3 () = -E-:{-(a;-a;)x -+ F‘[x ~k(xﬂ} (2.05)
and so
\
S, *E [-(o-,-a;) + F(I—k.ﬂ (2.08)
Critical Condition
For this condition

F+F (2.11)
oy

g’ O =0 (2.12)
"~

5= 9,70

(2.13)

Application to Eq. 2.06 gives the critical total lLorentz stress

Fan) d;
= (2.14)
Fe= -
and Eq. 2.05 then gives the local displacement
s<g§ T ———

= [kx-~ ktxﬂ (2.15)



Subcritical Conditjon

F=F<F (2.21)
5 = éFO (2.22)
Application to Eq. 2.06 gives

Tp-or = FI-k) (2.23)

and so, from Eg. 2.03 .
2.:,(st) = %-[k‘,x- k(v.‘ﬂ (2.24)

Comparison with Eq. 2.15 gives
$(x) = %g(x) (2.25)

Note that the shape of the displacement function for the
subcritical condition is identical to that for the critical
condition, and that it is scaled linearly with the total Lorentz
stress F. : -

Supercritical Condition
~ -~ .
F=F2F (2.31)
7, =5.'=O (2.32)
Application to Eq. 2.05 gives .

S0 = -‘g' {-E‘ (1 -k)x+ E‘[x- k(x)]} (2.33)

A little manipulation and comparison with Eq. 2;15 gives

\%(X\ =& (F-BE)1-k)x +-§ $69) (2.34)

Note that the displacement function for the supercritical
condition consists of two additive parts: The first is proportional
to the difference between the total Lorentz stress F and its critical
value F, and proporticnal also to the distance from the end at x=0,
The second is that for the critical condition scaled according to F/F,
“which is the same as that for the subcritical condition.



SOME EXAMPLES

Linear Stress—-Strain Relationship

For a variety of Lorentz—force distribution functions, and for
the critical condition (incipient separation at x=1), wvarious
parameters giving lecal stress and displacement and average
displacement —— a crude indicator of field aberrations —-- are
presented in the following tables. The derivations are fairly
straight—-forward, and are not presented here. Extension from the
critical to the subcritical and supercritical conditions.is easily
performed by using Eq. 2Z.23 and Z2Z.34.

it is easily shown that for any Lorentz—force distribution that
is symmetrical about x = 1/2, the critical prestress is just one-half
the critical total Lorentz stress. Since the stress -- ‘and hence the
strain —— inteqrates the Lorentz force, and the displacement
integrates the strain, it is not surprising, then, that the critical
prestress and the displacement distribution are only weak functions
of the Lorentz force distribution. The average displacement,
involving a still further integration, is an even weaker function.

For any Lorentz—force distribution and for the subcritical
condition, the stress at x=1 falls off linearly with the total
Lorentz stress, and local displacements are independent of the
magnitude of the prestress.

TABLE 1. Lorentz—-Force Function: General Polynomial.

. rn
Lorentz body force function: TR =‘Z ALX
o
.y
where Z—m Ai = {
1=
~ La
Critical Lorentz-force function: oL/F = |-
P/ 'Z‘O .+‘\(s+7.)
F - i+
Local-displacament function: Boo= Ef-z: -*fV|+Z)A“(X-x )
129
E’ Lal
' |
Average—displacement function: ve. > —E-Z (u—n\(w?.) (T.“'T.L"3)
i
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TABLE =. Lorentz-Force Function: Impulse.

b ) O, O<xee
. Lorentz body force integral function: g{%)= 1, aex<!
Critical total Lorentz stress: F=zcp/a
r 5
Displacement at x=a: 8(60=Ef'a(‘-cﬂ
— o &<t (Displacement elsewhere is linear in x.)
] p; 1 F

Average displacement: 6,“,‘_‘-'5%0(\—0)

o %

o =] 1

1O



Noniinear Stress-Strain Relaticonship

Only ane example is presented —-— that for a uniform Lorentz
force distribution function, and for strain gquadratic in stress. The
main point is to show how the variation of the stress at x=1 -~ the
poie end aof the coil —~ varies with total Lorentz stress. For a
linear stress-strain relationship, The stress at x=1 falls of+f
linearly with total torentz stress; it is no surprise that the stress
fall-off is naonlinear for a nonlinear stress-strain relationship.

But it takes a lot of nonlinearity in the stress~strain relationship
to produce much in the stress fall-of+f. '

Figure 3. The effect of modulus ratioc on the
variation of the stress at the pole, o, s wWith
total Lorentz stress, F.



