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ABSTRACT

The SSC model detector depresses a (model) steel reinforced concrete experimental hall
floor by distances ranging from a few cm to less than a em, according to finite element
calculations. Because of the insensitivity of these results to the floor thickness and elastic
moduli of the rock strata beneath the floor, they can be used to estimate the effects of

loading by actual detector systems.



A. Introduction

In terms of sheer mass, the SSC TeV scale particle detectors will dwarf the current
detectors of particles with hundreds of GeV energy: the low-8 hermetic hadron /EM/ muon
detectors contemplated may load the floors of experimental halls with masses of 30,000 to
50,000 tonnes (1 tonne = 103 kg). The amplitude of sinking due to the elastic loading is of
interest as design parameter of the detectors and experimental halls, since the beamn follows
a rather tightly defined path through the lattice and center of detector. The uniquely
heavy detectors are a considerable extrapolation from operating experience of the mighty
CERN Spp$ detectors UA-1 and 2, Fermilab’s CDF, and detectors currently under construction
like SLD for SLC at SLAC and H1 and Zeus for HERA at DESY.

In order to illustrate thé situation, consider the following model problem of a cubical
detector with a mass of 48,000 tonnes. The density of iron is roughly 8 tonnes/m3 so the
volume of the detector would be 6000 m? if it were made from solid iron: the sides of the
cube are 18.2 m. The basal area of such a detector is 330.2 m2, so it exerts a pressure of P =
4.8 x 108 N/(330.2 m?) = 1.45 x 10® Pa (about 14 atmospheres). Suppose the detector rests on
a layer of shale that is L = 1.00 km thick and has a Young’s modulus E = 4.8 GPa; the
compression of the shale layer will be: AL = L (P/E) = (145/4.8) x 107-9, AL = 30.2 cm =
deflection of the detector base. This assumes that the layer of rock below the shale is
essentially rigid, and illustrates the order of magnitude of compression to be expected in the
actual detector halls. Young's modulus for poorly cemented sedimentary rocks is in fact of
the order of 5 GPa, and the depth of sedimentary cover over the crystalline basement in the
continental interior ranges from values of about 1.0 km in Nebraska to 2 or 3 times that in
continental sedimentary basins to around 6.7 km along the Gulf Coast of Texas, with depths
of a few hundred meters near mountains to zero sedimentary cover on their crests (e.g., the
Sierra Nevada). For proposed SSC sites on the Best Qualified List (BQL), the depth of

sedimentary cover over crystalline basement ranges from 0-2 km.



The pressure exerted by the weight of the central calorimeter is given by P1 =F1 /A1 =
(9.81 N/kg) (30.536) (E6) kg/(32 m x 17 m), P = 0.551 MPa (a Pascal = 1 N/m?); the pressure
at the base of the muon toroids is Py = (9.81 N/kg) (8.395) (E6) kg/(2 m x16 m), P3 = 2.57
MPa. Because of the relatively small basal area of the muon toroids, P2 > P1. For
comparison, 1 MPa is about 10 atmosphere,

The values of Young’s modulus E for common rocks are around 5-20 GPa. For reference,

E (concrete) = 20.7 GPa and E (steel) = 200 GPa. Typical reinforcing for concentrated weights
consists of a steel mattress with triangular bracing, which is then filled with concrete as the
floor is poured. We treat such an integrally reinforced structure as having double the
rigidity of ordinary concrete, E (floor) = 40 GPa. Because steel is at once more ductile and
rigid than concrete, the effective Young’s modulus for ordinary reinforced concrete under
compression is usually taken as that of the concrete alone. Qur treatment is therefore an
adjustment of customary practice to account for the load bearing capacity of the steel

reinforcing without specifying the precise geometry of the mattress.

B. Model Detector Characteristics

The Task Force that gave the report on Collision Hall Limitations (SSC-SR-1028)
invented the model detector with the detailed properties given in that report. Here, we
assume that pieces with the masses of the 17-m wide by 32-m long central calorimeter
portion of 30,536 tonnes and the 16-m wide by 2-m long muon toroids each with masses of 8395
tonnes have their loads uniformly distributed to steel plates forming the bases. The detector
is centered in a type A (25 m wide by 80 m long) collision hall, with distances of 4 m from

the sidewalls respectively and 18 m from either end as shown in Fig. 1. The finite element

mesh points are also shown in this figure. Floor loading due to the shielded focusing
triplets and the forward muon toroids is neglected at this stage, as are any inhomogeneities
in loading. Because of the three-dimensional nature of the loading and the effects of the

reinforced concrete floor (two layer system), the nature of the resulting floor deflection due



to elastic loading is difficult to specify in terms of analytic expressions. Therefore the
elastic response of the system to the loading due to detector weight is modeled using the
finite element code ANSYS, in the manner to be described below.

The density of concrete is about the same as that of the sedimentary rocks,
approximately 2.5 tonne/m?. The density of steel is about 7.8 tonne/m3. If the mass of the

concrete in the reinforced floor is the same as that of the steel, M. = Mp,, then

p (reinforced concrete)

i

Mc+ MFe = Mc 1+MFe/Mc
Ve + VFe T+ Vre/ Ve, )

use Mc = MFe
, 2 2
p (reinforced concrete) = pc (m) = 25 (T—j-z-)
p (reinforced concrete) = 3.79 tonnes/m3.

The pressure due to the weight of the slab

P=g-;%\!-=gph= 37.1 kPa ;

the pressure due to the weight of the detectors are of the order of MPa, so body forces may

be (and are) neglected in what follows.
C. ANSYS Finite Element Calculations

1) Outline of the method

For many deformation problems, the geometry, loading, or material properties make it
very difficult (if not impossible) to obtain analytical mathematical solutions. In problems
such as this, finite element analysis can be used to break a complicated problem into a
system of simultaneous algebraic equations. A finite element code, such as ANSYS, uses
three general phases in the analysis procedure: preprocessing, solution, and postprocessing.
The preprocessor is used to define the material properties, geometry, and the loading of the

model. The solution phase consists of generating the element matrix and solving for the



displacements, stresses, etc. The postprocessor is then used for scanning, display and printing

of the data generated by the solution phase.

2) Static Elastic Equations
The general matrix equations used in finite element analysis is

(F} = [K] {d)

where

3}
K] = total, or global, stiffness matrix

]

vector of global nodal forces

{d} = vector of known and unknown nodal displacements
For clarity, throughout the remainder of this discussion {] will refer t0 a vector, and { ] will
refer to a matrix.
In order to simplify the explanation of how the above equation is derived, consider the

example of the beam element in tension as shown in the figure below.

> X

or, in matrix notation



w= v (6

where N7 and N2 are the shape functions

X X
N1=1—t N2='I:'

The strain/displacement relationship is then

d2x ~ dix
&= =1

and the stress/strain relationship is
ox = Egy
Using basic mechanics
T = Aoy
where T is the applied tension and A is the cross-sectional area of the beam.

The stiffness matrix can now be derived as follows

AE '
T = 7~ (dax-d1

Using the sign convention shown in the figure

fix =-T fax =T

and substituting, these equations become

AE
fix =-T~ (d2x~dix)

AE
fax = = (dax-did

or, in matrix form

ad - E[47] &0



To put this equation into the more standard form for the element

) = [kl {d}
This equation is generated for each element in the model. These elemental equations must
then be converted from the nodal (x,y) coordinate system into the global (X,Y) coordinate
system. Once this has been done the equations can be assembled into the global matrix
equation

FI = (K] {d]
which can be solved for the displacements directly, and the stresses and strain indirectly.

The equations for the three-dimensional hexahedral elements used in this study follow

the same general principle as in the derivation above. However, the formulation is
sufficiently complicated to be beyond the scope of the simple explanation and introduction to

the finite element method presented here.

D. Details of the Method

The model used is composed of three layers: rock substrate, reinforced concrete floor and
steel mat, and rebar walls. Since the size of the mesh (i.e., number of elements) did not
affect the results, the biggest mesh size possible was used as determined by the loading
conditions. By making the mesh large, the number of elements is kept to a minimum,
thereby minimizing the amount of computer time required. The mesh of the concrete/mat
layer is shown in Figure 1.

The mesh of the rock substrate is basically the same as that of the concrete/mat layer.
However, there is one exception: due to the depth of the rock substrate it was necessary to
increase the number of elements from one to four in the vertical (Y) direction. The base of
the rock substrate is constrained both vertically and horizontally. These constraints
simulate the extremely rigid crystalline basement under the rock layer.

The sidewall reinforcing steel (rebar) acts like a spring supported in place by the

concrete, itself acting as a partial support for the concrete/mat layer. It was modelled using



spring elements attached at the edge nodes. The spring constant, k, was calculated using one
inch steel rods (E = 200 GPa), spaced with 15 rods per 2 meters. The height of the rebar was
taken to be 50 m, corresponding to the height of the experimental wall. The resulting
equation for k is then

F = kAL

where

=
]

EA/L

_ (200 x 10° Pa) [{15) & (1272 (104 m?)]
- S0 m

30.4 x 10° N/m

i

The top of the springs are fixed both horizontally and vertically.

The model was loaded using pressure applied at the top of the concrete/mat layer. The
pressure were defined by taking the weight of the detector and dividing it by the area
directly underneath the detector. The pressures under the toroids are then Pr= (8.395 x 103
kg) (9.81 m/s2)/(2 x 16 m2) = 2.57 MPa and the pressure under the central detector is
Pj = 30,536 x 10° kg) (9.81 m/s2)/(32 x 17 m2) = 0.55 MPa. These pressures were then applied

uniformly over their respective areas (see Fig. 1).

E. Results

The results of the finite element calculations with the boundary condition corresponding
to spring elements on the floor edges are displayed in Tables 1-3 and plotted in Figs. 3-5
respectively. As shown in Fig. 3, the maximum deflections are insensitive to increasing
thickness of the reinforced concrete slab floor for thickness of more than a meter. This
agrees with results from a test case in which the floor elements were rigidly constrained in

the vertical direction (y = 0 required for all edge elements).



The dependence of the loading on the underlying rock substrate is shown in Figs. 4 and 5.
While the relatively stiff reinforced floor slab deforms relatively little under loading, the
underlying rock carries the load in much the same fashion functionally as if the slab were

absent. With the slab absent

¥max = (g) D(rock) {E.1)

is the simple form of the stress/strain proportionality.

The inverse proportionality of ymax with E is shown in Fig. 4 and proportionality of
ymax With depth of rock is shown in Fig. 5. However, the slope of the graph of Fig. 5, for
example, is not P (center)/D (rock) but a factor of two less; the smaller deflection is due to
the floor slab and sidewall reinforcing taking up part of the loading. This simple model of
an effective slope for the defiection dependence on rock substrate allows us to analyze
different types of loadings. It is certainly an effective means of interpolation between cases.

We have also studied the effect of the size of the experimental hall floor on the amount
of deflection. For the case of zero concrete thickness (support solely from the rock) a
symmetrically placed detector in an 80 m long (Type A) experimental hall results in a
maximum deflection of the floor of 2.799 cm; the corresponding deflection for the model
detector centered in a 50 m long {Type B) experimental hall is 4.326 cm. If the hall size is
restricted to the 17 m x 32 m size of the central portion of the detector without the muon
toroids, the deflection is 4.791 cm, the same as found from Eq.(E.1). Broadly speaking, the
support due to the area not subjected to compressional loading comes from the tension in the
urdoaded slab surface. These considerations provide a limiting case check on the finite
element calculations.

We have also investigated the case of asymmetric detector placement by changing the
sidewall spacing from 4 m on each side to 1 m on one side and 7 m on the other. This might

be a tempting option in terms of detector staging and assembly. When this is done, the line



of maximum deflection shifts from the symmetric longitudinal line below the beam line to
the line along the edge of the hall closest to the detector. The maximum deflection for the
case of 2 m thickness of concrete for the symmetric case is 2.137 cm; the maximum deflection
in the asymmetric case along the edge of the hall is 2.953 cm, giving a slope of 0.86E-3

transverse to the beam line.

E. Conclusions

ANSYS three-dimensional finite element calculations of experimental hall loading have
been performed. They yield results in accord with Hooke's law (E.1) in the one-dimensional
limit. The other major resulits of this study are as follows:

1) The dependence of the floor deflections on properties of the rock substrate can be
represented by:

Ymax = fPD (rock)/E(rock) (F.1)
where 0 <f< 1.

2) The factor f decreases with increasing thickness of concrete, increased support from
the reinforcing steel in the sidewalls, and increasing floor area in the halls.

3} For thick enough underlying sediments, floor deflections are of the order of a few
centimeters for a wide variety of rock types.

4) Once the region of reasonable structural safety margin has been reached, the maximum
deflection is relatively insensitive to increasing depth of concrete floor. As a consequence,
treatment of the underlying rock layer is likely to be a more useful tool in increasing
foundation stability than increasing floor thickness.

5) Placing the detector to one side of the hall or the other causes the detector to tilt by
a small amount, of the order of millimeters per meter.

We do not anticipate that changing the pressure from uniform loading to non-uniform
loading will make much difference in the results, because of the lack of special deformations

associated with the presence of the muon toroids in comparison with the central mass. In



other words, it should be possible to get a reliable estimate of elastic deformations caused
by real detectors, by using the constant pressure approximation, espedially if the detector is
symmetrically placed.

The use of an equivalent Young’s modulus E to represent the nonlinear deformation of the
reinforced steel mattress floor is perhaps the departure from usual practice most open to
criticism. However, the modulus E (reinforced floor) = 2 E (unreinforced concrete) so that is
the compression follows the worst case behavior of unreinforced concrete, the deflections
would still be little affected because the modulus for unreinforced concrete is still much
larger than for most sedimentary rocks. Further studies utilizing multiple layers and

possibly some structural sheil theory would be necessary to answer this point quantitatively.
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Maximum vertical (Y) deflection (cm) vs.
thickness of reinforced concrete floor (m) with
E {rock) = 11.5 GPa and D {rock} = 1 km.

Dconce/ (m) Ymax (cm)
2.80
0.5 2.20
1 2.15
2 2.14
3 2.13

Maximum vertical (Y) deflections (cm) vs.
modulus of rock substrate (GPa) with
thickness of concrete layer = 2 m and

D (rock) = 1 km.
Erock (GPa) Ymax {em)
5.75 4.270
115 2.137
14.0 1.760
20.7 1.119




Table 3

Maximum vertical (Y) deflections (cm) vs.
depth of rock substrate (km) with E (rock) =
11.5 GPa and thickness of concrete layer = 2 m.

Erock (km) Ymax (cm)
0.5 1.079
1.0 2137
1.5 3.200
2.0 4.260
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Fig. 1. Mesh and loading of concrete layer.
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Fig. 2. Sample deformation under load.
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Fig. 3. Maximum vertical (Y) deflection (cm) vs. thickness of reinforced concrete floor (m)

with E (rock) = 11.5 GPa and D (rock) = 1 km.
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Fig. 4. Maximum vertical (Y) deflections (cm) vs. modulus of rock substrate (GPa) with

thickness of concrete layer = 2 m and D {rock) = 1 km.
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Fig. 5. Maximum vertical (Y} deflections (cm) vs. Depth of rock substrate (km) with

E {rock} = 11.5 GPa and thickness of concrete layer = 2 m.
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