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A new method of correcting dynamic nonlinearities due to the multipole
content of a large synchrotron such as the Superconducting Super Collider is
discussed. The method uses lumped multipole elements placed at the center (C)
of the accelerator half-cells as well as elements near the focusing (F) and
defocusing (D) quadrupoles at the ends. In a first approximation, the corrector
strengths follow Simpson’s Rule. Correction of second-order sextupole
nonlinearities may also be obtained with the F, C, and D octupoles. Correction
of nonlinearities by ~ three order of magnitude is obtained, and a solution to a
fundamental problem in large synchrotrons is demonstrated.

A large synchrotron such as the Superconducting Super Collider (SSC)1
requires adequate linearity for beam stability and reliable operation. Linear
motion is required over a working region sufficient to include the beam size and
momentum spread with closed orbit deviations and injection errors. This linear
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aperture is severely limited by the SSC muliipole content, and the nonlinearities
are greatly magnified by the large circumference.

Nonlinearity can be measured by the amplitude and momentum-dependent
tune shifts per turn Av,, Av,. An SSC linear aperture tolerance (SLAT) may
be set by requiring Av,, Av, < +0.005 for orbits with amplitudes A,, A,, up to
0.5 cm in the SSC arcs and with momentum offsets § = 9;,2 < £0.001.! Except
for short utility and interaction regions (IR), the SSC circumference is composed
of ~320 alternating-gradient cells consisting of long dipoles, short focusing (F)
and defocusing (D) quadrupoles, and 'slxoﬂ corrector magnets (see Fig. 1). The
nonlinear magnetic fields in the dipoles dominate the nonlinear motion and they

may be represented by
By +iB, = Bo{1+ Y [ba(s) +ian(s)}(z +iv)"} ,
where B, is the bending field and b,(s) and a,(s) are the normal and skew multi-

pole components. The transverse motion may be described by a Hamiltonian,

H
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where 3.(s) and 3, (s) are the betatron functions? of linear motion. The

I I, By, [ba(8) +ian(s))(z + iy)"t?
) + a;

coordinates z and y of particle motion are represented in action-angle variables

(L) by 2 = /2B 1. cos(¢-) + né,y = /26,1, cos(,); the ofi-momentum orbit
at § determined by the dispersion #(s) is included. The terms A, = /23,1, and
A, = /28,1, are the amplitudes. The tune shifts are obtained by averaging the

phase advance caused by the field perturbation

1 (déry , ., dH
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In first order in the coefficients b, and a, only systematic normal multipoles (E)
contribute; the resulting expressions for the tune shifts as a function of I, I, and

6 due to sextupole (b2), octupole (b3) and decupole (b4) components are

Ave = (b2Bend) + (b1, = 2B, T, + S
+ (3b4BInIcb — 6baBeBynlyb + 2b4B.n°8)
Buy = ~{b2By78) + (65871, — 36388, Te — b8
+ (3b4nL,6 — 6baBefynles - eByn*S) . (2)

The SLAT may be applied to Egs. (1) and (2) to obtain tolerance limits® on
uncorrected |b,|; see Table I.

The SSC dipoles are expected to have significant multipole content, partic-
ularly in the b, with n even, which are allowed in dipole symmetry. Estimates®
of the systematic and rms random multipole strengths as extrapolated from the
similar Tevatron dipoles @ or calculated from persistent current and saturation
effects! have been collected in Table I where they are compared with SLAT val-
ues. Serious deficiencies in bs, bs, and _34 are observed. Initial SSC design included
sets of multipole trim coils within every dipole for correction of by, b3, and by, but
they greatly complicate the dipoles and may be impractical.

The correction is simplified if it is implemented using short correctors
separate from the dipoles. Initial attempts used correctors placed near F and
D qt-.la.ds, where chromatic (momentum-dependent) correction sextupoles are
placed. Because there are only two first-order b; terms, F and D sextupoles can
completely correct them; however, second-order scxtupole‘effects arc important
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(see below). For b3, b4, and higher mulitipoles, there are five or more terms and
they cannot be comnpletely correcled. The F and D correction is quite inadequate
and can reduce the b; and by nonlinearities only by a factor of ~2 (Table II).7+

A great improvement is obtained by adding a corrector to the center (C) of
each half-cell (Fig. 1). An optimization converges very close to a characteristic
solution. For example, a particular corrected b3 tune-shift term from Eq. (2) may

be written as

av, =52 f ba()682(s)ds

+132E20) + 222p3L ) + S’”ﬂ:(L)]} @)

All first-order terms are of similar form. The corrector strengths S, ; are defined
by Spi = Bnili = — f,.,.-B,E,,L, where B, ; and I; are the corrector lengths
and strengtihs, and L is the half-cell length. The Simpson’s Rule® solution is
fF = fo = 1/6and fc = 4/6 per half cell; it corrects all by and b,
nonlinearities by two orders of magnitude. Optimization about that solution
permits another order of magnitude reduction (see Table II).

The F, C, D correction [Eq. (3)] is equivalent to approximating integrals
of powers of betatron functions by a sum over discrete points, and Simpson's
Rule is a third order integration that is very accurate for smoothly varying
functions. Figure 2a shows 3., 8,, and n, over a full cell; they are smoothly
varying over half-cells with a derivative discontinuity at the quadrupoles. All
the terms that appear in b2, b3, and higher-order tune shifts are smoothly
varving on the half-cell level (Figs. 2a and 2b). The F, é, and D correctors
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provide three-point, Simpson’s Rule type cancellation, which is well suited to
the correction of all first-order terins.® The first-order correction is insensitive
to machine perturbations, because it requires only smooth variation on the half-
cell level. Second-order effects are also reduced by first-order correction. The
method is easily extended to include other multipoles (bs, by, etc.), if necessary.
Random multipole effects can be reduced by varying the correctors to follow the
local multipole content.!® The method can be extended to correct quadrupole
multipole content, particularly in the long IR quads.

Superconducting dipoles have a very large b; content, and second-order terms
are important. From perturbation theory,! =13 second-order sextupole tune-shift

terms are of the same form as the first-order octupole terms:
Av, = al, + bl, + c6* and Avy = dI, + bl + eé* . (4)

The coefficients a through e scale as b2 and are positive after first-order correc-

tion. The expression for a in a simplified lattice is

C 2L s+2L

e= 7 i dsB.(s)*/% B,(s) f da'ﬂ,(.s’)af'-’B,(;')
cos[ths(8') — P=(s) — mpz) | cosB[thz(s') — ¢a(s) — mu,)
X {3 sin(mys) + sin(3mp,) } !

where C is the ring circumference, Bz(s) is the normalized sextupole strength,
¥:(s) is the betatron phase, y4, is the cell tune, and Ay, is the full-ring tune
shift. These terms are double integrals with phase factors and a discontinuity at
s = s' and are not closely fitted to Simpson’s Rule iutegr;.tion. The first-order b,
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correction with only F and D elements reduces second-order ters by a factor of
~5. Addition of a C sextupole corrector reduces these terms by another factor of
~5, increasing b, tolerance to an acceptable level, but without the Simpson’s Rule
improvement seen in first-order (Tabie IT).

Second-order b; correction can be greatly improved by using the F, C,
D octupoles. Unlike by? terms, first-order octupole Av terms have opposing
signs [Eq. (2)], and there are only three correctors for five terms. However, the
octupole Hamiltonian has three terms; the Av terms that derive from the same
Hamiltonian ferm have similar dependences (Fig. 2b). The correction strategy is
to use the C octupoles to correct the b and e terms in Eq. (4) and the F and D
octupoles to correct the others; the ratios of F, C, and D strengths per half-cell
are ~ (1 : —=2.7 : 1). The correctors can correct completely either amplitude
or chromatic Av with the remanent terms reduced by > 10x. The optimum
reduction is by a factor of > 30, increasing b, tolerances to > 30 x 10~ 4cm™?
(see Table II). Other nonlinear effects such as orbit distortion remain small,
provided cell resonances are avoided. Because the octupole tune shifis are linear,
there is no interference between their b2 and bs correction roles. The use of
F, C, and D octupoles to correct second-order sextupole nonlinearities adds
an extra operational dimension, conceptually similar to the use of F and D
sextupoles to correct quadrupole chromaticity. Their use may be extended to
control nonlinearities from other elements; for example, all A? tune shifts can be

cancelled to zero, regardless of their sources.



Simple solutions have thus been found for formidable problems of SSC
nonlinearities. First-order nonlinearities due to multipoles are correctable by a
system of F, C, D elements, with initial strengths determined by the generally
valid Simpson’s Rule. Second-order sextupole effects can be cancelled with F, C,
D octupoles. Tolerances on SS5C fields can be increased from the impractical
106 level to 103 em-n. The same corrections can be applied to any synchrotron,
with similar improvements.

I acknowledge valuable assistance from P. Channell, A. Chao, E. Forest,

J. Peterson, P. Limon, A. Dragt, and R. Talman.
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TABLE L. Tolerances and estimated strengths of systematic multipole content in the SSC dipoles. All

multipole strengths are in units of 10=* cm™".- The tolerances are obtained from the SLAT. Estimated

strengths are extrapolated from Tevatron data or calculated from the magnet properties.

Tolerance in Estimated Systemaltic Persistent Saturation
SSC Lattice Random Error Strength Current Multipele  Mulitipole
Multipole (230 m, 90° Cells) (Tevatron) (Tevatron) Strength Strength
b, 0.0097 2.0 0.45 -4.7 1.2
hs 0.017 0.35 -0.14 - -
by 0.031 0.60 -0.33 0.30 -0.05
bs 0.054 0.06 -0.024 - -
bs 0.096 0.08 1.57¢ 0.07 «0.01
by 0.17 0.16 0.009 - -
by 0.29 0.02 -2.1% <0.02 0.02

¢ The higher allowed multipoles (b, bs) were not minimised in the Tevatron design; the SSC
conductor placement should reduce these within tolerances.*




TABLE II. First-Order Correction of b3, by and
Second-Order by Correction, The correction faclor is
the ratio of uncorrected to corrected Aw in the SLAT
aperture. The tolerance is the maximum corrected

b,, permitted under the SLAT.

Correction Condition Correction  Tolerance
Factor (10~%c¢m™")

by (Octupole) Correction

No correction 1.0 0.018

F, D chromatic correction” 19 0.033
{fp = 0.28, fp = 0.70)

F, C, D Simpson’'s Rule 93 1.6
(fFI fCD fu) = (1/6, 4/6l 1/6)

F, C, D correction 370 6.7

{0.165, 0.66, 0.165)

by (Decupole) Correction

No correction 1.0 0.029

F, D chromatic correction” 14 0.04
{fr, = 0.24, fp = 0.93)

F, C, D Simpson’s Rule 31 0.9
(fr, fc, fn) = (1/61.4/61 1/6)

F, C, D correction 800 24

(0.158, 0.663, 0.168)

Second Otder by (Sextupole) Correction

No correction 1.0 1.2

F, D chromatic by correction 5.1 2.7

F, C, D chromatic b3 correction, 24 5.9
equal weights (fc = 0.5)

F, C, D chromatic correction, 23 5.7

Simpson’s Rule {fc = 0.667)
F, D first-order bs correction
{fca = 0). and 120 13
F, C, D octupoles
F, C, D firsi-order bs correction
{fc.2 = 0.5 to 0.67), and 700 32
F, C, D octupoles
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Fig. 1. A symmetrical SSC cell. The element labels are: B - dipoles, F, D -
quadrupoles, S - slots for correctors, C - center corrector slot. The correctors on
opposite sides of the F and D quads may be combined on either side and exact

symmetry is not necessary.
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Fig. 2.a) Betatron functions (8:,8y,7) for 2 full SSC cell. The functions that
appear in the sextupole tune shifts (8,7, 8,7) ace also shown. Note the derivative

discontinuity and the reflection symmetry at the D quadrupole,
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~ Fig. 2.b) Octupole Av functions on a half cell. The 5,2 and §,7? terms are
derived from x* in the Hamiltonian; 23,8, and 8,7* from (-x®y?) and G,2 from

v



