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ABSTRACT

We extend our program of Bayesian analysis of accelerated life tests with the exhibition of a
stable form of the marginal probability density for the objective variable that evolves under
repeated application of Bayes’ theorem. We relate these general concepts within the context of
analysis of accelerated life tests for determination of the probability density for the probable
failure rate A of individual representative test magnets. The concept of a stable form of the
probability density for A containing all the information consistently relevant for its determina-
tion supplements and connotes the previously demonstrated concept of a stable minimal set of
statistics sufficient for its determination. The stable form for the case of the exponential failure
function is the Poisson distribution, and its behavior under the accumulation of augmentary infor-
mation is described quantitatively.



I INTRODUCTION

We extend our program of Bayesian analysis with the exhibition of a stable form of the margi-
nal probability density for the objective variable that evolves under repeated application of
Bayes’ theorem. We relate these general concepts within the context of analysis of accelerated
life tests for determination of the probability density for the probable failure rate A of individual
representative magnets. The concept of a stable probability density for A , which contains all
the probabilistic information that is consistently relevant for A supplements and connotes the
concept of a stable minimal set of statistics sufficient for the determination of the A density.
The latter was demonstrated previously”

Identification of a stable minimal set of statistics sufficient for determination of the probabil-
ity density for A makes possible the most efficient extraction of relevant resuits from (ALT)
experiments and dictates the most efficient parameterization of the probability densities. Both
the stable minimal set of sufficient statistics and the stable form of the probability densities
reflect the particular model employed for expressing the fundamental failure process. In our case,
as in our previous treatments, demonstrations are simplest with the exponential failure-function
model with constant failure rate A . The concepts are much more general; for example, exten-
sions to two-parameter Weibull-type models are immediate.

The formulation that focuses on the probability densities which was adopted for the demons-
tration of ref. 1. is also convenient for our present purposes in preference to the formulation that
focuses on the probabilities themselves which was used in our earlier treatments®™* Both formu-
lations reflect the failure-function model employed and both will accommodate the maximum-
information-entropy refinements exhibited in ref. 3.

The density-emphasizing formulation introduces the readily cbtained and explicitly model
dependent likelihood function L , which, although not universally a strict conditional probability
density for the objective variable ). , incorporates the maximal probabilistic information relevant
to the determination of the density for A on evidence of the experimental outcome used to aug-
ment the prior probabilistic information on A . ‘The details of the augmentation, and therefore
usually of the density for A posterior to Bayesian augmentation are revealed by the likelihood
function and the maximum likelihood estimator, MLE. The MLE is the most likely value of
where the likelihood function L has its maximum, #L/A = 0 . The likelihood function L
and/or MLE may not exist for some complexly parameterized models, or ill-posed sampling proto-
cols, or some outcomes of otherwise satisfactory models and experimental protocois. Furthermore,
there are approximations endemic to this formulation; but they in no way detract from ita con-
venience for demonstrations, and quite generally become more negligible as ALT sample size
and/or total time on test become large. In some of our applications with protocols involving
small samples these approximations begin to compromise the numerical accuracy of this formula-
tion. Never-the-less, its convenience for our demonstration still recommends it %

Our demonstration of the evolution of a stable form of the probability density for the objec-
tive variable A starts from an assumed microcanonical form of the prior probability density for
and augments it with information obtained from experiment by employment of Bayes’ theorem.
The resulting posterior density for A is of the form of a Poisson distribution parameterized with
the components of the minimal set of statistics sufficient for determination of the A -density with
this model as obtained from the experiment. This minimal set of statistics sufficient for determi-
nation of the probability density with this model was previously demonstrated by the same



method to be of stable form® Further augmentation by means of Bayes’ theorem to incorporate
further experimental (or other) information using the previously-determined Poisson distribution
as the new prior density results in a posterior density for A that is again of the form of a Pois-
son distribution; again parameterized with the minimal set of statistics sufficient for A with this
model. The form of the probability density for the objective variable A has evolved from the
initial microcanonical form to the stable form for this model, the Poisson distribution. The form
of the minimal set of statistics sufficient for determination of the probability density for A in
this model is also stable. When the prior probability density is of the form of the Poisson distri-
bution augmentation with Bayes’ theorem results in a posterior density that is also of the stable
form of the Poisson distribution and it is parameterized by the stable minimal set of statistics
sufficient for determination of the A -density in this model comprised of components which are
each the cummulative statistic in which the statistic parameterizing the prior density has been
directly augmented with the corresponding statistic from the new experiment. Further Bayesian
augmentation in this formulation, once it has been expressed in terms of these stable forms,
merely increments the necessary parameters® '



I DEMONSTRATION

1ikelihood Function In Terms of Sufficient Statistic

In the context of present interest we consider the outcome of an ALT experiment in which n
representative magnets fail at times y; during a test of a total sample of N magnets spanning a
time yo . We denote this experimental outcome by (N,y, ,...¥n Yo ) and the probability of this
outcome predicated on the failure rate A by P(N,y, ,-..y4 .¥g | A) . The likelihood function for
the objective variable A is then

(1) L{ANY ,..¥n Yo ) =PNy, ,vn Yo [A) -

Since a sufficient statistic for determination of the probability density for A within the context
of the present exponential failure function mode! has been shown to be comprised of the total
time on test T and the number of failures n , the individual failure times y; are superfluous
informational details for this limited purpose. e can thus write the likelihood function for
on evidence of the experimental outcome (N,y, ,..7p ,¥p )} as

(2) L(J‘v iN:Trn) = L(A [N;Y] n---Yn ;Yo) 2

where T is understood to be the total time on test for this outcome,
(3) T(N:Y} J"‘Yn JYQ )

=Ny, +{N-1)p, -v )+ (N-2(ysg - v2) +..(N-0)(%p - ¥n)

n

We have argued from our previously established general concepts to arrive at this functional
form. We shall see that it is the correet result of a simple brute force approach.

Explicit Model Dependence

With the exponential failure function model the probability of the failure of a single represen-
tative magnet in the time interval [0,y] conditional on its failure rate being A is given by the
failure function

(#) Flyfa) = 1- &V

The corresponding marginal probability density for failure is

() fiA) = A &V

With this model the joint probability density of the ALT outcome (N,yl v ¥p Yo ) IS

6) PNy, ,-yp¥plA) = ﬁ[ai"f e o)
j=

- " e—AT(NJYN"‘YﬂJVO

‘o)

where C(N,n) is a A -independent, protocol-dependent combinatoric normalization lactor that



will proove to be totally innocuous in our Bayesian analysis. Identifying this expression with the
likelihood function as in Eq.(1) confirms our assertion that L is indeed of the form predicted on
general principal; as shown in Egs.(2,3). It is dependent only on T and n, and not on the indivi-
dual y; 's . The explicit model dependence is manifest here as well as the dependence on the
stable minimal set of statistics sufficient for determining the probability for A in this model.
This is further apparent when the above expression is incorporated as the likelihood function in
Bayes’ theorem.

Bayes’ Theorem

The essence of our analysis is Bayes' theorem in the form

(7)  P(AleNY, »d¥n Yo ) = PNy, ..¥n Y IAP(Ale)
I.d‘a. ” »

in which

(8 P{Al|e) = the prior marginal probability density for A conditional on all
prior relevant information represented by ¢ , which might be from
prior testing or from other, perhaps subjective, information or
lack of information ;

and
(9) P(AICINJY| 1-¥p Yo ) == P( ;\!c,N,T,n)

= the Bayesian posterior probability density for A containing all
knowable probabilistic information about A on evidence of all
prior relevant information contained in P( A |¢) augmented through
Bayes’ theorem with the relevant joint statistic (n,T(N,y; ,...¥p % )}
obtained from the outcome (N,y; ,...yn ,¥p ) of the ALT experiment.

All A -independent factors cancel out of Bayes’ theorem in the form of Eq.(7) , which itself is of
the form of a normalization condition; confirming the innocuous nature of these factors mentioned
above.

Maximum Likelihood Estimator (MLE) For The Objective Variable

The maximum likelihood estimator for the objective variable A for this experimental out-
come with this model is given by

(1) 0= 1 2L =op -T ,
L 2A A
or

(11) MLE = n/T = n/T(N)y, ,.Yp Yo )



Microcanonical Prior Distribution For A -~Gives Poisson Posterior Distribution

As described for our earlier analyses, if our prior knowledge of the expected true value of A is
very vague we might choose to start with the microcanonical prior probability density :

(12) P(Ale) = 1/(/\0 -Ac) s Ac< AL Ap
=0 , otherwise.

The posterior density, which includes information from the prior P{ A ¢} augmented by the
experimental information in L(N,y, ,...¥p .¥p ), is computed with Bayes’ theorem as:

(13) P(’\lchJl r¥n »¥p ) bl L().iN,Y, r=¥n 1Yo )/(A-g_)‘c)

The normalization factor (A,—A,) cancels out of this expression of Bayes’ theorem, so the micro-
canonical interval could become very large. If this interval becomes large so that A << n/T
< < A, then the denominator becomes after the cancellation

x o -n=1
19 [ aa= 1" n
(7]

This condition usually connotes Iarge sample size N . All relevant information about A obtained
from prior experiments and contained in the prior probability density for A , P(Alc} , plus all
information additional on evidence of the ALT outcome (N,y) ,...¥n ,¥o ) is contained in the poste-
rior density P{A|c,N,y, ,...¥n.¥0 ) - The likelihood function L is of course specific to the failure
function model as well as the experimental outcome, but because of its sharp maximum under
condition A, < < n/T < <Ay, the posterior density is much more sharply concentrated than the
microcanonical prior density, and is completely specified in this case by the joint statistic
(0, T(N¥, ,...¥n ,¥o }) of the likelihood function, since no such information was contributed from
the prior density in this case. This is the result hoped for in any contemplated experiment, i.e.
information on the subjective variable has been considerably increased. We will elaborate further
on this later.

If we compute the maximizer of the posterior density P(A|e,N,y, ,...¥n .¥p ) We obtain with

(5) 0=12P =g -T ,
P 22 A

the same as the MLE for the likelihood function alone with no contribution from this "white-
noise”, A -independent microcanonical prior.

The maximum information entropy variationally minimizes the unsubstantiated information
contained in a probability distribution subject to the data relavent to its determination expressed
in the form of expectations with respect to this probability distribution. The maximum likelihood
estimator is a wholely different thing. It does not contribute to the variational determination of a
probability distribution. Rather, in our usage the MLE merely tells where the experimental out-
come, through its likelihood function, is trying to shift the concentration of probability in the
augmented posterior distribution. Indeed, in a given problem the prior may be determined by the
maximum information entropy variaztional method and also the maximum likelihood estimator be
usefu] in assessing the effect of the augmentation. In fact, the augmented posterior density in our



present treatment behaves very similarly to the maximum entropy prior of the previous treat-
ment; giving almost the same empirical rules for interpolation.

Poisson Prior Distribution For A ---Gives Poisson Posterior Distribution, Establishing Stability
Of This Form

It follows from the above analysis that as soon as anything is known relevant to the objective
variable of interest that information can be included in its probability density in the stable form
of sufficient statistics for this variable (in the particular analysing model) parameterizing the
stable form of its probability density. In our illustrative case employing the exponential failure
function model for analysing ALT results for the failure rate A the stable form for its probabil-
ity density is the Poisson distribution. We have shown that this form evolves immediately from
the microcanonical density representing minimal prior information relevant to our objective vari-
able A by a single Bayesian augmentation with experimental information. The posterior proba-
bility density resulting from augmenting the minimal information in the microcanonical prior with
new experimental information in the stable form of the sufficient statistics for A in this model (n,
,Tc ) was shown to be the Poisson distribution parameterized by these statistics. It follows
immediately that if this density is then taken as the prior density for the next Bayesian augmen-
tation with new experimental information in the form of the statistics (n , T ) then the density
for A posterior to this augmentation is of the stable form of the Poisson distribution parameter-
ized by the combined statistics (n + n, , T + T¢ ).

To see this explicitly consider the implementation of this augmentation by Bayes’ theorem.
The prior density for A is the normalized Poisson distribution

(16) P( A‘|c;‘Ns'-.[|¢: Mg ) = P(AINDTC lnC)

! -
= Tgc+ A A-I;:/ ne! ,

and the likelihood function for A from the new experimental information is

=AT
(17) L{A|NT,) = A" ¢ ¢

N,n)
The Bayesian augmentation gives for the updated posterior density for A is

(18)  P(A|N,T, ,re;N,T,n) = L{AIN,T,n)P(AIN,T. ,;ne) C(N,n)
@
A - - -
0

The normalizing denominator integral (after cancelling the C ’s) is
19) (17 /e j::m AT SATAN AT
het!
= (Te /omeliln+ne} /(T+Te)]
so the posterior density (18) is just
(20)  P(a[N,Te ,n¢;:N,T,n) = P{AIN,T, + T,nc+ n)

- T
- (T+Tc)n+%+l)|."+n° eA(T+‘=1/(n+ne)! ’



which is the normalized Poisson distribution with the augmented statistics [(n + ng ), (T + T )]
in place of the prior statistics {ng, Te ). This demonstrates the stability of the Poisson density
form for this model, as described above. The normalized density for A for this model at any

stage of testing is of this form parameterized with n = the sum of all testing failures , and T =
the sum of all time on test.



oI NARROWING OF DISTRIBUTION WITH INCREASING INFORMATION

A Measure Of The Informational Narrowing

The probability distribution for A is very broad and flat when very little information
relevant to it is known, as described above with the microcanonical distribution. Conversely,
when a large amount of information relevant to its probabilistic description is known its probabil-
ity density reflects this with a concentrated narrow peak. In the limit of exact knowledge the
density would approach a delta function. It is useful for some purposes io be able to quantify this
reflection in the probability density of the amount of information it contains relevant to the
objective variable—always within the context of the model chosen for its analysis. A useful figure
of merit for this purpose is the ratio of the standard deviation of the distribution to its mean,
sometimes called the coeflicient of variation of the distribution.

The Mean Of The Poisson Distribution

The mean of our Poisson distribution is
an

(21) { My (™" a) A da
A= =(+1)/T,
C AR @™ a) A

which is a close approximation to 1/ ¥ , in which ¥ is the mean value of the n times to failure y;
in a test to some fixed time y, of our sample. We again call attention to the fact that only n and
T are involved here, and not the more detailed information contained the ¥; 's nor the sample
size N.

The Standard Deviation Of The Poisson Distribution

The standard deviation about the mean of our Poisson distribution is the square root of the
quantity

() Io SMANT™Y na -X)%dA 2
o = = (n+1)/ T ,
I,, '“;\"(Tnﬂ/ ) da

so the standard deviation about the mean is

(23) 6 = (n+1)%/T

The Coefficient Of Variation Of The Poisson Distribution
The coefficient of variation of our Poisson distribution for is the ratio
- ! ,
@) 6/X = [+0YT/[a+1)/T =1/ (a+ 12,

which does not even depend on T; let alone N and the Y; 's . This narrowing at a rate that goes



like one over the square of the tatal number of failures observed in all testing to date is not
- surprising—once it is shown. Again, this reflects the fact that the sufficient statistic for determin-
ing the density for A is just (n,T) so the only statistical parameter to scale the A -density is
1/T, and both the mean X and the standard deviation ¢ of the distribution for A must be of
the form of the quantity 1/T times a function of n only. The normalization condition on the den-
sity implies that if its width is say 2(2/3)c" then its effective height must be something like one
over this quantity .

To meet the severe requirements of the availability specifications for the SSC magnets we
must have the least possible number of failures over the largest affordable total time on test T,
which in this case is about proportional to the test sample size N. The formulation described here
applies to the case in whichn =10.

IV CONCLUSION

We have demonstrated the existence of a stable form of the probabililty density for the objec-
tive variable, the individual-magnet failure rate, of our Bayesian analysis of accelerated life tests.
This concept, in supplement with that of the minimal stable set of statistics sufficient for the
determination of the probability density for the objective variable, are very important indicators
for heuristic estimations of the value of testing decisions that are useful or even valid for cases in
which the analyzing model is more complex than those considered here. They will be extremely
important guiding concepts in our magnet testing program.
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STABLE DENSITY FORM FOR BAYESIAN ANALYSIS OF ACCELERATED LIFE
J. ELY SHRAUMER

1) On page 3 the last line of Egoation (3) should read:

n

= _Z’y-j +(N"_n) YO. -
J‘ - .

2) On page 8 the third line from the bottom should read: -

eeessssdistribution for .)k " is the ratio
3) On page 9 the top line should read:

like one over the square root of the number.....
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