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ABSTRACT

We describe an algorithm for correcting the orbit of the SSC using closed
bumps; an implementation of the algorithm using a highly graphical user-interface,
designed with portability in mind; results from using the algorithm to correct lat-
tices with simulated errors; and methods by which the algorithm can also be used

to find erroneous monitors and correctors.



Introduction

An early step in storing useful beam in the SSC is achieving a first-turn orbit.
This is a non-trivial problem since the misalignments of the arc quadrupoles alone
are such that the rms orbit deviation, without correction, would be 16 mm in the
arcs, while the beam pipe 1s 16.5 mm in radius. The procedure is to first correct
the trajectory so that the beam goes around the entire circumference of the ring,
then to establish circulating beam, and finally to fine-tune the orbit with a global
orbit correction algorithm. The task is complicated by the resolution limits of
the beam position monitors (BPMs) and by displacement errors in the monitor

positions.

We address four aspects of a program we have developed for simulating orbit
correction: the algorithm used, the graphical interface to the program, the results
of the simulation, and further applications of the algorithm.

Orbit correction is essentially a minimization problem, in which one com-
putes the set of corrector strengths which will minimize the deviation of the
actual trajectory from the desired trajectory, given other constraints. The algo-
rithm described below breaks down the problem of global orbit correction into a
series of overlapping local orbit correction problems. Each local problem involves
minimizing a function of only one independent variable, which can be done in

straight-forward fashion using a simplex method.

Software for exploring and manipulating models, such as studying the behav-
ior of the orbit correction algorithm and its simulated effects on the SSC, benefits
greatly from a highly graphical user-interface. M With a visual way to interact
with the model the user can much more readily build intuition and understand
how the model operates. Bearing this in mind, we created such a user-interface
to the orbit correction algorithm, and used this as an opportunity to explore
ways to manageably yet effectively represent a model as complex as the SSC.
Furthermore, since graphical interfaces take a lot of time to write from scratéh,

we took pains to design the user-interface software so that it is reusable, both
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by being modular to the extent that many components are generic and can thus
be used in other interfaces, and by adhering to emerging standards so that the

software can be readily moved to other hardware.

There are several motivations for implementing the orbit correction algo-
rithm: to determine design requirements for the SSC’s dipole correctors, to help
with the design of corrector configurations for the interaction regions, to pro-
vide machines with corrected orbits for aperture studies, and to provide a more
realistic machine model for studies of the correction of other errors. 18] e
eventual goal is to realistically simulate commissioning and operation of the SSC
with all known errors. We found that the algorithm is able to correct orbits

L

in the presence of expected machine errors 140 a degree satisfactory for fur-
ther, higher-order correction, and below we summarize the corresponding design

requirements.

The final issue we discuss is a method of using the orbit correction algorithm
to detect faulty correctors and monitors. The discussion here is theoretical; the

method has not yet been implemented in software and simulated.

Algorithm

We use an orbit-correction algorithm which is based on closed bumps. Qi
Bumps are made using three correctors as shown in Fig. 1. Each bump is pa-
rameterized by a, its height at the central corrector. To correct a region of the

accelerator one finds the set of overlapping bump strengths which minimizes the
difference between the actual orbit and the desired orbit, including constraints

such as physical aperture size and maximum corrector strengths.
In general, the effect on the beam at a point s downstream of a kick Az} at
i is given by
Az(s) =+/Bifs(sin Ad)Ax}

(1)
Ax'(s) =+/Bs/Bi(cos Ad — asin Ad)Az]



where

Ad = ¢(s) — (i)

A three corrector bump is closed, that is, the effects of the bump are wholly
localized to the area between the first and third correctors, if
sin A¢
Z vV ,B;AQL': =0
ic13 cos A¢
for s outside of the bump. The solution to this vector-equation, using the law of
sines, is
_._.\/B_—‘ A
sin(¢; — dr)
where ¢, 7, k are (1, 2, 3), (2, 3, 1), or (3, 1, 2).

z; = constant (2)

We now can use (1) and (2) to express the corrector strengths in terms of a,
giving

A L — 2
1 /B1Pasin(ég — 61)

a Sin(‘fﬁl - ¢3) (3)
B2 sin(¢p3 — P2) sin(pz — ¢1)

!
A-’E‘z =

a
V/B2Ps sin(d3 — ¢2)

Since (1) gives the additional displacement for a monitor inside a bump due to

I
Al‘-3 =

an additional kick at one of the correctors, and (3) expresses the kicks in terms
of a, by combining them we can introduce a penalty function, with a as the sole
independent variable, which quantifies how close the beam trajectory within a

bump is to the ideal trajectory:

Pla)= Y wilzs—z*) + Y woPu(al) G

=BPM c=Corr.

where wj is a weight associated with each monitor, w, a weight associated with
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each corrector, z is the present monitor reading plus the change in position due
to the bump, z,* is the desired reading at the monitor, and P, is a function which

penalizes excessive corrector settings.

Since P(a) is a function of only one independent variable, it is easily mini-
mized using a one-dimensional simplex algorithm. ! With the simplex algorithm
comes the strong advantage that P(a) need not have a restricted form such as
being quadratic, or even being particularly well-behaved (for example, P(a) can

be discontinuous). In particular, the penalty function for corrector strength can

be

§ max

c

0, otherwise.

for some large constant k. This function is quite cheap to compute, yet will

prevent correctors from being set beyond their maximum strengths.

The region of the accelerator to be corrected is divided into overlapping
closed bumps, and then the penalty function for each bump is minimized in turn,
incorporating the effects of overlapping bumps in the z; of (4). This iteration

over the set of bumps is repeated until the change in the global penalty function,

G(ar,.an) = Y Pla;)

i=1ln
1s negligible. At this point, since we minimize the P(a;) separately, we have

0G(a;)

=0
da;

for all ¢, so we have arrived at a local minimum of G.

The flexibility of this algorithm is appealing—it can correct an arbitrary
region of the accelerator, both first-turn and closed orbit; since the solution
generated is composed entirely of closed bumps, its effects are confined to the

particular region of interest; the goal orbit can be any arbitrary trajectory; the
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penalty function can have non-quadratic forms, incorporating effects such as
maximum corrector strength and monitor readings; both monitors and correctors
can be weighted to emphasize or remove particular elements; it is stable in regions
which have no BPM’s; and the algorithm is straightforward to implement in

software.

Graphics Interface

We implemented a highly graphical user-interface for the orbit correction
algorithm, both to facilitate use of the algorithm and to explore ways of effectively
displaying information about a machine as large as the SSC, which contains

thousands of magnets.

The model we adopted was that of a bird’s eye view, in which a top-view of
the entire ring is shown in one window, and a selected, zoomed-in region of the
ring is shown in greater detail in another window (Fig. 2). Navigation (zooming
in or out, shifting the region of interest) can be done in either window, with both
windows updating to show the effects. The zoomed-in view shows the horizontal
and vertical beam positions at each monitor, including, optionally, the positions
predicted by the orbit correction algorithm. Along the bottom appear blips
indicating the position of individual correctors and monitors. These are selected

using a mouse to produce information on a particular element.

The basic operation during establishment of the first turn is to zoom in on
the region to be corrected, correct the orbit, reinject, and observe the resulting
progress. After the first.turn is established, the program can find and correct
the closed orbit. Archives of any stage of the orbit correction process, and of
statistics summarizing the distribution of corrector strengths that were necessary
to correct the orbit, are readily stored. Although this level of functionality is not
overwhelming, a key point is that further functionality (e.g., turning off bad

monitors or correctors or diagnosing faults as discussed below) is easily added,



due to the modular design. The difficult work—the basic design of the graphics—

is in place.

In implementing the orbit correction algorithm and its graphics interface, we
followed the tenets of sound, portable program design. Bl The algorithm itself
is written in standard ForTran-77, with the exception of include statements.
Although the lattice information and machine functions are currently provided
by Teapot,[g] the implementation of the algorithm is wholly independent of the
modeling program — it has no knowledge of any Teapot common blocks, and is

isolated from the format of Teapot machine files.

The graphical interface is written using the industry-standard X Window
System,[m} which runs on a wide variety of computers (DEC, Apollo, Sun, Mass-
comp, Apple, IBM PC, etc.; we used Sun workstations). We introduced a further
level of graphics-independence by isolating the X-specific code in a package of
library routines. The orbit correction user-interface is written solely in terms
of these routines, and thus is insulated from changes in the underlying window

system.

The only coupling between the graphics and the orbit correction algorithm
is a set of interface routines which the graphics code calls to gather information
to be displayed (such as element types, positions, and strengths) and to run the
orbit correction algorithm. This design keeps the algorithm fully separate from
the particular graphics interface used to interact with and animate it, and allows

either to be changed without affecting the other.



Simulation Results

The algorithm was used to correct the SSC 90° injection-optics lattice, which
consists of two arcs and two clusters of four straight sections each. Five random
number seeds were used to generate different sets of field strength and positional
errors, with standard deviations as shown in Table 1. The distribution used was a
Gaussian truncated at four standard deviations. The monitors in the simulation
had a resolution o of 100 microns, with errors in the readings not exceeding 100.

The beam was injected on-axis and with no energy errors.

Dipole errors oal 5.9
abl 8.5
oal T2
obl .72
oa2 .64
ob2 .40

of |.6 mrad

cr,y| 1 mm

Quadrupole errors | o8 |.5 mrad

or,yl .5 mm

BPM misalignments |oz,y{ .1 mm

Table 1. Errors. The multipole errors are in units of parts per 10 —#

at 1 cm of the dipole field.

The performance of the algorithm has been extensively studied in the arcs of
the SSC, where the corrector and monitor configuration has already been estab-
lished. The configuration in the straight sections needs further study. In the arcs,
there is a biplanar monitor positioned 0.1 meters downstream of each quadrupole,

and either a horizontal or a vertical corrector (adjacent to horizontal or verti-



cal focusing quadrupoles, respectively) 3.285 meters downstream of the monitor.
Each monitor is aligned with its quadrupole, so the quadrupole misalignments

given in Table 1 must be added to the monitor misalignments.

Without any correction, the injected beam was always quickly lost in each
of the five versions of the lattice studied. The correction procedure was to steer
the beam completely around the ring by progressively correcting the trajectory.
This took on the average 3 or 4 applications of the algorithm for each arc and
5 for each cluster of four straight sections. Then the closed orbit was found by
tracking. After global correction, the resultant closed orbit was found again, and
these two steps repeated until the rms orbit error in each plane was less than .4

mm. This never required more than two subsequent iterations.

Seed | zpj yp| zB| yB
1 361].371.281.29

.351.36(.301.28

.351.331.29| .30

37].39].291.32

Ot | W | W | N

37)].36(.28 .27

Table 2: RMS orbit deviations in mim.
zp is with respect to the design orbit, while

z g is with respect to the center of the BPM.

Table 2 shows the rms of the monitor readings in each plane of the final
closed, corrected orbit. Two values are given for each plane, one with respect to
the design orbit and one with respect to the center of the monitors. This latter
reading is what the algorithm endeavors to minimize, since it has no knowledge
of monitor errors. The values in the table include the monitor readings in the

straight sections, which are not substantially different from those in the arcs.
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Table 3 summarizes the rms and maximum corrector strengths needed in the
arcs for the final corrected orbit. Slightly higher values were needed in the course
of correcting the orbit. For the five seeds the greatest corrector strength ever
needed was 26.4 prad in the X plane and 26.2 prad in the Y plane. The design

maximum corrector strength is 60 urad at 20 TeV.

Seed | Xtms | Yims | Xmax Yinax
1 845 {8.53| 20.6 | 19.9
8.11 |8.291 19.1 | 18.8

7.68 | 8.06 | 20.0 | 18.1

2
3
4 | 797 (8.49]| 19.3 |19.2
5 850 (8.16] 194 |21.6

Table 3: Corrector strengths needed for final, corrected orbit, in prad.

Peggs and Chao (0 have calculated the rms orbit deviations and corrector
strengths for a 60° SSC lattice, for the linear machine with no coupling. A
similar calculation for the 90° lattice with the errors used for this study yields
an expected rms orbit deviation of 0.24 mm in both planes, with respect to the
center of the beam position monitors, and expected rms horizontal and vertical
corrector strengths of 7.6urad. Both predictions are in good agreement with the

simulation results.

When using the algorithm to steer the beam through the first turn we discov-
ered an aspect of its behavior which requires compensation. Since the algorithm
uses 2 set of closed bumps, it will set the correctors in the final bump to strengths
such that beyond the end of the bump the beam trajectory remains unchanged.
During the first turn one corrects the trajectory all the way up to the point
where it is lost, so the trajectory beyond the final bump is always very large.
Consequently, the algorithm often sets the final corrector to a very high value in

an attempt to preserve the closed nature of the bumps. The result was a well-
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corrected trajectory up to the end of the final bump, followed by the original
large trajectory, which was immediately lost. We solved this problem by simply
not setting the final corrector when doing first turn correction. Sometimes the
penultimate corrector will also be set to an excessive value. In this case, the
beam will still progress forward, but not as far as it would if that corrector were
off. Currently we ignore this deficiency as its only effect is to slightly decrease

the rate at which the beam is successfully steered around the ring.

Orbit Correction as an Aid in Fault-Diagnosis

The orbit correction algorithm described above can also be used to detect
faulty correctors and monitors. This is done by comparing the measured effect

of a set of corrector changes on the orbit with the predicted effect.

One detects faulty correctors by first measuring the orbit and computing the
original corrector strength, Az!°"% needed to correct the orbit, where i runs
over the set of correctors within the region of interest. These changes are then
applied to the correctors and the resultant orbit measured. The orbit correction
algorithm is used again to compute the Az["*** which are now needed to correct

the orbit. One then interprets the ratio between each new and original corrector

change as follows:

0, the corrector is OK;
Az:_new

——— = ¢ 1, the corrector is disconnected;
Ax'orig
i

2, the corrector’s polarity is reversed.

One also considers the mean of the ratios. If it is not near zero then there is a

calibration error in setting the corrector strengths.

After the faulty correctors have been properly taken into account, one can
proceed to detecting faulty monitors. The first step is to compute the Az jP’ediC‘,
the predicted change in monitor readings in the region of interest, due to a set

Az} of changes in corrector strengths. The correction is then applied and
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the new orbit measured, yielding Ar;*°*#4! the actual change in each monitor
reading. The ratio between the actual change and the predicted change can be

interpreted as follows:

(1, the monitor is OK

0,  the monitor is disconnected
A..":j“t““’

A predit g (unless both the predicted and actual change
Tj

were quite small);

\ —1, the monitor’s polarity is reversed.

If the mean of the ratios is not near one, it again indicates that there is a cali-

bration error.

Note that because this method operates locally, it can be used for both first
turn and closed orbit trajectories; also, there are similar techniques for finding
sources of closed orbit errors or dispersion errors using localized convolution

[12]

techniques.

Further Work

The orbit correction program is not a complete or even especially thorough
treatment of the possibilities. In particular, it would benefit from: simulation of
injection errors; the ability to deactivate or alter the weighting of faulty or suspect
monitors and correctors; the ability to move and insert monitors and correctors
for interactive exploration of optimal layouts (particularly useful for studying
correction of the IR’s); manual adjustment of correctors; additional display ca-
pabilities such as phase information and graphical display of corrector strengths:

and an implementation of the fault-diagnosis algorithm described above.
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1. Structure of a closed bump. The triangles indicate correctors, the thin

rectangles are monitors.

Orbit Correction
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monitar bpm: X reading = 9,449 mm,. Y reading = 0,166 mm

Horizontal trajectory RMS = 2 87
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S.4d

=
Zoom horizontal corrector RMS = $.17 urad

1 mm
9,52, average = -0,.216. maximum = 84,6 urad

Vertical trajectory RMS = 0,99 mm

2oom vertical trajectory RMS = 1.91 mm

Vertlical corrector strength RMS = 10,3, average = -0.572, maximum = 124 urad
Zoom vertical corrector RMS = 4.7 urad

2. Graphical interface to the orbit correction algorithm. The bird’s-eye view
showing the entire ring is on the right; the window on the left shows the

area currently zoomed-in on.




