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1. Introduction

The strength requirements are estimated for a two-lump (Neuffer!) corrector scheme
capable of correcting the systematic and the random normal sextupole, octupole, and decapole
{bz, b3, and by) errors in the SSC dipole magnets and also for correcting the natural

chromaticity. (The correction of the a1 and by {(quadrupole) errors are not included in this

discussion. None of the other higher multipoles are expected to require correction.)

2. The Two-Lump Corrector Scheme
The two-lump corrector scheme uses one corrector (CQF or Cop) in the spool next to each arc

quadrupole and one (Cp) at or near the midpoint of each half cell.
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Fig. 1. The scheme with two lumped correctors per half cell.



3. Corrector Strengths
3a. Systematic. The correctors must compensate for the multipole errors due to persistent
superconducting currents, for geometric errors in the coil construction, and for saturation
effects. The largest absolute values of the required strengths all occur at 20 TeV. The
required correction is given by the dipole specifications listed in SSC-N-183:
b2 = 1.0 unit

b3 = 0.1 unit
bg = 0.2 unit

(Contingencies for dipoles not meeting these specifications will be considered in a later
section.)

Using the “Simpson’s Rule” ratio of 2:4 for the quadrupole to mid-cell corrector strengths,
By = 6.6 Tesla, 6 dipoles per half cell, and the dipole length Ly of 16.54 m, we find the

following corrector strengths at 1 cm for the systematic multipoles:

(CL)Qr = (CL)QD =2by By Lo
=2 X 1x104%x66Tx1654 m =.0218 T-m, (n=2)
=2x0.1x10% x6.6 T x 16.54 m = .00218 T-m, (n=3)

=2x02x10% x6.6 T x 16.54 m = .00437 T-m, {n=4)

(Cl)m =4bp By Lo 0437 T-m, (n=2)

00437 T-m, (n=3)

00873 T-m, (n=4)

3b. Random. The correctors are used to compensate the variations in the multipole
errors in the dipole magnets only if a binning arrangement is employed. For the specified
random errors (SSC-N-183) the present view is that only the random normal sextupole (b}

requires correction:



RMS Variation Specifications

n an bn

2 0.6 2.0 units
3 0.7 0.3

4 0.2 0.7

5 0.2 0.1

6 0.1 0.2

7 0.2 0.2

8 0.1 0.1

The algorithm for determining corrector strengths needed to correct a known distribution of

random errors (55C-N-383) is conceptually applied to a three-lump system, as indicated below:

Fig. 2. The “three-lumped-correctors-per-half-cell” correction scheme. B =bend, Q
= quad, Cpf = mid-cell corrector, C1 and C = correctors before and after each
quad.



Then the two correctors at each quadrupole (Ccy and Cc) are combined into one corrector (Qcp
or Qcp) located in the spool on the right side of each quadrupole, thus transforming the three-
lump system into a two-lump. Note: that the strength of Cc is based on the errors in the six
dipoles of one half cell while that of Cc2 is based on those in the adjacent half cell. Thus they
are statistically independent.

For a given set of n-pole errors @, ..., 0g in the six dipoles of a half cell, the optimum n-poie

corrector strengths are given by:

(CLh —%(83&1+41a2 +11a3-7q-1305-7 o)

(CLn _%(-7a1-13a2 -703 +1104 +41 05+ 83 0g)

2
Clyn = --% (da1+100 +13m+1304+ 1005+ 4 0g)

The average strengths for correcting random variations then are obtained by adding these

contributions in quadrature, resulting in

1.768 o, Lo

Since the (CL); and (CL); at each quadrupole are statistically independent, the corresponding

average strength (CL)QF or (CL)QD of the two-lump system is

avg (CLIQForQD = V2 (CLiQ1avg = 1239cn Lo

Note that the total corrector strength per half cell for correcting random errors with a two-

tump system



avg (CLlhot = (CL)Q,avs + (CL)m,avg = 3007 Ly ,

whereas, if correctors are applied to the individual dipoles, the required half-cell integral
strength would be 6.0 oy Ly, — i.e., twice as strong.
The maximum corrector strengths for correcting a random error distribution, truncated at

20, then are:

(CL)QF = (CL)QD =2x1.2390, L,
=2x1.239x2x 104 x 6.6 T x16.54 m
=0.0542T-m (at1em,n=2)

(CL)m =2x1.768 oy Lo
=2x 1.768 x 2 x 1074 x 6.6 T x 16.54 mm

=0.0773T-m (at1cm, n=2)

3c. Binning Complications. If the two lumped correctors are used only to correct the
random sextupole errors, seven staggered circuits are sufficient to accomplish binning,
assuming that the mid-cell correctors can have 1.43 times the strength of the quad correctors
and can use the same excitation current. However, if in addition these correctors must have
another function, such as correcting the systematic sextupole and/or the chromaticity with
relative strengths differing in ratio from 1.43:1, then either more circuits or separate
windings must be used.

The case of systematic sextupole correction is not a problem, because the quadratic
sextupole correction is not sensitive to the ratio of mid-cell to quad-position corrector
strengths. Any ratio 1:1 and 2:1 works well. Thus 7 circuits can take care of the systematic

as well as the random sextupole correction, as long as each of the seven circuits can be



individually varied to accommodate the variation with B and t of the systematic and
random sextupole strengths in the dipoles.

The chromaticity correction is not easily compatible with the random correction, since it
uses two sextupole-corrector strengths (of opposite sign) and does not use the mid-cell
corrector at all, and furthermore, the chromaticity correction strength depends on the I. R.
optics. Thus, it seems simpler to use separate chromaticity sextupole windings in the quad-
correctors and to power them with two separate circuits. Since the ratio of the two
chromaticity corrector strengths is constant (-2.003:1 for the standard injection and collision
optics), independent of the magnitude of the chromaticity correction, it would in principle be
possible to power the two chromaticity correctors with just one circuit. But to allow for
lattice imperfections and for tune changes, two chromaticity circuits should be provided.

3d. Chromaticify. To correct the natural chromaticity only the sextupole correctors
adjacent to the quadrupoles will be used. The required sextupole strengths needed in the

worst case (collision optics at 20 TeV) is obtained from the SYNCH program (SSC-146)

KSF = (B" L)gg/Bp = 0.009992 m-2

KSD = (B" L)sp/Bp = =0.02002 m-2

Thus (CL)QF

Io?
KSF 5 Bp

009992 (.01 m)2 6.671 x 104 T-m/2

=0.0333 T-m (at 1 cm, sext.)
(CL)QD = -0.02002 (.01 m)2 6.67 x 104 T-m/2

=~ .0668 T-m (at1 cmn, sext.)



3e. Contingencies. The systematic multiples in the SSC dipoles are the least well
known of the three contributions to the corrector strengths. They depend on the design of the
coil geometry and do not necessarily scale from the Tevatron dipoles. Accordingly a
contingency of 100% is assigned to the systematics contribution.

The random strengths are better known, since they depend mostly on manufacturing
reproducibility. Scaling from the Tevatron data is likely to be valid and conservative.
Therefore a 50% contingency is assigned to the random contributions.

The chromaticity correction should be known quite well from the lattice calculations.
However, a 100% contingency is assigned to the chromaticity strengths in order to allow for
operating six standard low-beta interaction regions plus a 20% margin for special low-beta

optics.



4. Summary of Two-Lump Corrector Strengths at 1 am, Including Contingencies

Corrector

M

Note: In this table the systematic mid-cell and quad corrector strengths are in the ratio of

by

bs
by

1.43:1 for by and 2:1 for by and b,.

Correction Strength
Systematic Random
0.054 0.081
0.135
0.0044 -
0.087 --
0.054 0.081
0.135
0.0044 .
0.0087 -
0.077 0.116
-’—-f'—_-'
0.193
0.0087 --
0.0175 --

Ci ticil
0.066

-0.134

T-m

If binning of the sextupole correctors is not required, the required at 20 TeV, the random b,

contributions in the table become zero, and those coils become much smaller.



