SSC-N-509

SUFFICIENT STATISTIC FOR ABSTRACTING THE PROBABILITY
DISTRIBUTION FOR EXPECTED MAGNET FAILURE RATE
FROM ACCELERATED LIFE TEST

Ely Shrauner
SSC Central Design Group” and Washington University

April 1988

"Operated by Universities Research Association for the U. $. Department of Energy



ABSTRACT

We extend our program of Bayseian analysis of inferences about reliability and availability of
the SSC magnet system from the resuits of accelerated life tests (ALT). We show that under
assumption of the exponential failure function hypothesis the joint statistic (n,T) comprising the
number of failures n and the total time on test T is necessary and sufficient for determining the
best estimate for the probability density for the expected magnet failure rate A . There is there-
fore no finesse by which the ALT protocol may be manipulated to yield higher probabilistic
confidence that the expected failure rate is less than that corresponding to the very severe reliabil-
ity requirements specified for the SSC with smaller test samples and testing times than the large
ones established in our previous anslyses. We show this in general for the exponential model and
with two explicit examples of common ALT sampling protocols.



INTRODUCTION

We have previously described the analysis to extract the probabilistic confidence in a failure
rate corresponding to specified availability for the SSC magnet system that could be inferred from
results of accelerated life tests (ALT) on samples of the magnets’? This analysis was essentially
Bayesian and (thereby) involved prior probabilities that had to be presumed. Two stages were
iliustrated of this Bayseian analysis.

First, the prior probability distribution for magnet failure rate A was presumed to be of the
microcanonical form: uniform in some finite domain of A , A.< A < A, , and zero outside of this
domain® With this presumed prior distribution on the magnet failure rate A we computed the
probability that the true A, of our magnets was less than the valus A; corresponding to
specified availability requirements could be inferred from evidence that n magnets out of a sample
of N fail to survive y equivalent operating years of ALT cycling? (One week of ALT cycling is
about equivalent to one year of expected operational cycling according to the ALT protocol
currently considered.)

Second, the probabilistic confidence that A, Ag was computed with the canonical distribu-
tion that results from a maximum information-entropy analysis® In this more refined theoretical
approach the probability distribution which varistionally maximizes the information entropy (i.e.,
incorporates the minimum non-substantiated information subject to the constraints of the data in
expectational form --i.e., incorporates all the information of the test data as expectations with-
respect to this distribution) is of canonical form. Computations with this mathematically unique
and minimally subjective canonical distribution for the expected rate A recapitulate the proba-
bilistic results of our ALT analysis that were indicated with less theoretically substantial and
accurate earlier treatments that presumed a microcanonical distribution. Empirical rules for
interpolations derived with the microcanonical approximation hold also in the maximum-
information-entropy, canonical case.

In the present paper we extend our Bayseian analysis of the magnet ALT. We use a slightly
different and more expedient approach than our previous treatments. The difference stems from
employment of the failure rate probability distribution densities, rather than the probability dis-
tributions, and is associated with a slightly different, but similar and simpler maximization pro-
cess. The advantages of working with probability densities and introducing the concept of the
likelihood function and its maximization were suggested to me by Prof. R. E. Barlow® This
method has some limitations, which we acknowledge before employing it to illustrate the concept
of sufficient statistic as it applies in our analysis and how as a consequence the maximum informa-
tion derivable from our ALT analysis for the magnet failure rate is essentially independent of
variations in our ALT protocol® There is no finesse by manipulation of the ALT protocol by
which smaller test sample sizes and shorter testing periods than the large ones indicated in our
previous analyses can yield higher probabilistic confidence that the expected failure rate is less
than that corresponding to the SSC availability specifications.

The large ALT sampie sizes and testing periods required to meet the demanding specifications
for the SSC indicated in our previous analyses might make one wish to manipulate the ALT pro-
tocol to see if some faster route can be discovered. For example; is it more profitable to test a
sample of N magnets a) for a predetermined time interval, or b) until a predetermined number of
failures occur? We illustrate with these examples that there is no such device because the total
time on test plus the number of failures constitute the necessary and sufficient statistic for deter-
mining the maximum likehood estimator for the failure rate A, and its posterior density on evi-
dence of the ocutcome of the ALT subject to the presumed failure function model.

Throughout we will be concerned with the analysis of the outcome of an ALT experiment



which we denote by (N,y, ,.....,}p.,%) in which a sample of N identical, representative magnets are
independently tested for a period of y,equivalent years of operational cycling {one week of ALT
testing is equivalent to about one year of expected operational ¢ycling) with n magnets withdrawn
due to failure at times % ooy -



DEMONSTRATION
Bayes’ Theorem

The basis for our whole analysis is Bayes’ theorem. We employ it here in the form:

PAle.NY, .. ¥p¥p) = PNy 1Y% |A) B(A)
J-M ” »

in which,
P(N,y, ,--¥3.% | A) = the joint probability density of the ALT outcome (NJ¥; ---¥n:Yp) condi-
tional on failure rate A ;

F.(A) = P(Ale) == prior marginal probability density for A conditional oa all prior informa-
tion represented by ¢, which might be from prior testing or from our subjective information or
lack of information. :

P(Ale,N,y; ,...¥n,¥o) = Bayseian posterior probability density for A on evidence of the out-
come (N,y; ,...¥p.¥p) of the ALT experiment augmenting all the prior information ¢, whose
relevance here is contained in P(c|A ) = F.(A); )
This analysis is complete and correct within the context of Bayes’' theorem and axiomatic proba-
bility theory. The posterior density P(A|c,N,¥, ,...¥y,¥p) contains all knowable statistical informa-
tion about A on evidence of the prior information contained in P.{A) augmented by the statisti-
cal information obtained from the ALT results (N,y},...%,.%)-

Likelihood Function for

The likelihood function for A quantifies information on A from evidence of the ALT results as
the joint probability density of the ALT outcome conditional on A, ; i.e.,

L{A Ny - HYp) = PNy -3y ¥p] A)
Strictly speaking L is not a probability density in the variable A.
Maximum Likelihood Estimator of A
The maximum likelihood estimator (MLE) of A is determined from
0 =aL/9A .

The MLE describes where L, and thus, through Bayes’ theorem, where P(2, |c,N,y[ - YY) cOD-
centrate. )

Model-Exponential Failure Function Hypothesis

In order to proceed we must assume a failure function model which allows us to transcribe the
outcome of the ALT into the likelihood function for A, L{A|N.,y;,...¥p.Yo) . We continue with
our previously assumed exponential failure function hypothesis, for which the failure function is



FlyjA) =1- .

F is, of course, the probability of failure in the time [0,y] of a single sample magnet conditional on
failure rate A . The corresponding failure density is

f(y|A) = Ae™>”

With this model the likelihood function for A is

L(A |NJY, v"}'n)b) = P(NIY' l-"YnaYQI A)
n - o - -
= a0

=1

= Ale™™ TN, 75 Y Yo
In this expression the quantity |
T(N.y _""Yn'yo) e ;éy,- + (N - n)y,
= Ny, + ,z:(N - M- %) + (N -2y, - )

is the total time on test: the sum of {N - j) magnets on test between the j-th and (j + 1)}th
failures plus (N - n) magnets on test from yp 0 Yo . Clearly the likelihood function is specific to
the failure function model chosen to conform to prior information about the nature of the (mag-
net) system under consideration. But within this model L is independent of the prior probability
density P(|c) for A ; except that it might be said that the information required to choose the
failure function model is similar to that required to chose P(A.|c). Within the context of this
failure model, the likelihood function for A , L{A|N,¥ ,..-¥a,Yo) is necessarily and sufficiently
parametrized completely by the joint statistic (n,T(N.% ,...%4:3))-

The posterior density is completely specified from the prior density P(A ic) and the joint
statistic obtained from the ALT experiment comprising the number of failures observed n and the
total time on test T(N,y; ,...y4.%z ). That is, with this failure function model the only observables
necessary and sufficient for estimating the posterior density P( A j¢,N,y,,...¥p,¥,) containing all
knowable information about A on evidence of the prior information contained in P( A|c) aug-
mented by the information obtained in the ALT results (N, ,...¥p,Yo) are n and T(N,¥; ,-..¥n,¥p) -
The prior density P( A |c) is, of course, presumed for determining this posterior probability density
with Bayes’ theorem. But the number of failures and total time on test, or their equivalents, were
by. the same arguement necessary and sufficient statistics for determining the prior density P(a
) from prior ALT or equivalent input. Thus, all prior densities for A with this failure function
model can be described with parameters equivalent to some n.and T, from some prior stage of
information acquistion. Bayes’' theorem updates information so that yesterday’s posterior is
today’s prior. .

The maximum likelihood estimitor from the ALT statistics with this failure function model is
obtained from

0=.l§l-a =ll_n_-T -a
L 2A A

or
Amu’ n/T = n/T(N-' 1 ""yﬂ’ Yﬂ) '



The MLE might not exist for some more complicated model’s, but it is obviously of this form for
failure models not greatly dissimilar from the exponential model.

Microcanonical Prior Distribution On A

As described for our sarlier analyses, if our prior knowledge of the expected true value of A is
very vague we might choose to start with the microcanonical prior probability density for A :

P(Al) =R(A) = 1/(A, -2 » A< A < Ap
=0 , otherwise,

The posterior density, which includes information from the prior F, () augmented by informa-
tion in L(N,¥} ,...3,¥,), is computed with Bayes’ theorem as:

P(MC,N,}”, ""Wpya) = LQAIN,y »---Yn»Yo)/(/\JL'A-A

Ao
/'\cd;\'

The normalization factor (J\.o '1c) cancels out of this expression of Bayes’ theorem, so the micro-
canonical interval could become very large. If this interval becomes large so that A << nfT
<< A, then the denominator becomes after the cancelation

P
‘(O A" e-AT' dA, == T-{nﬂ)n!

This condition usually connotes large sample sise N . All information about A obtained from
prior experiments and contained in the prior probability density on A , P(A|c) plus all informa-
tion additional on evidence of the ALT outcome (N,y;,...¥n.Yp) is contained in the posterior den-
sity P(A)e,N,y; ,...¥n.Yp) - The likelihood function L is of course specific to the failure function
model, but because of its sharp maximum under condition A .<< n/T < <A,, the posterior
density is much more sharply concentrated than the microcanonical prior density, and is com-
pletely specified by the joint statistic (n, T(N,¥ ,-.-%,¥p))-

If we compute the maximizer of the posterior density P{A|c,N,y, ,...3.¥p) We obtain with

0=13P = -T ,
Paxr A

the same MLE as for the case of this microcanonical prior unaugmented.

The maximum information entropy variationally minimizes the unsubstantiated information
contained in a probability distribution subject to the data relavent to its determination expressed
in the form of expectations with respect to this probability distribution. The maximum likelihood
estimator is a wholely different thing. It does not contribute to the variational determination of a
probability distribution. Rather, in our usage the MLE merely tells where the experimental out~
come, through its likelihood function, is trying to shift the concentration of probability in the
augmented posterior distribution. Indeed, in a given problem the prior may be determined by the
maximum information entropy variational method and also the maximum likelihood estimator be
useful in assessing the effect of the augmentation. In fact, the augmented posterior density in our
present treatment behaves very similarly to the maximum entropy prior of the previous treat-
ment, giving almost the same empirical rules for interpolation and prediction.



é.l

TESTING TIME TO CONFIRM SSC AVAILIBILITY FROM MAXIMUM LIKELIHOOD ESTI-
MATOR

How much testing time is required to establish the rate A corresponding to the 96% availi-
bility specified for the SSC magnet system? The general relation among the stationary availibility
Ay and the failure rate A of each magnet of a system of 9800 in serial fault configuration with
mean time to repair T is*: '

9B m Ay = _ ] S AT =(1/96 -1)= 410° |
I+3600A%
The value of T 5 day == .014 year to replace a magnet ;
or T 2 1 bour = .00011 year for a small quench.

So the limits on the failure rate A, in yea.r-‘a.re :
-6 - - -
410 7.014 = 310 ¥ ¢ A < 4:10°%.00011 = 3.8:107% year ' .

The MLE on evidence of n failures in testing N magnets for y, equivalent operating years
with total time on test T when the prior information was equivalent to n, , T, is

A=@+0c)/(T+Te) <=me> T=(N-nly, +Zy; = (0 +1)fi =T,

in which must be A A = 2:10 *year” from above. Thus, the test time required is

min

yo_ > [(n+nc!§2-min T =Xyl = @+0)Amin-Te =17
-1 -n o

in which ¥ =-'_Zyj /n is the average Y -

In the case of the microcanonical prior the MLE is A == n/T , i.e., n, == 0 == T, in the
above expression for y, . Thus, for example: '

N=10,n==2: y > 1110 year ,
Na=20,n==3:y > 8110 year ,
N=20,p=2: 7y, >5310 year , etc.

These are about the same as earlier estimates; but now we have shown that they cannot be mani-
pulated and are quickly computed.



TWO ALT PROTOCOLS FOR EXAMPLE

Protocol I: Test For Prescribed Time Interval

In this case our ALT protocol involves testing a sample of N magnets for a prescribed time y,
in which n failures are cbserved at y;,...yn . We have seen that y,,...ys are unnecessary for infer-
ring information about A from ALT; only the total time on test T(N.,y, ,...¥n,¥o) and n are
required. This is again seen in the likelihood function for A on evidence of the ALT outcome
(N,¥ ,--¥p:¥p) Within context of the exponential failure function model:

n

sy ~A(N-

AN o) = N I 781 27
» L] I

o N il e-)\T(ﬂ,)i "')ha Y.)'
(1o

with

( N ) = __N! = _N!
o, (N-n) Wl (N=n)! - (N-n)!

the number of ways y; , j < 0 can each be chosen once and N - n not chosen out of the sample
of N. As we have seen before, quite generally this normalization combinatoric cancels out of
Bayes’ theorem for determination of the posterior probability density P(2 |¢,N.¥ ,...}n.%) which
contains all knowable information about A on evidence of ALT outcome (N,y; ,...yn,% ) and the
prior information in P(A [c}. If the prior information was equivalent to specifying n, and T,
then the posterior density on A is

P(A e, Ny, 53 ) = A6 (T + T e_m*m/(n +0,) .

Its maximizer is

Ape,= (B +B)/(T+T,)

Protocol II: Test Until A Prescribed Number Fail

In this case the ALT protocol prescribes the number of failures n and tests until they are
observed. The only difference from the previous case is that y, - y4 = 0 in this case, where y,
> ¥n in the previous case, and in this case y, == y, is a random variable with n prescribed;
while in the previous case n was random with y; prescribed. The likelihoed function for A on
evidence of the ALT outcome (N,y; ,...75 ) is

L(a lN,yl ,...yn) = X" e'i\.r(ﬂ,n,w’n)
with
N
TNy, ... 3) = 5!@ + (N - o)y,

The posterior density for A on evidence of this outcome and the information contained in the
prior density P{Alc), again parameterized by (n.,T.) is



: ot ~A>T+T2)
P(AleNg 3p) = A7 (T + T T

with maximizer at
Amax= (o + n‘)/(T +T) .

We see that there is no finesse to be gained by manipuiating the ALT protocol within the con-
text of the exponential failure function hypothesis because the joint statistic (n,T) comprising the -
number of failures n and total time on test T(N,y, ,...%a,¥,) in the ALT outcome {N,y, se¥nYp)
constitutes the necessary and sufficient statistic for information on A in this model.

Other modifications of the sampling method for the ALT protocol have also been investigated.
They serve to illustrate the concept of sufficient statistic with the present failure model, but
therefore give essentially similar results.
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