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1. INTRODUCTION

In order to minimize transverse resistive wall instability and parasitic heating, the
SSC beam tube has been designed with a layer of inside copper coating. However,
due to technical difficulties, there may be a one inch gap of the copper coating for
every 15 feet of the beam tube. This note reports an investigation' of the effects of
the gaps on coupling impedances, parasitic heating, and beam instabilities.

In the following, we assume the stainless steel beam tube of radius b = 1.65 cm has
a wall thickness of t, = 1 mm and a conductivity of o, = 2.0x 108 (2-m)~!. The copper
layer has a thickness of {. = 2 mil and a conductivity? of o. = 2.27 x 10° (-m)~!
corresponding to bulk copper with a residual resistance ratio (RRR) of 200 at 4.35 K
in a magnetic flux density of 6.6 tesla. The SSC ring radius is taken as R = 13200 m.

II. LONGITUDINAL IMPEDANCE AND PARASITIC HEATING

At extremely low frequencies, the wall current fills up the whole thickness of the
beam tube wall. Therefore, the longitudinal wall impedance Zj is inversely pro-
portional to the product of the conductivity and the thickness of the wall material.

1



However, since copper is nearly 1000 times more conductive than stainless steel, we
can assume that, except for the gaps, all the wall current resides in the copper layer
only. Therefore, the increase in longitudinal impedance due to the gaps is

AZy - 1 t.o.
(Z||)wa11 - 180t,0,

=32.1%, (2.1)

where the factor 1/180 represents the gap contribution of one inch per 15 ft.

At higher frequencies, the wall current penetrates only a skin depth of the wall
material, the longitudinal impedance is inversely proportional to the square root of
the wall material. Therefore, the increase in longitudinal impedance is

(Zy)wan 180

Az _ 1 (i’i)m —18.7% . (2.2)
g,

As a result, the bunch-mode level shiftings due to wall resistivity will be 18.7%
bigger, but they pose no threat to mode-coupling instability because the longitudinal
mode-coupling threshold® is Zm(Z;;/n) = 87 Q while the estimated |Z)j/n| (not includ-
ing the gap contribution but including the contributions of bellows, beam position
monitors, etc) is only about 0.2 Q.

Parasitic heating arises from the resistive wall of the beam tube can be approx-
imated by assuming that the wall current flows in a skin depth of the wall material
since this assumption breaks down only in a small region where the frequency is ex-
tremely low. Then the heating power P is directly proportional to the longitudinal
impedance. Therefore the fractional increase in parasitic heating is

AP 1 /o.\?
— = — ] — = iri D)
3 ™ (a‘) 18.7% . (2.3)

According to the SSC Conceptual Design,* power lost to the resistive wall amounts to
only 9.1% (7.7%) of the total parasitic heating if inner bellows (bellows with sliding
contact) are assumed. Thus the gaps in the copper coating will increase the total
parasitic heating by only 1.7% or 1.4% for the two types of bellows.

III. TRANSVERSE IMPEDANCE AND INSTABILITIES

Unlike the monopole case, the wall currents need not flow across the high-resistance
stainless steel gap, because they can turn around before the gap as shown in Fig. la.
This can be represented by an equivalent circuit with two resistances Z; and two
inductances L, as depicted in Fig. 1b.



At very high frequencies, Iy passes through the stainless steel gap only. Assume
that each side of the dipole wall currents flows in one quarter of the beam tube wall
or a width of mb/2 of the tube circumference. Then

L2 2 nZ
Zg=(1+41)m590r 2(1+J)£\/2R: : (3.1)

where ¢ = 1 in is the gap width, Zo = 377 Q is the impedance of free space, §, is the
stainless steel skin depth, and f = n fq is the frequency under consideration measured
in terms of the revolution frequency fo. Numerically, this gives

Z,=(1+j)v/n0.827Tx 107 Q. (3.2)

At extremely low frequencies, since the wall currents will fill up the whole stainless
steel wall thickness at the gap, Eq. (3.1) should be replaced by

2g
wht,o,

Z, = =490x107* Q. (3.3)

When the frequency approaches zero, all the wall currents will return through the
inductance L,. This situation as shown in Fig. 2a is equivalent to the situation in
Fig. 2b. Thus the total inductance for one gap is 2L, because the two inductances
are in series in the wall-current loop. This is in fact the inductance of a loop of size
~ b x g, because, as shown in Fig. 2c, the addition of this loop to the dipole wall
currents is exactly the same as wall currents returning in front of the gap. Another
way to understand the introduction of this loop and the resulting contribution to the
impedance is through the change in space-charge impedance due to the absence of
the wall currents I in the gap. This alternate derivation is given in Appendix B.

To compute the inductance of the additional loop, we assume the wall current
as two plate currents of height 7b/2 separated by distance b. These dimensions are
chosen because they produce the correct formula for the space-charge impedance. The
magnetic flux density inside and perpendicular to the loop is approximately constant,
and from Ampere’s law it is roughly

_ 2ulw
B==""X, (3.4)
where u is the magnetic susceptibility of free space. The flux linking the loop is
2ugl
p=". (3.5)

[The derivation appears nonrigorous. If one wishes, however, one can consider the loop
to have a size 2bXx g instéad or two plate currents of height 7b/2 separated by distance
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2b, and compute exactly the flux intensity in the median plane as demonstrated in
Appendix B. One finds the average B to be approximately one half of that shown in
Eq. (3.4) and the flux ¢ linking the circuit in the median plane very nearly the same
as given by Eq. (3.5).]
From Eq. (3.5), the inductance is
2L, = 219 . (3.6)

ks

Therefore the reactance of the inductance L, is
. . Z .
Zp = jwkL, =Jn1—r9£- =jn231x107Q. (3.7

The impedance Zw seen by the wall current Iy is the parallel combination of Z, and
Zp.

The transverse wall impedance at extremely low frequencies can drive a transverse
couple-bunch instability. The lowest frequency of interest is (¥ — m) times the rev-
olution frequency, where m is the integer nearest to the betatron tune v. If we take
n=1{v-m|~04, Zy = j0.924 x 10~* Q. Then, together with Eq. (3.3), the extra
impedance seen by Iw is

(0.168 + 70.892) x 107* Q@ for 1 gap
AZw = (3.8)
(0.305 + 51.62) 2 for whole ring .
The transverse impedance for the gap resistivity is given by
c [AZw
Az, = T] , (3.9)

where c is the velocity of light and w/27 is the frequency under consideration. Equa-
tion (3.9) is derived in Appendix A for reference. On the other hand, the transverse
impedance for the resistive wall of a round beam tube is related to the corresponding
longitudinal impedance by

(ZL)wan = w—z-b%(zu)w.n : (3.10)

From the SSC Conceptual Design Report,’ (Zjj}wan has been estimated to be ~ 3.5
at extremely low frequencies. [Actually in that estimation, a more conservative copper
conductivity of o, = 1.8 x 10° (-m)~! has been used. With our value of o., (Z}|)wan
should be smaller.] Therefore, the contribution of the gaps is '

AZJ_ _ AZw
(Zo)wat  4(Z))wat

=2.17% . (3.11)
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In other words, the growth rate of the transverse coupled-bunch oscillations will be
increased by ~ 2% only, which should be well within the damping power of the damper
to be installed.

When the frequency becomes bigger, Z, is given by Eq. (3.2). Since

é _0.506

Zil vn
which is pretty small even when n is not too big, most of the wall currents will pass
through the gap instead. The increase in impedance AZw encountered by each Iw is

(3.12)

AZw =402y, (3.13)

where AZ) is just the extra longitudinal impedance across the gap. The above relation
is true because we have assumed each wall current Iy flows along one quarter of
the beam tube circumference, and AZj is the parallel combination of four AZw’s.
Therefore, the increase in transverse impedance is

AZ, A
(Zo)wad  (Z)wait

as given by Eq. (2.2). Again this poses no threat to transverse mode-coupling insta-
bility, because the threshold® is ZTm(Z,) = 250 MQ/m, whereas the estimated |Z_| is
only about 40 MQ/m.

In principle, there should be a capacitor in parallel with Z; across the gap due to
charge buildups at both sides of the gap. This capacitor should be small, however,
because of the thin thickness of the copper layer. This capacitor will block the flow
of wall currents across the gap at low frequencies and therefore will only encourage
more wall currents to turn back through L,. The effective |AZw| of Eq. (3.8) will be
reduced lessening the growth of the transverse coupled-bunch oscillations. At higher
frequencies, it will encourage more wall current flowing through the gap, or effectively
lowering |Z,| in Eq. (3.12) and also lowering the extra transverse impedance AZ, in
Eq. (3.14). For the longitudinal impedance, this capacitor will lower the impedance
across the gap and therefore lower also the extra parasitic heating in Eq. (2.3). In
any case, all these effects should be small.

=18.7% (3.14)

IV. CONCLUSION
From the above analysis, it appears that the possible gaps in the copper coating

will not affect significantly the purpose of the introduction of the coating. For parasitic
heating, the increase is only about 2% of the total. For the transverse couple-bunch
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instability, the increase in growth rate is only about 2% (and much smaller if |v — m]|
is assumed to be smaller). This small increase in growth rate is due to the fact that
this particular instability is driven by impedance at extremely low frequencies. At
those frequencies, the wall currents tend to turn around in front of the gaps instead
of traversing through them.



APPENDIX A

The derivation here follows closely that of Sacherer.® Assume that the beam tube
is rectangular in cross section having a width of 2b and each the dipole wall currents
Iw is concentrated in a strip in the tube wall on either side of the displaced beam, as
shown in Fig. 4. With the beam displaced by an amount A in the y-direction from
the beam tube axis, the beam current density is

aJ
3 “2AeiwWt (A.1)

JO(J:! Y- Aetha Z) — JO(Ia Y, 2)
where only terms up to the dipole contribution have been kept, and w/2x is the
transverse oscillation frequency of the beam.

The longitudinal electric field produced by the dipole term is

Ei(y) = DYt (4.2)

at the median plane, where Ey is the dipole electric field at the wall.
The wall currents can be found by equating the power lost per unit length by the
beam due to F,,

. EwA 8Jo _ Ewd
jE-Jd:rdy-- 3 yayd:cdy- 3 Iy (A3)
to the power flow into the walls, —2Iw Ew, namely
1A
IW = 2 b IO ’ (A'4)
where Iy = [ Jo(z,y, 2)dzdy is the total beam current.
The electric field at the wall is given by
IwZ
Ew = % , (A.5)

where Zw is the impedance seen by one wall current fw for a length ¢ of the beam
tube. The deflecting magnetic field at the beam is (from Faraday’s law)

wZw jut
wbl

where Eqgs. (A.2) and (A.5) have been used. Substituting into the definition of Z,,

B.=-j (A.6)

Z, = ﬂIAf[E+va]_Ld£ AT



and using Eq. (A.4), we arrive at

c [Zw
el -
LTl 2 (A.8)
for the length of the pipe under consideration. If we assume that I flows in a strip of
width one quarter of the tube circumference, the longitudinal impedance of this length
of the tube Zy equals 4Zy. We then recover the relation between the transverse and
longitudinal wall impedances for a round beam tube as given in Eq. (3.10).



APPENDIX B

If the beam has a radius a and the transverse displacement A is infinitesimal, we
have a real dipole beam of width A only but separated by 2a. The magnitude of the
current [, is given by

I¢2a = IoA . (Bl)
Each I, sees an impedance Z,. Similar to the derivation from Eqgs. (A.5) to (A.8),
the transverse impedance can also be written as
c [Z A]
Z, =—|=|. )
+ T wa? [ 2 (B.2)

We now compute the magnetic part of the space-charge impedance. First the self-

inductance. We assume that each current Iy fills one quarter of the circumferential

surface of the beam. The magnetic flux density due to I is assumed to be uniform
inside the beam and is given approximately through Ampere’s law by

2#.[ A
Ta
(The exact result’ at the center of a round beam tube is one half of the above.) We
next assume that this magnetic flux will link only a width a of the circuit. This is
because the currents I4 being on the beam surface are curved so that not all the

flux will be linked. In other words, we assume the distance between the two surface
currents to be a. Therefore, amount of flux linked is

2ulla

’
w

B =

(B.3)

¢=

where £ is the length of beam considered.
We can also take the dipole currents I seriously as two plate currents of height
h separated by 2a, the vertical magnetic flux density in the median plane is

(B.4)

pla -1 h -1 h
=2 —  ttan™! o—— .
B(z) oy [ta.n Na+2) + tan a2 (B.5)
for —a < z < a. With k = wa/2, it reduces to
_ ula
B(z) = — F(z), (B.6)

where the form factor is

tan~1 b

2 -1 ®b
F(a:)=;|:ta.n m'f' an zl(b_--;j , (B.7)
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which varies from 0.848 at the center z = 0 to 1.238 at the plate current r = +a
with an average of 0.978. The flux linking the circuit in the median plane can be
integrated easily to get

b= 2ulls [7a 1. 4a® + h%/4 o 4d’ - h?/4

xR T A T Re TR o | (B.8)
which reduces to 0utl
6= ‘“ﬂ 2 % (0.978) (B.9)

when h = ma/2 and agrees extremely well with the estimated value in Eq. (B.4).
We use the expression in Eq. (B.4) because it produces the correct expression for
space-charge impedance in below.

In any case, the self-inductance is

2ul
Ly = — '
i x (B.10)
giving a self reactance of
Bt = JioLoat (B.11)

which is equal to Z,/2 which is two Z,’s seen by the dipole current I in series.
Therefore, using Eq. (B.2), we get

Zo?

2ra?

(Z1 )selt mag = (B.12)

Now the wall current contribution. From Eq. (3.3), the flux due to the wall current
Iw linking the current loop I, is

_ 2pbalw 2ublp a?

¢ ra r b’ (B.13)
giving a mutual inductance of
2uf o?
M= -7 (B.14)
and a reactance of
Zimage = JwM , (B.15)

which is again equal to Z,5/2. Therefore, the total magnetic contribution to the
space-charge impedance is

2ot 11 1]. (B.16)

(ZJ.)m-;=J'2—1r— prim

al
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Note that the image contribution is in fact capacitive. Now with the presence of a
high resistive gap of length g, a length ¢ of wall currents Iy will be absent and it
therefore contributes an inductive impedance of

. Zog

5=

(B.17)

which is exactly the amount due to the additional loop in Fig. 2c¢ computed using
Eq. (3.8) by letting AZw equal Z;/2 of Eq. (3.6).
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