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If the collared coil in an SSC dipole is centered within the iron yoke
there is zero net transverse force on the coil, but the situation is one of
unstable static equilibrium. That is, if the coil is displaced laterally it
will experience a force directed so as to increase the displacement. It has
been postulated that this force might be the major factor in determining
the frictional force acting along the collar-yoke interface.

The harmonics generated by a dispiaced coil have been calculated? and
the forces could have been computed at the same time, but were not.
Rather than attempt to resurrect this computer model | have chosen to
estimate the forces from the calculated harmonics by a method that
appears to be sufficiently precise. Because the method involves a lot of
hand-waving and only a little actual calculation, | will present the
arguments and result first and save mathematical detail for the Appendix
to this note.

Consider a set of coils, with inside radius r, ,shaped to produce a

perfect dipole field. If these coils are placed coaxially inside a perfect
cylinder of iron with radius R and constant permeability, the resultant
field inside the coils is still a perfect dipole. If the coils are now

displaced transversely toward the iron cylinder by a distance ar, however,
the field inside the coil will be found to have harmonics. Where do these
harmonics come from?

The field anywhere inside the iron, r<R, is a superposition of the fields
from the coils and the field due to the iron. Because the latter may be
perfectly represented by the field due to image currents (located at r>R),
the field at r<R is the vector sum of the fields due to two current
distributions, with the iron ignored. | will refer to these as the direct
field and the image field. If the coils are centered in the iron, the image
field will be a perfect dipole. If the coil is displaced transversely,
however, the image currents become asymmetric and generate harmonics.
Within the coil bore, r<r;, the image field is the only source of

harmonics, because the direct field from a displaced coil is still perfectly
uniform. Therefore, by computing harmonics in the region r<r;, Morgan



has specifically computed only the harmonics of the image field. Further,
these harmonics are valid over the entire region r<R and not just within
r<r. It is shown theoretically in the next section that only quadrupole is

generated, to lowest order in 8r ,for the simplest case of a thin coil
carrying a current distribution that varies as Cosé. Even for a real coil
cross section, Morgan's computations1 verify that quadrupole is by far the
largest contribution.

I now show that Morgan's computed harmonics are sufficient to
compute the net force on the coil. | write the force on any one conductor
as the sum of three terms:

(coil current) X (direct field)

+ (coil current) X (image dipole field )

+ (coil current) X (image quadrupole field )

These terms are to be summed over all the conductors. The sum of the
direct field terms is certainly zero, as a coil will exert no net force on
itself in the absence of iron. Also, the uniform dipole component of the
image field will exert no net force on the symmetric coil. Thus, the net
force is due completely to the quadrupoie component of the image field.

The argument is exact, so far, but the actual computation involves an
appproximation. | represent the coil as a sheet of current of radius p,
distributed azimuthally as Cos#8 , in which case the force per unit length
is given by Eqn. {A13)

f= 1 NI Bo( p)

Morgan's calculations show that a transverse displacement of 1 mil
produces a quadrupole harmonic slightly less than 0.4 unit. This translates
to 2.6x104 T at 1.0 cm, or 7.8x10"4 T at an average coil radius of 3.0 cm.
With N=(16+20)=36 and I=6500A, the force can be written in the
following equivalent forms:

570 N/m per mil of displacement
3.2Lbfin " * * "
2200 Lb on a long coil, per mil of displacement.

REFERENCES

1. G.Morgan, private communication of calculation performed 1/16/85.

2. K.Halbach, "Fields and First Order Perturbation Effects in
Two-Dimensional Conductor Dominated Magnets”. Nucl. Inst. and Meth. 78,
185, 1970.



MATHEMATICAL APPENDIX

| follow a notation and phase convention due to Halbach? , in which a
field along the positive x-axis has zero phase. By contrast, multipole
measurements on dipoles asssign zero phase 1o a field along the positive
y-axis. Further, | use a multipole index n=1 for dipole, n=2 for quadrupole,
etc, rather than the index (n-1) common in dipole work. Calculations are
performed in the complex plane and complex quantities will be denoted in
boldface, e.9. B, B*.

Consider a current element dl located at z=x+jy and directed out of the
plane. The element is inside the bore of a steel ring with infinite
permeability and radius R ; Izl < R. The field at location z, is given by

Uaj dI Mnj dI
dB* = gjn L + (2}]:: 21 (A1)
(22) R
z* o

where B* = B, - jBy . The first term on the right hand side is the direct

field and the second term is the image field. Suppose the coil is a thin,
cylindrical sheet of current of radius p and thickness 8p ,coaxial with R
and with current distribution

dl = J, Cost p de dp
where J;, is the current density at 8=0. As an illustrative calculation, |

will show that the direct field in the coil bore is a perfect dipole. Expand
the direct fieid in a power series in (2,/2) '
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and integrate over the current distribution. Setz = p e and obtain
5 n-1 2%
«  Hoilpop |z jnd
Bn, dir = T(—E)—) !Cosﬂ e do (A3)

The integral is a delta-function
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It is more convenient to express the result in terms of current rather
than current density by using the relation

nt if n=1
0 otherwise (A4)
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where Nl is the number of ampere-turns per pole of the magnet.
Inserting (A4) and (A5) into (A3) | obtain

As noted in the main text of this Note, the direct field creates no net
force on the coils and | will now treat only the image field. Again the
calculation proceeds by performing a power series expansion in (A1) but,
because the image currents are located at |z|> R, the expansion
converges over the entire region |z| < R . The analog of (A2) is
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This time we are interested in the field from a displaced coil
z* =( 5z+p e/° )* ,and the analog of (A3) becomes
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Where | have retained only terms linear in 82* .The first integral on
the right side vanishes unless n=1 and the second integral vanishes
unless n=2.



Inserting (A5) into (A8) produces two non-zero terms
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which can be written as
* zo
B, im = P2im R (A10b)

Eqgn.(A9) gives the dipole part of the image field. The total dipole field
in the coil bore is given by adding (A6) and (A9). Eqns.(A10) give the
quadrupole part of the image field.

With all currents directed perpendicular to the x-y plane, the force on
a conductor element can be written :
dF* = -j dI B* (All)
As argued in the main text, only the image field can contribute to the
force. Integrating (A11) over the current distribution yields

Sp 2N
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The dipole term integrates to zero, because B'”m does not depend on
8. For the quadrupole term insert (A10b) into (A12) and set 2, =( 5z+p &® )
to integrate over a displaced coil. Using (A4) and (A5), the final result is

F*=4nNI by, (%) = §1 NIb,(p) (A13)

where b,(p) is the quadrupole field at the coil radius. By substituting
for b, from (A10a) it may be verified that the net force is in the same
direction as 6z .



