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A new method of correcting dynamic noulinearities due to the imultipole content
of the dipoles in a large alternating-gradient synchirotron is discussed. The method
uses lumped muitipole elements placed at the center (C) of the accelerator half-
cells as well as elements near the focusing (I') and defocusing (D) quadrupoles at
the hall-cell ends. In a first approximation, the strengths of the correctors follow
Simpson’s Rule for three-point integration. Correction of second-order sextupole
noulinearities may .also he obtained through use of the F, C, and D octupoles.

Correction of nonlinearities by more than two orders of magnitude is obtained.

A large synchrotron such as the Superconducting Super Collider (SSC)! re-
quires an adequate linear aperture for heam stability and reliable operation. Lin-
ear motion is required over a workiug region in amplitude and momentum space
suflicient to include the beam size and momentum spread with ~losed orbit devi-
ations and injection errors. Orbit noulinearity can be measured by the amplitude

and momentum-dependent tune shifts per turn Av., Avy. The SSC linear aper-
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ture tolerances (SLAT) have been set by requiring Av,, Ary, < £0.005 for orbits
with amplitudes A,, 4,, up to 0.5 cm in the SSC arcs and with momentum offsets
§= 28 < £0.001.

Except for relatively short utility and interaction regions (IR ), the SSC circnm-
ference is composed of ~320 alternating gradient (FODO) cells consisting of long
dipoles, short focusing (I') and defocusing (D) quadrupoles, and short corrector
magnets (sce Fig. 1). In an excellent first approximation, the ring can be assumed
to consist only of such cells, and the nounlinear fields in the dipoles dominate the
nonlinear motion. Finite-length effects of nondipole elements may also he ignored.

The magnetic fields in the dipoles may be represented by the complex expres-

sion

By +iB: = Bo{1+ 3 [ba(s) +ian(s)](= +iy)"} ,

where B, is the hending field and ba{s) and a,(s) are the normal and skew multipole
components. The transverse motion may be described by a Hamillonian, which

includes the linear focusing

H=

]

I, Z B, [bn(s) + tan(s))(z + iy)"H!
B:(s) ﬁy{«’) n+1

where I, and I, are the action coordinates and S3.(s) and g,(s) are the Courant-
Snyder? betatron functions of the linear motion. The coordinates x and y of particle
motion are represented in action-angle variables by

= 203, Ir cos(¢:) + nd,y = /28,1, cos(¢; ). The terms ¢, and ¢, are the angle
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variables (betatron phases), and the off-imomentun: orbit displacement at § deter-
mined by the dispersion function n(s) is inclnded, The terms A, = V2i3:. 1. and
Ay = /23,1, are the amplitudes. The tune shifts are obtained to first order by

averaging the phase advance caused by the magnetic field perturbation

_ 1 fdésy, o, dH
Avey = 21'r,/ & = ®a) (1)

In first order in the coefficients b, and a, only systematic normal multipoles (5,,)
coniribute; the resulting expressions for the tune shifts as a function of I, I, and

é due to sextupole (b2}, oclupole (b3) and decupole (b4) components are

3 3 3 o
Ay = (bzﬂmé) + (Zbaﬁzrz - ,';bSﬂ:ﬂny + ;hﬁr’]“sz)
+ (3b48201,.6 — 6by3. By, 6 + 2b43,1°6°)
3, 52 3 3 2452
Aty = (b3, nb) + (‘ibsﬁ” I, — Ebsﬁ,ﬁy I, — §b’ﬂ"n 6%

+ (3baf33nI,§ — 654,16 — 2b43,n°8%) . (2)

The SLAT may be applied to Eqs. (1) and (2) to obtain tolerance limits® on
uncorrected |b,|; the values for the current SSC design lattice are in Table 1.

Thg SSC dipoles are expected Lo have significant multipole content, particularly
in the b, with n even, which are allowed in dipole symmetry. Estimates® of the
expected systematic and rms random multipole strengths have been extrapolated
from the measurements® of the similar Tevatron dipoles. Multipole strengths caused
by saturation effects at Ligh field and by persistent current effects at injection field
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Lave also been calculated.! These estimates have been collected in Table I where
they can be compared with SLAT values. Serious possible deficiencies in by, b3, and
by are obtained. Consequently, initial SSC design included sets of multipole trim
coils within every dipole for local correction of b2,b3, and bs. llowever, these trim
coils greatly complicate the dipoles.

Multipole correction is simplified if it is implemented using short correctors
separate from the dipoles. Initial attempts used correctors placed near F and D
quads, where cliromatic (inomentum-dependent) correclion sextupoles are placed.
Because tliere are only two first-order by terms, F and D sextupoles can completely
correct them; however, second-order sextupole effects are also important (see below).
For b3, b4, and higlier multipoles, there are five or more ternis and they cannot be
completely corrected. In Ref. 7, F and D multipole strengths are set by correcting
the chromatic terins; the SLAT b3 and b4 nonlinearities are reduced only by a factor
of <2. (See Table I1.) Other optimizations are not inuch more eflective.®

A dramatic improvement is obtained by adding a corrector to the center (C) of
each half-cell (see correctors provide only three-parameter correction, an empirical
oplimization converges very close to a claracteristic solution (Simpson’s Rule)?
and reduces tune shifts by more than two orders of magnitude. For example, the
first-order amplitude-dependent 1-D tune shift caused by octupoles mmay e written

as
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A, ] fo ba(3)33(s) ds

S S3.c
A1) + EpHL/2) + S—,;Eﬁ:(m]} )

in a siniplified lattice. The corrector multipole strengths S, ; are defined by S, ; =

B, = —_f,..,'B(,i;,lL,_wht-re B, ; and /; are the corrector lengths and strengths, and
L is the  Talf-cell length. The Simpson’s Rule solution is
JF = fo = 1/6and f¢ = 4/6 per half cell; that corrects b3 and by nonlineari-

ties by approximalely two orders of magnitude. Optimization about that solution
changes the strengths slightly, permitting another order of magnitude reduction (see
Table 1I). The correction is more than adequate for the SSC.

Lumped correction [see Eq. (3)] is equivalent to approximating integrals of
powers of hetatron functions by a sum over discrete points, and Simpson's Rule
is a third order integration that is very accurate for smoothly varying functions.
Figure 2 shows /3;,/3,, and 5, over a full cell; they are smoothly varying over half-
cells with a derivative discontinuity at the quadrnpoles. Figures 2 and 3 show the
specific functions that appear in b; and b3 tune shifts. These functions are smoothly
varying on the half-cell level; I, C, and D correctors provide three-point, Simpson’s
Rule type cancellation on the half-cell level. The discontinnities at the hall-cell ends
also provide an explanation for the failure of two-point (F, D) correction (Ref. 8
provides a immore detailed discussion).

The first-order correction is insensitive to betatron function perturbations, be-
cause Simipson’s Rule requires only smooth variation on the half-cell level. Second-
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order effects are also reduced by first-orcder correction. The methiod is easily ex-
tended to inclicle other mnltipoles (bs, bg, ete.), if necessary. Raudom multipole ef-
teets cau be reduced by varying the correctors to follow the local multipole content. 10
The method can also be extended to correct qumlﬁ&pole multipole content, partic-
ularly in the long IR quadrupoles.

Superconducting dipoles can have a very large by conlent, and second-order
terms are tmportaut. Identification of second-order terms reqrtires perturbation

theory.'T="1 As a result, second-order sextupole tune-shift terins are of the same

form as the first-order octupole terms:

Av, = al, + b, + ¢6% and Avy =dI, + ol + ed® . {4)

The coeflicients a througl e scale as b3, The expression for a in a simplified lattice

15

. 2L 3425
a = ;{-_15—- dsB3.(s)¥? By(s) f ds'B.(s' )3/ By(s")
32rL 0 ]
g {3«:05[4‘,(5'). ~ tho(s) — 7y 4 oo (o (s") — Yoz (a) — m.:,]} '
sin(7;) sin{3my, )

where C' is the ring circumference, Ba(s) is the normalized sextupole strength,
(s} is the betatron phase, 11; is the cell tune, and Aw, is the full-ring tune shift.
These terms are double integrals with phase factors and a discontinuity at s = '
and are not closely fitted to Simpson’s Rule half-cell integration. Because of the 43
dependence, all of these terms are naturally positive after first-order correction. The
first-order bs correction with only F and D clements reduces second-order terms by a
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factor of ~ 5; however, the by SLAT is only increased to 2.7 x 1074 cin~?, somewhat

5 x 1074 ¢m~—2

below the desired level of ~ . Addition of a C sextupole corrector
reduces these terms by a factor of > 4, increasing b; lolerance by a factor > 2 to
a level above the estimated SSC dipole levels. Setting the C corrector strength by
Simpson’s Rule ( f¢c = 2/3) or “equal-weights” (fc = 1/2) obtains similar correction
(See Table 1I1).

Second-order by correclion can he greatly hinproved by using the IF, C, D oc-
tupoles. Unlike #3 terus, first-order octupole terms Lave opposing signs [see Eq. (2)],
aud there are only three correctors for five independent terms. However, the neg-
ative terins in Eq. (2} have similar dependence with relatively enhanced values at
the C correctors (see Fig. 3). The correction strategy is to use the C octupoles
to correct the b and e terms in Eq. (1) and the F and D octupoles to correct the
others; the ratios of F, C, and D strengths per half-cell are ~ (1: —-2.7: 1).

The reduction in noulinearity can be very impressive. The correctors can be
tuned to correct completely either amplitude or chromatic Av with the remanent
terms reduced by > 10x. The SLAT tune shifts can be reduced by a factor of
> 30, increasing b tolerances to > 30 x 10 %cm ™2, providing an extremely large
safety margin (see Table III). Other noulinear effects such as orbit distortion remain
small, provided cell resonances are avoided. Because the octupole tune shilts are
linear, there is no interference between their 52 and b3 correction roles. The use

of F, C, and D octupoles to correct second-order sextupole nonlinearities adds an

extra operational dimension, conceptually similar to the use of F and D sextupoles
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to correct quadrupole chromaticity. Their use may be extended to control nonlin-
eurities [rom other elements such as quadrupoles; for example, all A7 tune shifts
can be cancelled to zero, regardless of their sources.

With first order ha, b3, b; and second order b2 correction, the SSC dipoles should
satisfy the SLAT with a safely margin of more than an order of magunitude. This
gives the SSC design the ability to correct nnexpectedly large nonlinearities. The
safety margin may also be used to obtain a linear aperture much larger than min-
imal, which can be exploited to inmprove operational reliability and increase lumi-
nosity. Although the specific numerical results are SSC values, the saine correction
method can be applied to any synchrotron with large nonlinear fields, such as the
CERN Large Hadron Collider,'* with similar sinprovements in linearity.
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TABLE . Tolerances and estimated strengths of systematic multipole content in the SSC dipoles. All
multipole strengths are in units of 1074 em™", The tolerances are ohtained from the SLAT. Estimated
strengths are extrapolated from Tevatrou data or calculated from the magnet properties.

Telerance in Fstimated Systematic Persistent Saturation
SSC Lattice Random Etror Strength Current Multipole Multipole
Multipole {230 m, 90° Cells) (Tevatron) (Tevatron) Strength Strength
by 0.0097 2.0 0.45 -4.7 1.2
ba 0.017 0.35 -0.14 - -
by 0.031 0.60 -0.33 0.30 -0.05
bs 0.054 0.06 -0.024 - -
ba 0096 0.08 1.57% 0.07 -0.01
by 0.7 0.16 0.009 - -
by 0.29 0.02 -2.1% <0.02 0.02

¢ The higher allowed multipoles (ba, ba) were not minimized in the Tevatron design; the SSC
conductor placement should reduce these within tolerances.!

TABLE II. First-Order Correction of b3, by. The correction factor is the ratio of uncorrected
to corrected Aw in the SLAT aperture. The tolerance is the maximum corrected b,, permitted
under the SLAT criteria.

Correction Condition Correction Factor Tolerance {10~ %em™")
b3 (Octupole) Correction

No correction 1.0 0.018
F, D, correction of chromaticity” 1.9 0.033

{fr = 0.28, fp = 0.70)
F, ¢, D correction, Simpson's Rule 93 1.6

{fr. fc. fp) = (1/6v ‘1/6. 11’6)
F, C, D correction 370 6.7

{fr, fc, fp) = 0.99 (1/6, 4/6, 1/6)

by(Decupole) Correction

No correction 1.0 0.029

F, D correction of chromaticity” 14 0.04
{fr, = 0.24, fp = 0.93)

F, C, D, cotrection, Simpsou's Rule 31 0.9
(fr, e, fo) = (L1/6, 4/6, 1/6)

F, C, D corrections 860 24

(fr, fc, fp) = 0.99 (0.16, 0.67, 0.17)




TABLE Ul Second-Qrefer by Correction

Correctinon Condition Correction Factor by Tolerance {10-%em~3)
No correction 1.0 1.2
F, D chromatic b; correction 5.1 2.7
F, C, D clhiromatic bs correction, 24 5.9
“equal weights {fc = 0.5)
F, C, D chromatic correction, 23 5.7
Simpson's Rule (fc; = 01.667) '
F, D fiest-order b2 correction (fe3 = 0), 120 13
F, C, D octupole second-order correction
F, C, D fitst-order bs correction (fc3 = 0.5 to 0.67), 700 32

F, ¢, D octupole second-order cotrection




Fig. 1. A svimnetrical SSC cell. The element labels are: B - dipoles, F, D
- quacrupoles, S - slots for correctors, C - cunter cotrector slot. The correctors
on opposite sides of the F and D quads may be lumped on either side and exact

symmetry is not necessary.

Fig 2. Betatron functions {3.,3,,%) for a full SSC cell. The functions that
appear in the sextupole tune shifts (3.n,8,n) are also shown. Note the derivative

discontinuity and the reflection symmetry about the center quadrupole.

Fig 3. Octupole tune-shift functions (87,28:8,,82, 8:1%,8,n%) on a half cell.
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