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Introduction

When & beam is kicked transversely from the closed orbit, it begins making
betatron oscillations about the closed orbit. The oscillation can be observed with
beam position monitors, which give the centroid of the particles in the beam. If
the particles all have the same betatron tune, the observed centroid motion is
harmonic. However, if the beam contains a épread of tunes, the motion will
decohere as the individual betatron phases of the particles disperse. The phase
space distribution of the beam spreads from a localized bunch to an annulus
which occupies all betatron phases, and the observed centroid of the beam will

show a decaying oscillation.

This note will consider decoherence due to two sources of betatron tune
spread: The beam bunch may have an intrinsic betatron tune spread due to
transverse nonlinearity, and there may be an additional tune spread due to the
energy spread of the beam which is coupled to betatron tune through the chro-

maticity.

Both of these problems can be solved exactly, using appropriate assumptions.
In the case of transverse nonlinearity, we shall assume that the transverse distri-
bution is Gaussian. This implicitly assumes that the distortion of phase space
trajectories due to the nonlinearity is small. Also assume that the tune shift with

betatron amplitude is a quadratic function.

For the case of decoherence due to chromaticity, we shall assume that the
synchrotron motion is linear and that the energy distribution is Gaussian. Also
assume that the energy distribution is uncorrelated with the transverse distri-

bution, so that the chromaticity decoherence acts on each small cell of betatron

1



phase space independently of the others. Then the decoherence due to chromatic-

ity is completely independent of the transverse distribution.

Decoherence due to Chromaticity

The betatron tune shift of a particle due to chromaticity is

Av(N) = £ §cos(2nvyN + ¢,) , (1)

where £ is the chromaticity, N is the time measured in turns, § is the synchrotron
amplitude, and ¢, is the synchrotron phase at N = 0. The synchrotron amplitude
is in relative energy units, with the actual maximum energy displacement of the
particle being é times the nominal energy Fy. Let ¢, be the rms relative energy
spread, so that the actual rms energy spread is o,Fj. Then, the betatron phase
shift is

N
AY(5, de, N) = 2 f dN' Av(N') =D 6, 2)
0
D =2ty sinmusN cos(mvsN + 6s) . (2a)

First find the distribution of particles in betatron phase as the beam deco-
heres. This is a delta function at N = 0, and will spread out with time. However,
after a full synchrotron cycle, the distribution will return to a delta function, since
the tune shifts are sinusoidal and will average to zero over a full cycle. The distri-
bution is found by making a change of variables in the synchrotron phase space

distribution, and this can be done conveniently by representing the betatron

distribution as an integral over a Dirac delta function. This method gives

o0 2x
p($,N) = / ds / dds po(8) (6 — AY(5, 64, N)) | 3)
0 0



with the synchrotron phase space distribution

1 42
p8) == 8 ¢ /207 (4)

Performing the § integral gives
1 2x
p(6.N) = 5 [ 46, D0 (4/D) (5)
0

with D as defined in (2a). The integral over all phases ¢, doubly counts the
peaks of the Dirac delta function, and the factor of 1/2 compensates this. The
integral in (5) is now dispatched using the change of variables

u=¢ tan(mveN + ¢s) , (6)
which gives
¢ i 1
Ly e —67% /207 _ —¢?/20?
o6, M) =25 e 0/ du e v IR
where
a = 205¢v;! sinwv N . (7a)

Now, assume that the particles were initialized with betatron amplitude a.
Then, the centroid of the distribution p has an amplitude a(N) = aA,(N), with

the decoherence factor A, given by
AN) = [ d cost plg,N) =2, ®)
-0

with o as defined in equation (7a). The integration limits are set to infinity to

include the particles which have “lapped” those with ¢ = 0.
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This chromaticity decocherence should have no effect on the measured tune,
since the betatron distribution is always symmetric about the nominal betatron
phase, and hence the centroid of the distribution is always at the nominal betatron

phase. The decoherence function A, is plotted in figure 1.

Decoherence due to Nonlinearity

The betatron phase space at a given point in the accelerator can be repre-
sented in pseudo-harmonic coordinates a and ¢, where a = /fBe/o; and ¢ is the
Courant-Snyder invariant. Note that the amplitude has been scaled to the rms
beam size, so that the actual displacement is & = oza cos(2avN + ¢). ¢ is the

betatron phase of a particle at N = 0. The transverse distribution is then

p= -}- a 6_02/2 . (9)

Now consider that at N = 0 the beam has been kicked by an angle Az'.
This places the center of the beam at an amplitude Z = 8Az'/e,. The resulting
distribution for the kicked beam is

1 2 72
pi(a, ¢) = 5 a e~ (8" +Z"~2aZ cos ¢)/2 _ (10)

Now introduce a quadratic tune dependence on amplitude:
_ 2
v =1y — pua® . (11)

This produces a phase slip A¢(a, N) of the particle at amplitude a relative to

the phase of a particle at the linear tune vp:

A¢(a,N) = —2x pa® N . (12)
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The centroid Z{N) of the betatron distribution is now given by

00 2r
F(N) =0, /da /d¢ a cosd prla,¢ — 2miyN — Ad(a,N)) . (13)
0 0
The ¢ integral is a representation of the modified Bessel function, giving
(0.2}
Z(N) = o, fda a? e~ (@+29/2 cos(2mgN + Ad(a,N)) I1(aZ) . (14)
0

This integral is then done using Gradshteyn and Ryzhik formula 6.631.4 to get
E(N) = oz a(N) cos(2roN + A¢(N)) , (15)

where a(N) = Z A(N) is the amplitude of the centroid, A is the decoherence

factor

ANY = — z: ¢ 15
“1ve P|T 21| (13a)
and A¢ is the phase shift of the centroid,
AP(N) = _Z e — 2arctané (15b)
T T2 1y T CArelARs
The time dependence is contained in 8, given by
0=4m u N . (15¢)

The decoherence factor proceeds as a Gaussian at short times, and then

changes to a 1/N? power law. Initially, A = 1 and the amplitude is a(0) = Z.
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The transition from Gaussian to power law behavior occurs at a characteristic

tune (i.e. inverse number of turns)

QRp=4dmyu, (16)

which gives § = (pN. The Gaussian part of the decoherence proceeds with a

second characteristic tune

Q=2Q, =4npuZ. (17)

This indicates that the Gaussian decoherence is only observed for Z » 1, when
the beam is kicked to an amplitude substantially greater than the beam size.

Then the decoherence factor is approximately
A(N) m QN2 (z 1) (18)

In the case of small kicks, Z < 1, and the decoherence factor is approximately

1
AN ) ————— . Z<&1l) (19
M)~ TG (2 <1) (19)
The general decoherence factor can be rewritten as
1 1 1
AN)=o—i—+ ~=(Qy N ——— 20
W =17y 2% 1Ty 20)

The decoherence factor A is plotted for several values of Z in figure 2.

The tune shift of the centroid motion A# is obtained as the derivative of Ag

with respect to 2z N:

o 1 - (QpN)? 1
AN = ~HE QNP T MTT G (21

The tune shift of a single particle for a kick of amplitude Z is just —uZ?. Note
that at short times after the kick, i.e. for QpN < 1, The centroid tune shift
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contains an offset: AV~ —puZ? —4u. The offset —4yu is equivalent to the tune
shift of a particle at an amplitude of twice the rms beam size, and for small kicks
this offset dominates the observed tune shift. For @,N > 1, Av — 0. This is
because the decoherence proceeds most slowly in the region of phase space near
the origin, where the slope of the tune shift with amplitude is smallest. Hence the
structure of the kicked beam persists longest near the origin, and the particles in

this region have tune shifts near zero.

Combined Decoherence

The consequence of both of the above effects acting together can be easily
seen. Since the chromaticity and nonlinearity effects are independent, then the
actual distribution in betatron phase ¢ is the convolution of the two distributions
(7) and (10). The computation of the centroid displacement Z in equation (13)
has the mathematical form of a Fourier transform, and since the distribution p;
is now a convolution, the resulting decoherence factor is just the product of the

decoherence factors A, in equation (8) and A in equation (20).

Measurement of Tune

Consider the problem of measuring the tune of the accelerator by kicking a
bunch to amplitude Z and observing the centroid signal Z(N). This technique
might be used to determine the constant u, for example. For a kick of Z, the tune
shift of a single particle would be Av = —uZ2, However, the centroid tune of a
many particle bunch A7 is a function of time as shown in (21). Two methods of
obtaining a measured tune Avy, are by locating the peak in a Fourier transform

of Z(N), and by counting cycles of Z(N).

Consider first the peak of the Fourier transform. The location of this peak
can be found by examining the Fourier transform of equation (14). Only the real
part of the fourier transform can be found easily, but this is sufficient since the

imaginary part passes through zero near the peak. This is because the function
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#(N) = 0for N < 0, and so the real and imaginary parts of the Fourier transform
are connected by the Hilbert transformation, which associates zero crossings with
peaks. Let X(v) be the transformed beam signal. Then

X0
Re X(v) = 0» [da a? e~ +27)/2 §(v — vo + pa®) Ii(aZ) . (22)
0

This trivial integral gives

— -(a*+2%)/2 .
Cae L(aZ), for|v| < vy (23)

ReX(u){

, for |v{ > vo,

where C is an irrelevant constant, and the tune v is implicitly represented by the

equivalent amplitude a:
v=uvy — pa’. (23a)

Differentiating in v and setting to zero to obtain the peak gives the equation
for the measured tune shift Ay, again represented implicitly by the equivalent

amplitude ap:
2% = amZ IiamZ2)/I{amZ) . (24)

A plot of a, versus Z is given in figure 3. The asymptotic form of the solution

for large Z is
1

ammz+ﬁ,

(Z>1) (25
and the small kick result is
am ~ V2 . (Z < 1) (26)

In the case that the tune is measured by counting cycles of Z(N), the mea-

sured tune is the phase shift at the measurement time divided by 27 N:

1

At = —pZ% e
o T Y (Qp N )

— 4p (QpNm)™! arctan(QpNm) , (27)
where N, represents the turn of measurement. This measured tune has the same
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qualitative properties as the centroid tune A#: For small N,
Avm = —pZ? — 4p, (QpN <« 1) (28)

and for large N,
Avp — 0. (@QyN > 1) (29)

The measured tune, represented as equivalent amplitude a,,, is plotted in figures
4-6. Figure 4 is a plot of a,, versus Z for fixed measurement time N,,, where the
dotted lines indicate that A < e™2. Figure 5 is a plot of a;, versus Z for fixed

decoherence factor A, and figure 6 is a plot of a, versus decoherence factor A
for fixed Z.

Conclusions

The centroid of a kicked beam can be calculated as the beam decoheres with
time. The required assumptions are that the beam is Gaussian in width and
energy, that the chromaticity is linear, and that the betatron tune is quadratic
in amplitude. Let the relative energy width be o,, the tune shift with amplitude
be —u a?, and the kick amplitude be Z, where both a and Z are normalized to

the rms beam size. Then the resulting centroid motion is
Z(N) = /Be As(N) A(N) cos(2ruN + Ag(N)) , (30)

where A, and A are decoherence factors due to chromaticity and nonlinearity,

respectively:

AfN) = e@/2 (31)
a =20,v;! sinmy,N , (31la)

A(N) = (32)

1 1 1
T+ (Q, N P ["5(‘29”)21 e (QPNP] ’

where @, and @ are characteristic tunes (or inverse turn numbers) which mark
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the progress of the decoherence:

Q=47 p, Qg=ZQp- (33)

The centroid phase shift is

Z? QN

AN =~ TG NP

— 2arctan(QpN) . (34)

From these formulae, the results of amplitude and frequency measurements of a
kicked beam can be predicted.
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Measured Tune from Fourier Transform
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Measured Tune from Phase Count, N Fixed
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Measured Tune from Phase Count, A Fixed
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