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Introduction and Objective

We previously outlined an analysis to quantify the probabilistic confidence for specified availa-
bilities obtainable from accelerated life tests on SSC magnets.»? That analysis was based on a
form of Bayes' theorem; thereby involving certain subjectivities and ambiguities™ The objective
of the present analysis is to outline and illustrate a method of refinement by which those subjec-
tivities and ambiguitics may be reduced systematically to an absolute mathematical minimum.

Bayesian Prior Probabilities

Bayesian statistical analysis is peculiar in that it requires prior probability measures on the
independent variable. In our case prior probabilities of the possible trial failure rates for the indi-
vidual SSC magnets are introduced to compute the probabilistic confidence that the actual
effective failure rate corresponding to a specified system availability is supported by the evidence
gained from accelerated life tests. The Bayesian prior probability distribution quantifies prior
information known about the system to be analysed. Its specification is (notoriously) susceptible
of introducing subjective bias beyond those conditions that are explicitly required by the objective
data (of prior information). It is necessary that the specification of these prior probabilities
correctly comprehend all the objectively known and relevant prior data, and include no effects
beyond that supported by the data.

In our previous analysis this subjectivity was manifested in our choosing for illustrative pur-
poses a microcanonical distribution of prior probabilities for trial values of the effective failure
rate A. The microcanonical distribution represents the prior information, or ignorance, about the
trial A's by restricting them to a cutoff region A¢{ A Ay, and no other condition; i.e., proba-
bilities are uniformly distributed within this cutoff region.

Maximum Information Entropy Method

In the present analysis this subjectivity is eliminated in the sense that the unique prior proba-
bility distribution obtained contains the effects of all the information from the test data, and
maximizes the ignorance, or absent information not specifically supported by the data. OCur
method is to derive the unique prior distribution which variationally maximizes its information-
theoretical entropy subject to the constraints that account for all the objective data resulting
from accelerated life tests. The information-theoretical entropy represents the information that is
absent from our prior probability distribution; or it represents the uncertainity included.

This information entropy would be zero for a distribution that exactly specifies complete
knowledge of the state of the system; such as a distribution that specifies with unit probability
one value of A and zero probability all other values.

The distribution which maximizes the information entropy subject to the data is of the canon-
ical form; as opposed to the microcanonical form chosen in our previous analysis. The empirical
forms of both distributions are strikingly similar, and their effects under the integrals in our
analysis are very similar; so that our previous choice of the simple microcanonical distribution for
heuristic purposes was gratifyingly astute.



Analysis

As was the case for our previous analysis, the data are of the form of probabilistic evidence
that a sampla of N magnets survive y equivalent operational years of accelerated life testing with
no more than n failures. We then compute the probability, or confidence, that these test results
would imply that the actual effective single-magnet failure rate A is less than a value A that is
specified by the required stationary availability of the whole SSC system.

The probability that a sample of N magnets will survive y equivalent years of operational
cycling (about y weeks of testing) with no more than n failures is
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where p(A,y) is the probability that an individual magnet will survive y equivalent operational
years of cycling with a (trial) failure-rate function labelled by A.. Under our assumed exponential
failure hypothesis p(A,y) 2= exp(-Ay). A more realistic model of the failure function could be
inserted into Eq.(1). The important point is that Eq.(1) gives the probability of a sample of N
(identical) magnets surviving y equivalent operational years with  n failures under the assump-
tion of a definite given failure law with a definite given effective failure rate A. But this effective
failure rate is what we want to infer from the test results, namely, that & sample of N magnets
survives y equivalent operational years of testing with  n failures.

We quantify our confidence that the actual effective constant failure rate A is less than A
may be inferred on evidence of an N-magnet sample surviving y equivalent operational years of
(test) cycles with no more than n failures as
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In this expression we have assumed a continuous distribution of conceivable values in the domain
of the integration variable A. The function E: (A) weights the probability distribution of the vari-
able on this continuum on the evidence of all prior information, and the label ¢ in the arguements
of R indicates its functional dependence on this prior probability distribution. The numerator
integrates over all possible values of A up to the hypothetical test value A the probability of the
outcome of our accelerated life test on condition of the prior distribution. The denominator
integrates the same function over all possible values of A. The ratio R is the probability that
the value to be inferred from our test results lies in the interval 0 A < X, subject to the prior
distribution B. {A).

The expectation of a given set of test data on the assumption of the variational trial distribu-
tion of prior probabilities F.(A) is
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The information entropy of this trial distribution is
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The variational maximum of I subject to the constraints of the data D and the normalisation con-
dition is obtained as the zero of the functional derivative with respect to R:(A) of the quantity
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where dj, and ¢ are Lagrange undetermined multipliers.
Setting to zero the functional derivative
©® 0= %}_ = - In B(#) - 1 - 2p-,Pla,Ny|3)
we can solve for
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We see that Py () = P (¢,,n,N,y|A) depends on n,N,y as well asA. This is in addition to the

assumption of the exponential failure function p(3,,y).

The Lagrange multipliers are determined as solutions of the constraint equantions
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We will have no need to determine &, or @, explicitly.‘"

The resulting prior probability distribution which maximizes the information entropy subject
to data given in the form of expectations over the distribution ts the canonical distribution
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It is readily seen that in our canonical distribution &, plays the role of the usual Lagrange mult.i-
plier that in statistical mechanics is called & == 1/kyT where T is the temperature and ky is
Boltzmann’s constant; P{n,N,y|A) plays the role of the Hamiltonian, a dynamical operator
defined on the domain of variables A and parameterized by n,N,y. The data D(n,N,y) plays the
role of the average emergy , the expectation of the Hamiltonian-like P(n,N,y[A); which is
equivalent to specifying the temperature-like ;.

The Canonical Distribution

We want to see what the canonical distribution looks like on the A domain. The binomial
distribution P{n,N,y|A) can be put in the form
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where A(N,n) is readily computed and is of the order of n. So P(n,N,y|A) is smaller than .05
=exp(-3)} when
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P(n,N,y|A) decreases exponentially for larger values of Ay . . : small Ay we have
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The canonical distribution E. (A) = zZ' exp[-a,P(n,N,y|A)] starts from R, (2) = Z lexp(-t.v.,) at Ay
== 0 and ZF.(A) grows until it is effectively unity for Ay > 2%(N,n)y . For given N the effective
cutoff A;(N,n) grows with increasing n. Thus, the canonical distribution behaves as the curves
shown in Fig. 1. It is clear from the curves that the canonical distribution is quite similar to the
microcancnical distribution chosen for our previous considerations, especially when &, is large.
Large d, corresponds to low temperature in our statistical mechanics analogy. The principal dis-
tinctions are the soft,and n-dependent cutoff in the canonical distribution versus the hard, and n-
independent cutoff in the microcanonical case,

The canonical and microcanonical distributions of prior probabilities perform very similarly
under the integrals of our analysis. The microcanonical distribution
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with A¢ determined from Eq.(13) is 2 good working approximation for the canonical distributioin
of Eq(11). This microcancnical distribution was shown in Ref. 3 to afford a readily useable basis
for estimating quantitatively the probabilistic confidence in specified availability levels on evi-
dence of results of the accelerated magnet life tests as proposed in Refs. 2. The detailed analysis



is described and the results are summarized in Raef. 3.

An observation that will be of use for future refinements of ocur maximum information
entropy-Bayesian analysis is %0 be made of the fact that with the canonical distribution F.( 1), as
derived from our functional maximumisation of the information entropy and shown in Eqs.(7) and
(11), the expression for the confidence R{ A € X|n.N,y,¢) in Eq.(2) becomes
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which is the {raction of the missing information in the distribution F.(A) in the subspace A A
relative to that.in the whole space.

Results of Present Analysis

The results of the present analysis for n == 0 can be calcuiated analytically , and are shown in
Fig. 2. for the cases of N == 100 sample magnets andseveral values of the parameter 2,== 3 to 20.
The results of the present analysis for n == 1 and 2, calculated numerically for N == 100 and
several - values of &, are shown in Figs. 3. aud 4. The similarity of the results of the present
analysis with the corresponding results of the previous analysis are evident. Interpolations and
extrapolations in the canonical distribution cases follow the same rules derived previously for the
microcanonical distribution results to good approximation.



References and Footnotes

1. Accelerated life tests are necessary to assure that the SSC magnets can be expected with
specified confidence levels to perform at their specified reliability, availability and lifetime. See:
SSC Conceptual Design Report, SSC-SR-2020, Sec.5.2.1, p.267; and Report of Task Foree on SSC
Magnet System Test Site, SSC-SR-1001, See. III, A., p.9.

2.  An accelerated life test protocol for the SSC magnets has been established in: V. Karpenko,
correspondence with D. Brown, 7/1/86, and D. Brown, correspondence with V. Karpenko. The
proposed test protocol is summarized in E. Shrauner, SSC-N-215, 8/86.

The proposed test protocol allows for sampling in about one week of testing the equivalent
of about one year of ordinary operational cycling anticipated for the SSC. Availability require-
ments on the SSC magnet system are severe, because it is comprised of about 9500 individual
magnets in a serial-fault configuration. The individual component magnets must therefore be
extremely reliable. A general relation among the stationary availbility Ay , the mean time to
repair MTTR, and the mean time between failures MTBF is

Ag =1/[1+ MTTR/MTEF |

For our purposes MTTR is specified as in Ref. 1. to be about 1 week, or about 1/50 year. This
determines MTBF through the above relation for A, as specified in Ref. 1. Because of the serial
fault configuration of the component magnets in the system, a mean effective failure rate A for
the individual component magnets (considered to be all the same) can be assigned by:

A = 1/(9500 MTBF) = [(1/A,,) -1]/[8500 MTTR]

The assignment of a constant effective failure rate implies that the individual magnets fail for a
complex variety of causes. This so-called exponential-failure-function hypothesis is chosen mostly
for the simplicity of computation that it allows for obtaining rough estimates. If another failure-
function is required for reality it may be incorporated into the present analysis without alteration
of the structure laid out here.

The SSC Conceptual Design Report, Ref. 1., specifies Ay for the magnet system as required to
be 96 percent. On the other hand, it also specifies the availability for the whole SSC as required
to be 80 percent; and it might be thought that in the sense in which we are concerned the magnet
system is in some way equivalent to the whole SSC. For this reason both these values are con-
sidered in Ref.3. as perhaps two extremes of a range of values for A . The value Ay == 98
specifies A == 1/(4580 year), and the value A, = .80 specifes A, == 1/(760 year) , as determined
through the above relation.

3. Analysis of the probabilistic confidence for specified availability levels obtainable from
accelerated life tests on the SSC magnets has been outlined before in: E. Shrauner, SSC-N-215,
8/86; and E. Shrauner, SSC-N-254, 10/86.

4.  Neither the microcanonical distribution as used in the earlier analysis nor the canonical dis-
tribution used in the present is normalizable on the -domain extended to the open interval 0 <A



oo . This does not cause trouble because Eq.(2) itsell is of the form of a normalization condi-
tion. If this were to show itself to be problematic it could be regularized through the introduction
of an upper cutoff on the domain of support of the distribution.



Figure Captions

Figure Ia. The Canonical Distribution versus NAy for N == 100, &y==5 andn=0,1,2 .. as
obtained from Egs. (7) and (11) .

Figure 1b. The Canonical Distribution versus NAy for N == 100 , n = 0, and &; =
3,5,10,15,20.

Figure 2. The Probabilistic Confidence that the actual effective failure rate A does not exceed

X on evidence that a sample of N == 100 magnets survives y equivalent operational cycles of

accelerated life testing with n == O failures for several different {large) values of the parameter
& = 3 to 20, plotted versus NAy,

Figure 3. The Probabilistic Confidence that the actual sffective failure rate A does not exceed A’
on evidence that a sample of N == 100 magnets survives y equivalent operational cycles of
accelerated life testing with not more than n = 1 failure for several different (large} values of the
parameter @ = 3 to 20, plotted versus NA'y.

Figure 4. The Probabiiistic Confidence that the actual effective failure rate A does not exceed A’
on evidence that a sample of N = 100 magnets survives y equivalent operational cycles of
accelerated life testing with not more than n = 2 failures for several different {large) values of the
parameter @ = 3 to 20, plotted versus NA'y.
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