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Incorporation of Toroidal Boundary

Conditions into Program POISSON

L. J. Laslett, S. Caspi, and M. Helm

Abstract

A technique is developed for introduction of a boundary condition
applicable to relaxation computations for magnetic problems with axial
symmetry and with no sources (currents, or magnetized material) external to
the boundary. The procedure as described in this note is restricted to cases
in which the (toroidal) boundary will surround compietely the region of
physical interest but will not encompass the axis of rotational symmetry. The
technique accordingly provides the opportunity of economically excluding from
the retaxation process regions of no direct concern in the immediate neighbor-
hood of the symmetry axis and hence can have useful appiication to annular
magnetic devices with axial symmetry.

The procedure adopted makes use internally of the characteristic form of
the vector-potential function, in a source-free region, when expressed in
toroidal codrdinates. The relevant properties of associated Legendre func-
tions of haif-integral degree are summarized in this connection and their
introduction into the program POISSON is outlined. Results of some test cases
are included, to i1llustrate the application of this Lechnique for configura-

tions with median-plane symmetry.

I. MOTIVATION

In circular particle accelerators, with the possible exception of those of

the greatest size, one cannot entirely neglect the curvature of the structure



and of the guide field. In such cases the use of cylindrical codrdinates for
the solution of magnetostatic problems would be appropriate, and if in certain
Jocal regions the ¢ dependence can be ignored the independent variables ,

and Z become two in number.

Such magnetostatic problems are solubie, by relaxation programs such as
POISSON, in p, Z cylindrical codrdinates. As is the case with other applica-
tions of relaxation methods, however, there must be concern regarding a
suitable termination of the problem at the boundary of the mesh. (The
condition that normally is required is one consistent with the absence of any
*sources" in the region extertor to such a boundary.) In analyzing the
magnetic fields of circular particle accelerators, one may wish to restrict
the region of examination to that near the working aperture and surrounding
magnet structure, while excluding a very substantial area closer to (and
including) the axis of rotational symmetry for the entire structure.

For the reason just indicated, one accordingly is led to consider the use

of toroidal codrdinates, in constructing the boundary to a relaxation mesh for

use in analyzing the magnetic fields of circular devices (such as accelerators
and spectrometers), and in formulating the boundary conditions that then may
be usefully imposed at such boundaries. We pursue such issues in the follow-
ing Sections--commencing with a review of the characteristics of toroidal
cobrdinates and continuing with an examination of related magnetostatic issues
that will permit formulation of a boundary condition analogous in spirit to
those devised previously at this Laboratory for application to other configur-

ations. ‘2"

*References and notes are given at the end of this report in Section VII,
p. 33.



I1. TOROIDAl. COURDINATES
Joroidal codrdinates can be defined, in a manner illustrated by Arfken\’/
by
X =@ Sinh n cos ¢
Cosh n — tos §
_oy2 2.% a Sinh ¢
2= (X + Y =Tk n - cos &
y = a Sinh n sin ¢
~ Cosh n - cos
7 = a sin E

~ Cosh n - cos §°

The inverse transformation is given by

Tanh o = 2ap = __23p =2 p/a
P2+ ' +a* R*+a? (R7a)? +1
tan € = 2al =_2al = Z/a
p? + 2% -a* R* - a’ (R7a)* -1
tan ¢ = Y/X,
with
R = (p2 + 292,

The metric coefficients are

found to be as follows:

95 _ a —_
3t Cosh n - cos E

as a
3n Cosh n - COS §

s _ a_Sinh y

3 Cosh n - cos E°

r



We shall be interested chiefly in the gyeometsical characteristics of these

codrdinates in a planar section of constant ¢.

(1) Curves (surfaces) of constant n are circles (toroids) of radii
a Csch n centered at p = a Ctnh n, Z = 0. Curves of constant n thus extend,
in the mid-plane Z = o, between the limits p = a Tanh % and p = a Ctnh %.

(11) Curves (surfaces) of constant § are circles (spheres) of radii
a c¢sc E centered on the Z-axis at Z = a ctn E.
The projected curves thus exhibit a similarity to those generated in a plane

by a conformal transformation illustrated by Smythe.‘*’
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Fig. 1 Toroidal Cobrdinates (E, n, ¢)



IT1. The Differential Equation for the Potential

Through use of the metric coefficients cited in Sect. II, one can write
explicitly in toroidal codrdinates Laplace's differential equation for a
scalar potential function. As has been shown in some detail by HacRobert,\'/
solutions then may be found in which this potential function has the form of a
factor (Cosh n - cos E)* times the product of separate functions of the
codrdinates n, £, and ¢. For such solutions, the functions of £ and of ¢
are each just circular functions of their respective arguments, and the
functions of n are Legendre functions (or associated Legendre functions) of
half-integral degree and argument z = Cosh n.

In the present work, however, we are specifically interested in POISSON

computations of magnetic field, for cases with axial symmetry, and wish to

*
make use of a vector-potential component A¢ (or A = pA¢) to characterize

» -
this field. The homogeneous equation ¢ x [¢ x A] =0 for A = A¢c¢ then

s h"z Whele) 1 v a [ Mg 2007 L
an { hh 2n 3 hEhtb 3E

may be written

or, with insertion of the metric coefficients cited in Sect. II,

3_JCoshn -cos E 3 _ Sinh n A
an Sinh n an \Cosh n -~ cosE ¢

+ 2 |Coshn —cos § 3 Sinh n A =0
Y3 Sinh n 3t \Cosh n - cos E -

wherein the dependent variable A¢ is to be regarded as a function of n

and £, but independent of ¢.



guided by the fcrm known to be appropriate for the scalar-potential
solutions to Laplace's equation in toroidai coordinates, we may proceed

neuristically to achieve a separation of variables in the present case once A¢

is divided by the factor (Cosh n - cos E)% We accordingly write the vector-

potential component A¢ in the form

'ﬁ *
= (Cosh n - cos E)  cos n§ G(n).

A¢
With this substitution, the differential equation assumes the form

i )
9 tCoshn -cos § 3 Sinh n_c0s nf G(n))
an ] Sinh n an \//Eosh n - cos
+ & Costsminh— cos § 9__( 3inh n cos n§ G(n)) = 0 ,
13 nh n :13
Cosh n - ¢
i J/Coshn -cos £/

and (following some intermediate algebraic work) the § dependence then is
found to disappear (as hoped), and there remains only the ordinary differ-

ential equation for the factor G(n) itself:

d_ (Sinh n « G) (n-?)(n+1)+ -
[ﬁ " ] [ S1nh 6=0

n - 1/2),

1
Sinh n

or, with z Cosh n serving as the independent variable (and v

*Only the use of a factor cos nE (in preference to a factor sin ng) is
indicated here, since we shall ultimately wish to specialize to cases with

median-plane symmetry such that the function A¢ is even with respect to the

variable E.



d 2 dé | - ¥ -] =

%7[(22—'!)%%:'—[221‘]+u(v+}):'6=0

Solutions to the differential equation for G can be written as directly

ar

proportional to associated (m = 1) Legendre functions of degree v = n - 1/2
and argument z = Cosh n. We shall employ in the work to follow only the
functions of the first kind, P:=n~5(z = Cosh n) or quantities proportional
thereto, in order to avoid singularities developing at remote locations (or

as the argument z approaches unity from above).\’/

With the index n confined
to integer values (to insure a single-valued dependence upon the codrdinate
£), we thus are confined to terms of the form

For A.: (Cosh n - cos E)% P;=n_%(z = Cosh n) cos ng§

¢
or
*
For A : Sinh ¢ - P‘=n_$(z = Cosh n) cos ng
(Cosh n - cos §}° V
that contain as factors Legendre functions of half-integral degree (v = - 1/2,

1/2, 372, ...) and which we choose to bé even about the mid-plane ¢ = 0.

Comment:
It is of interest to note that the vector potential for a single

\¢/ has shown

current-carrying circular loop at p=a, that Smythe
expressed in terms of complete elliptic integrals, can be equiv-
alently expressed'’/ in terms of a single term of the form shown
above for A¢ {namely, a term with n = 0, or v = - 1/2). The

£ -dependence under such circumstances thus evidently arises

solely through the factor (Cosh n - cos E)%-



We conclude this section by an Appendix in which we present, for

later use, certain properties of the functions P:=n—$(z = Cosh n).
APPENDIX TO SECTION III

1. Relation of the Legendre Functions to Complete Elliptic [ntegrals

The Legendre functions of half-integral degree can be related to
the complete elliptic integrals K and E. Explicit forms for the
ordinary Legendre functions of degrees - 1/2 and 1/2 have been given

by Irene Stegun\'/ in terms of elliptic integrals of parameters

—=2n

=2-1z 2 =2\/zﬁ_-| = -
ma 1 (Tanh %) or mg (& 1 -e

~N

2+ V22 -1

We thus have the respective equivalent forms

K -n/2
p_(z:Coshn)=g A =2 ™%
4 “Coshn * B
and 2
P, (z=Coshna)=2]2(Coshn)E - __Eﬂ_. =2 "3
% v 2° A Cosh % v B

since elliptic integrals with such different parameters are related in the

manner indicated by Milne-Thomson. **/

To obtain the corresponding forms for the associated functions Pf%(z =

Cosh n) and P;(z = Cosh n) one may make use of the retation %/

P:(z) = ,/z’ - gi P (2)



with the result

- K n/z _ .~n/2
P! (z = Cosh n) =1 Ep " Ka_1® Eg-e (Cosh n) Ky
~% * Sinh % v Sinh n
- n/2 _ ,n/a
PL (z = Cosh n) = 1 (Cosh n) Ey - Ky -1°¢ (Cosh n) Eg_ e Kg
* v Sinh n

¥ Sinh 0
2

From such results, additional associated Legendre functions of higher

degree can be evaluyated sequentially by application of the recursion

retation'’/
1 . 1
ot (2 = Cosh n) = 2(n + 1) (Cosh n} P, (2) -~ (n +3/2) Pr-1s2(2)
Nta/2 n+1/2

2. Small -Arqument Form

A 1imiting form for the functions P:=n—1/a(z = Cosh n) in the

\s/

limit n » 0 has been cited in Note ~ - namely

1
Pv=n-1/2(Z

= Cosh n) = m_; 1) p=1(n- 1/2)£n £ 1/2)

3. lLarge -Arqument Approximations (z and n approaching infinity)

For large values of the argument, the functions Pt(z) become quite

large when v > - 1/2, as is shown by the limiting form*'?/

PY(z) - 2" Tv + 1/2) 2° for v > -1/2

NiE (1 +v - )

so that, in particular (for half-integral deqree and order m = 1),

- |
pt (z) - 22" "2 [(n - 1)e)® T 1,2,3...
v=n-1/2 Ll |

(2n - 2)-
An expression of this nature may prove useful for "renormalizalion" of

such Legendre functions in order to obtain alternative functions of

more convenient magnitude for computational work.

10



1t remains to comment on the laryc argument behavior of the
function P! (2 = Cosh n). An estimate of this function may be

obtained from the elliptic integral form cited earlier

P (z = Coshn) = 1 _5___5 = IErIth m = (Tanh n’
% v S‘inhlal A 2

tn(4 Cosh %) -1

Sinh 1
¥ 2 ,/Zz

This function accordingly commences with a small absolute value [Ptllz(z =

- -

Cosh n) = - g] when the argument is small, and approaches zero again for
large arguments. The function reaches a maximum magnitude (Ptllz =
-0.1739638462) for n near 2.5285 (z = 6.307). There thus appears to be no
computational reason to consider renormalization of this particular function
(in contrast to those of higher half-integral degree).
ced

1he characteristics of the functions Pt=n'1/z summarized in this Appendix
have been spot-checked by computational tests, and certain values also have
been confirmed by reference to published tables. '’ The ability of forms
cited for the vector potential earlier in this Section to satisfy Lapiace's

equation likewise has been checked numerically by finite-difference approxi-

>
mations to curl [curl A] = 0.

n



IV. APPIICATION .

»
In application, we shall use the forms for A = pA¢ that we have found in

earlier Sections to guide the means of extending this function from an “inner*

boundary curve, n = n to points on a surrounding “"outer® boundary curve.
i Y

n’
This "outer", or surrounding, boundary curve may conveniently be taken also to
be a curve (surface) on which the toroidal codrdinate n has a constant value
{n = "out)'

It appears computationally desirable, however, to regard the function A*

as represented not in the form of a series that contains as explicit factors

1

the Legendre functions Pu=n—$

(z = Cosh n), but that introduces in their place
factors that represent such functions renormalized as follows:

The function P:% does not require renormalization, since its value remains
finite (and in fact tends toward zero) as the argument becomes 1nf1n1te.\"/

The functions P: of higher half-integra) degree are renormalized, through
division by the asymptotic form for P:. to provide the working function for
computational use.\"/

To evaluate such working functions, that we here shall denote by the
dimensioned variable ASP(k) with k = 1,2,3,..., to replace the Legendre

functions Pz=k~3/2(z = Cosh n), we may first compute the interim quantities

]

AP1 = P:%(z) and AP2
\1s/

P;(z) from the elliptic-integral formulas cited
earlier. Likewise one may form the quantity

AP3 = 4.0 z AP2 - 3.0 APY,
which is identical to the Legendre function P:/z(z) by virtue of the recursion

relation for such functions.‘**’

Through application of the asymptotic forms
for the functions of degree +1/2 and greater, the working functions ASP(k) may

now be identified as

12



ASP(1) = AP1 [being simply Pi*(z)]
ASP(2) = T AP2

Jez
ASP(3) = ——%__ AP3

4z /22

and additional renormalized functions can be formed through use of the

recursion relation

ASP(k) = ASP(k-1) - —f{2k = 3.)(2k = 7.} _ .« ASP(k - 2)
16, (k - 2.)(k - 3.) z*

for k > 3. For terms of identical degree v = k - 3/2 (or identical index,
k) but different arguments, it then follows that the Legendre function factors

will be in the ratio

P (z) [z \* AP (k=n+1)f
v=N-%"' "2 ,-_(_g_) . or zz
1 -
P“=n_u(zl) z ASP (k. = n + 1) for z1
where o forn=0k-=1) so that in this instance the
factor (zzlzl)uk becomes unity
@ = and can, in effect, be ignored
v=n%-= k-% forn 21 (k 22) .

To specify in toroidal codrdinates a suitable inner boundary, from POISSON
computation of a magnetostatic problem with rotational symmetry, we first
select a suitabie region of interest in p, 7 space such that one is assured
that there are no *sources" exterior to this region. Such a circular region
of constant n, centrally located about the mid-plane, may be specified\"/ by

means of the radial codrdinates (measured for the axis of rotational symmetry)

n. n
= —_in = _in
P..a a Tanh > and Pib a Ctnh s

13



of the points of intersection of such a circle with the mid-plane (Z = 0).
Alternatively, one could specify the location pt’o of the center and the
radius R1 of such a circle.

From the first type of specification, it follows that

"l.i %

= % n -
a=1{(p P, p) + 94, 15 given by Tanh - " (p, 272, ) »
Ctnh 210 - Taph Nin . b
R =acCschn, =a 2 2 ="i,b"Pa
b 1" 2 2
and the center is situated at
Ctnh E%E + Tanh E%E b p+p
- = - a
P, o= aCtnhn, =a 3 a,b” 2._1_;._

Alternatively, from the second type of specification

e 2
as V/pl’o Rl N P is given by Sinh Nin (_ﬁ;e) ]
1
Pr,a~ Pro” R.l » and Pib T Pio M R:. .

To specify the surrounding “"outer" circular boundary at n = Tout {with
the same value of the parameter "a", but with the center displaced from that
of the "inner" boundary), it may be convenient now merely to specify the
intercept (the lesser intercept)

P, .= P

2,3 - AX = phu ~ (R1 + AX)

1,d
of this outer curve with the mid-plane. The quantity Ax should be no less
than the mesh spacing desired in this region. With the parameter "a" already

known, it follows that "out is then given by

n
Pra=P a8 =p _ -(R +ax)=a Tanh -%!E

2,3 lpa 1,

14



One also may continue to compute for ihis “outer" curve the other intercept

n 2
p, p = @ Ctnh _out - &
* 2 ‘°z,a
the radius
2 2
- a? _
R = a Cschn = Pa,b " Paa. P,,a
2 out 2 2P=,a
and the location of the center at
2 2
+ a” +
P = 3 Ctnh n = Pa,b le_g = Pa,a
2.0 Out 2 sz’a

At any intermediate stage of the relaxation process (executed on a mesh in
p, I space), following some complete relaxation pass through the mesh, one
will have available provisional values of the working variable (A* = pA¢) at
mesh points on the inner boundary (“in) where the values of the ¥ codrdinate
have explicit values 21. It then will be the object to employ these values
of A* to revise ("update") the values of A* at mesh points on the outer

boundary, n {< “in)’ so that they can be used to revise internal values

out
when continuing the relaxation process. We discuss this process of
boundary-value revision in further detail below.

We may imagine the values of the provisional vector potential on the

boundary curve Nin to be developed in the form of a Fourier series

for situations of
a A¢(nin,g) = \/Ebsh n., - €Os § k§1 C, cos(k - 1) e?en symmetry,

with respect to

E, about z = 0.

or, for the working variable A* = pA¢. in the form of the series

A*(nin.E) = Sinh nyp 3 €, cos(k - 1)E, ;izce Sinh n
k 4 Cosh n -~ cos &

\/Cosh ny, - €0S E k=1

15



The coefficents of such a development can be obtained by a weighted fit of

-1
Sinh Nin

*
values of A {njpn,.§4) at some or all of the mesh

\/Cosh Ny - €OS 51

points at locations E; on the inner boundary in:

The transfer to the outer boundary (n ) of the implications of such a

out
development then follows from recognition of the n-dependent factors

P _(Cosh ) ‘or P;_3/2(Cosh n) [k=n+1]

that should be associated with factors cos nE [= cos(k - 1)E] %n such a
developmeni. For the purposes of forming ratios, we may conveniently make use
of the scaled (or "re-normatized") quantities ASP (introduced earlier in this
Section), for which

P*(z) [z VX ASP(k = n + 1) for z
v=n-% | _2 2
ASP(k

Z
1

n

n+1) for z

PH(z,) .

with v=N-%

a
o forn=0(k = 1) [ﬁo that in this instance, the factor (23/21) 5]

ek becomes unity and can, in effect, be ignored

ven-%=%k-3/2fornz1(k22).

The results extended to points Nout® 53 ON the outer boundary circle thus

J
provide the values

Sinh Nout

ak
3 ¢, [ Cosh Tout

A*(nout.Ej) =
— k=1
\/tosh Nout ~ €05 Ej Cosh ny,

] ASP(k) for z = Cosh "out cos(k - 1)E
ASP(k) for z = Cosh njp J

(with o = 0ork - 3/2 for k =1 or k 2 2, respectively).

It is recognized that with the coefficients C_ expressed (through the

k
]
mechanism of an inverted matrix) in terms of the values A ("1n' Ei)' the

result cited immediately above constitutes a linear (homogeneous) trans-

formation from such values to the required values A*(“out’ gj).

16



Matrix Notation:

*
Given values of the function A (“in' Ei) for points 51 on the boundary

e We wish to make a weighted least-squares fit (with weights “i) of

*®
A ., E. ,
(njp: &) to the truncated series § C, cos{k - 1)E. ;

N/Cosh Nip - COS &4

j.e., we adjust the coefficients Ck so as to minimize

*
A (n v & ) 2
12w, ¥ € cos(k - 1)E, - in’%i
2 { Tk K i STah n. -

\/tosh Ny, - COS Ej

[Regarding suggested forms for the weight factors w;, see the Section included
on p.5 of LBL-18798/UC-28 pertaining to weights used in connection with

circular functions F(v).]

This minimization objective leads to the set of algebraic equations that can

be written, in matrix notation, } "k L C! = Vk, where M is the symmetric
2 ’
matrix with k, ¢ elements

Hk,l = % W, cos{k - 1)5i cos(f - 1)2i

and Vv

x
A (n: ,E-
= z W, cos(k - 1)51 . ("‘" E‘)

k i Sinh ﬂ.‘n

\/COSh ny, - cos &,

17



Accordingly, the solution may be written in terms of the elements of the

jnverse matrix, as

_ 2 o ut
Cl. Tk (M )l.,k Vk

x
- A (“ g 3 )
=Y w. ; 1 K.~ ] in’®>j
% W, 31 (M )!,k cos{ 3 )E1 SThh ™

\/Cosh Ny, " €O Ey

*
Then values of A (nout EJ) may be computed, for locations Ej on the outer

boundary (“out):
* Sinh n
= in
\/ osh n .+ - cos Ej
]
ASP_(n ) Cosh n ‘
- + L' out OQL COS(! - ])Ej ,

L
81 ASP, (ny ) | Coshn,

0 fort=1
where oy =

£ - a/2 for 2 2 2

With substitution of the expression written, at the bottom of the preceding

sheet, for C , there results the working equation (for use in updating values

l'
*"
of A on the outer boundary):

A* - }: *
(ﬂoutu Ej) = 3 Ej,'i A ("l.in' E.') ’

where the "working matrix" (a rectangular matrix) is composed of the elements

18



Sinh "out \/tosh nip~ €OS

)3
t= _ Sinh n
k=: \/Cosh Nout cos Ej in
ASP Cosh Y
1 out (‘ 0s “out) wi(Hilk) cos(L - ])Ej cos(k - 1),
ASP (n;n)  \ Cosh ng ’
Sinh ngye \/tosh'nin - cos E,

\/tosh Nout - €05

ASPg (ngy¢)

Cosh

Ej Sinh "in

ASPy (n, )

(

Cosh

.l
"out) cos(L - I)Ej [k{ (n;lk) cos(k - 1)54 )
=1 4

in

19



V. COMPUTATIONAL AYDS
In previous portions of this report reference has been made to evaluations

expressed in terms of complete elliptic inteqgrals of the first and second

kinds. Coefficients for rather accurate evaluation of such elliptic integrals

\12/ A

have been provided by C. Hastings, Jr. and cited by L.M. Milne-Thomson.
somewhat more extensive sequence of such coefficients has been kindly furnish-
ed to us by Mrs. Barbara (Harold) Levine of this Laboratory and these
coefficients have recently been built into three of the VAX REAL*8 Programs
cited below {ELIPM, ASHLE, and RINGF). The Programs mentioned below may be of
use for illustrating or testing relationships introduced in the presenti report.
£l LPM:

This program computes values of the complete elliptic integrals K and E
after entering the numerical value of the parameter m (= k*). A working
variable in the program is the complementary parameter, 1-m.

RINGC:

This Program provides the vector potential and field components of a
single-turn circular loop carrying a current of 1 Ampere.
SPOLE

This Program similarly provides values of the vector potential etc. for an

assembly of several azimuthally-wound current-carrying circular coi]s.\"/

ASHLE:

This Program computes values of associated Legendre functions of order
m = 1 and half -integral degree (v = -%. %, %,...%1 ) in terms of

n (= Cosh ‘z). Elliptic-integral evaluations are employed to evaluate the

20



functions Pl /,(z) and P{/,(z). followed by use of the appropriate recursion

relation to compute functions of higher half -integral degree (see Appendix to
Sect. 111).
RINGE:

This Program similarly computes the scaled ("re -normalized") associated
Legendre functions, introduced as ASP(k) in Sect. IV, in terms of

a (= Cosh 'z).

21



VI. INTRODUCING THI_BOUNDARLES inN10 POLSSON'S MESH GENERATOR

the use of the toroidal codérdinate system in solving problems with
axisymmetry requires an eccentric pair of circular arcs at the boundary of
such a problem (i.e., no external sources are permitted). The specification
for the center and radius of gne of the arcs is a matter of choice; these
values are then used to compute the center and radius of the other arc, using
the procedure described below.

We have chosen to assign values for Pr.o and R1 (center and radius) of
the inner boundary and compute the corresponding values, Pao and R2 of the
outer boundary. (The values of o and R1 are arbitrary as long as there
are no sources outside R:‘)

Once R1 and Pi.o are known, we calculate the focal length a;

a’ = p:'o - Ri.

As shown in the text (page 14), the mingor intersection point between a

circular boundary and the abscissa is a - Tanh(g). The distance aAx

(Fig. 2a) between two such boundaries on the abscissa is:

8 = p, o - R, -2 - Tanh(ﬂ%!&).

Assuming that ax is assigned, we calculate Tout”

. - 2 Tann"? Py ” (R1 + AX) - a+tp " (Rl +_Ax)
out a a - P s + (R1 + Ax)

We can now calculate the center and radius of the outer boundary:

p, . = a ;R = _——.
2,0 Tanh Tout 2 Sinh Tout

wWhen the mesh generator to the program POISSON is used to generate such
boundaries, Ax can be set to the nominal grid spacing. This will assure the

existence of a finite distance between the boundaries and prevent them from
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collapsing into each other. It is, however, advisable to increase the mesh
density at this point, which can be easily done by choosing a Ax that is

larger by an integer multiple of the nominal grid spacing.

Example

To demonstrate the use of the toroidal boundary condition, we have used a

set of coils in a confiquration shown in Fig. 2b. We have placed 1000 A in

each coil in the indicated directions and computed A* = pA vS. p at z
0. We further computed BZ along that same path and Br vs. 2 at the mid
radius between the two coils. 1In addition, the same functions have been
computed analytically for both conventional axisymmetric and cartesian
geometries. The above computations were done at an increasing focal dimension
(parameter a); however, the relative position of the coils, with respect to
each other and to the mesh boundaries, remained unchanged. (In ali problems,
a midplane symmetry is assured by specification of a Neumann boundary
condition for A* at z = 0, and the relaxation computations were then performed
only in the region z 2z 0.)

Case A - Coils Close to the Axis

The coils were placed at Py = 3.25 ¢m ( -1000 A), Py = 4.25 c¢m ( #1000

A), with each at z = 0.25 cm. The inner boundary was centered midway between

It

the coils at P, 3.75, with a radius of R1 = 1.25. MWe assumed ax = 0.1

L]

t

and computed n 1.65385404 rad., so that Pyo

out = 3.8042 and R2 = 1.4042.
The close pFoximity of the coils to the axis of symmetry in this example
permitted a solution that includes the axis of symmetry and a circular type
boundary condition. Flux plots for a cartesian {circular boundary condition),
axisymmetry (toroidal b.c.) and axisymmetry (circular b.c.) are shown in

x
Fig. 3. Variations in A are compared in Fig. 4. These variations include a

comparison between two solutions that differ in the number of mesh points trat
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have been used. ({The cartesian case is a poor abproximation and is therefore
omitted from Fig. 4.) Good agreement ( < 0.5%) in A* is obtained between
theory, circular b.c., and toroidal b.c.. The values for Bz and Br are
compared in Fig. §.

Case B - Medium

In this case, the same pair of coils was placed farther out from the axis
of symmetry Pio™ 25.03 cm while maintaining the other relative dimensions.
Attempts to include the axis of symmetry in the computations required a very
large mesh and was therefore not used. We have, however, varied the mesh
density in two cases with toroidal b.c., and compared the results with
theory. Plots similar to Case A are shown in Figs. 6 and 7. Errors in A* are
< 0.5% and variations in B, with z are still noticeable.

Case C_- Far

The coils are now moved to Pro" 225 cm away from the axis of symmetry
(Fig. B). Good agreement between the toroidal case and theory is maintained
(A" < 0.5%).

Case D - Very Far

Moving the coils to PLo = 100 m maintains the accuracy of A* at less

* . . ;
theo 1S virtually zero) : however

than 0.5% (except at p = 10,000 where A

fluctuations in Br are noticeable (Fig. 9). These fluctuations are directly
&

related to Lhe loss of numerical accuracy, since we iterate an A , which is a

product of pA where p is very large.
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1.0

—1000A «—,——-Tr +1000A
: , 0.5 - D

|
I
191-0l |
|
| -1000Ae | +1000A

XBL 875-10166

Fig. 2. (a) The inner and outer boundary used with the toroidal cotrdinate
system. (b) Location of the 4 current loops used in the example.
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Fig. 3.

a. XBL 875-2362

IBL 875-2363

ABL 875-2361

Flux plot around a pair of conductors with various boundary
conditions; (a) Cartesian and circular boundary (b) axisymmetiry
with toroidal boundary (¢) axisymmetry with circular boundary
(drawn to a reduced scale so as to include the axis of rotational
symmetry). '
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Fig. 4.

XBL 875-2374

Comparison between the calculated vector potential A* {= pA) and
The
axisymmetric case includes the axis of symmetry and employs a

theoretical values along the midplane of symmetry (z. = 0).

circular boundary, whereas the toroidal case employs a circular
boundary around the sources. The need for a high mesh density is

It is noted that numerical difficulties will arise when A*
approaches zero causing fractional errors to be large. Such

difficulties are present near P o for the toroidal case and exactly

evident.

at Pl o for the cartesian case. 1In the data presented here, no
attempt was made to overcome such difficulties and large fractional
errors near P o accordingly do not reflect a real difference

between the coﬁputated and expected values.
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Fig. 5 The magnetic flux density in the z (top) and , (bottom)

directions for the close case (p1 0 = 3.75 cm). Case (a) is a

scan at z

0 and case (b) along »

Cartesian case is 0).
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Fig. 6 Flux plot (top) and vector potential (bottom) for the toroidal
case Farther removed from the axis of symmetry.

.

29



1

1

B, (G)

Fig. 7

Br (G)

g m - i v m et amma—

Theory |
Teroida! low demsit,
- Toroldal nigh density | ..

- Cartesian :
——

200
000

800

R
o
S
R e A Bt wek S Sl Tk T e Inh it s R S

dooaoal e dloao

[e3]

o

o
r1

24 25 26
p {(cm)
XBL B75-2366

Enh Sl it Sy S i S AL DA SRR

(¥ ]

?;— / —— Theory ]
3 R Toroidal low density 1

- Toroidal high density

XBL 875-2367

The magnetic flux density in the z direction along z=0 is shown
on top at a distance of Pro” 25.03 cm from the axis of
symmetry (Case B -- “medium"). The difference between Cartesian
and axisymmetry is barely noticeable. Flux values in the ,
direction along p = 25.03 (bottom) are distinguishable.
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Fig. 9. Placing the coils at Priio = 100 m (Case D) produces the above
quality of the vector potential and field. Note that Br should
be almost zero and the large fluctuations are due to loss in
numerical accuracy when p is very large.
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APPENDIX TQO SECTION VI

Calculation of Field Components

POISSON solves for A or pA (A*), depending on the cogrdinate system
chosen. The quantities of interest to the magnet designer or user may also
include components of the field B, expressed by Br and BZ for a problem solved
with circular cylindrical symmetry. The field editor in POISSON expresses the
potential in the neighborhoed of a point of interest as & sum of a series of
“harmenic" polynomials; the components of B are found by taking appropriate
derivates of this series. The procedure is described in section B.13.2.2 of
reference \19/. The harmonic polynomials used in this series expansion
involve powers of p that may result in exponent over- or underflow when
calculated on a computer, particularly when p is greater than 100. 1In order
to moderate the degradation in the field editor we employ doubie precision
calcutations, and scale the quantities p, z, and A*. The scaling is done so
that p = 1.0; one might think of it as a temporary change in units. The
scaling does not affect the harmonic character of the polynomials used in the
series expansion. The quantity A* and the calculated components of B are then
scaled back to appropriate units for the field edit report.
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Notes:
\1/

Previous applications of a boundary condition similar to that introduced
here have been described, for other codrdinate systems, in the following
reports of the Lawrence Berkeley Laboratory:

ESCAR-28 (1975): L. Jackson Laslett

LBID~172 (1980); L. Jackson Laslett, with Victor 0. Brady

SSC-MAG-5/LBL-17064 (1984); Laslett, Caspi, and Helm

SSC-MAG-12/LBL-18063 (1984); do.
SSC-MAG-28/LBL-18798 (1984); do.
SSC-MAG-31/LBL-19050 (1985), do.
SSC-MAG-41/LBL-19483 (1985); do.
SSC-MAG-51/1.BL-19172 (1985); do.
SSC-MAG-68/1BL-20893 (1985); do.

N2/ pef. B, Sect. 2.13.

Vo/ pef. H, Fig. 4.13 (p. 75).

\¢/ Ref. E, Chapt. XII, Sect. 5, pp. 228-230.
\s/ Limiting forms for the functions Pi (z = Cosh n) and Q: (z = Cosh n), in
the 1imit of small argument, are given in Sect. 3.9.2 of Ref. C, p. 163,
and the behavior of such functions also is illustrated in Ref. F. Specif-
ically, the cited formulas indicate that the functions Pt approach propor-
tionality to (z - 1)%, or ton, as n » 0 and z » 1, while the functions

Q: approach proportionality to (z - ])-% or to % in this limit.
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The formula

pt (z = Coshn) » 2ut1)n=(n- T/Z}Qn +1/2)

v=n-1/2 2

for the limiting form approached by the functions of the first kind as n »
o may be independently derived directly from formulas {cited else-

where in this report) that relate such functions to complete elliptic

integrals - - thus:
pto=1 ST fa, g
% ¥ Sinh % 8

v _q (Coshn) Ey - K
¥ T Sinh 0
2

Aoy %ﬂ (for n » 0)

2 2
with parameter m Tanh 1) =12,
P h = ( D =3

2 m m
1+0. ,E, =22 f1-A|, &K, =2 A
2 A2 [: 4 j] A g [j] "3 :] '

and (by induction) one then can extend the evaluations to higher

n

Cosh o

degree through use of the recursion relation for Legendre functions of
varying degree. This same small-n result for P:=n—1/z(z = Cosh n)

may also be obtained by development of the formula

P, (Cosh m) = — [0 +m s+ 1/2)(Sinh )"
r(n -m+1/2) 2° /& O(m+1/2)

w

f (sin_¢)°® do
o (Cosh n + cos ¢ Sinh n)" tm+

cited by Irene A. Stegun as Eqn. (8.11.2) in Chapt. 8 of Ref. A., p. 336.



\e/ The vector potential A¢ of a singlie centered current-carrying loop of

radius a has been shown by Smythe {Ed. 2; Ref. H, Sect. 7.10] to be given

(in rationalized MKS units) by

(5 2) [0 B)ua]

wherein we have elected to employ (in place of Smythe's "modulus" k) the
"parameter”

m. = k2 = 4ap

(a +-p)2 + 7

2

In terms of toroidal codrdinates (for a coordinate system in which the
characteristic dimension "a" is identical to the radius of the current-

carrying loop), this elliptic-integral parameter may be written

m. = __2 Sinh n -2y -1
B Cosh n + Sinh n -

where z = Cosh n.

\7/ An equivalent el]iptic-inteéra1 expression for A¢ can be written in terms

of complete elliptic integrals of parameter

1 - /1 - Mg

A
1+ /1 -m
8

which then for the present problem becomes
2

mA-—-(Tanhﬂ) =2 -1

2 Z+1

The elliptic-integral expression introduced above in Note

\e/ tor the

vector potential A¢ then may be transformed [through use of formulas cited

by
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L. M. Milne-Thomson as Eqns. (17.3.29-30) of Chapt. 17 in Ref. A, p. 591]

as follows:
- 2
8 1 1 ‘
+ - My
- Z !
Eg= (1 + /T -mg Y E -2- B,

(1 + /1 - mg ) (K - Ep)

T —
-
]
rvl 3
o0
e
-~
=<
]
m
[v ]
n

- 2 _
(K- E

1+ \/E;

so that the expression for A¢ may be wrillen

N

x_ A - [(Cosh n +Sinh n)(Coshn -cos &) _ .2 __ (K, - E,]
wl 4 2 Sinh %n 1 + Tanh g A A
Cosh n + Sinh n
" (Cosh n - cos )" — gz
9 i 1+
/2 Sinh % Cosh % Zosh nr2
3 K, - E
= (Cosh n - cos 6% _ :ﬁ,__J&_
/2 Sinh g

The associated Legendre function Pi%(z = Cosh n) can, moreover, be

written in terms of complete elliptic integrals of parameter m, as

~

A (see Appendix to Sect. III

E -
P (z =Coshn) =1 A __A
( " ¥ Sinh
of this report) ,

%

g

so that the vector potenlial in this particular example is seen to be
given by a numerical constant times the single term

(Cosh n - cos £)* P%,(z = Cosh n)
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\e/ irene A. Stegun, in Chapt. 8 of Ref. A. In writing (p. 337)
Eqgns. 8.13.1 or 8.13.2 for P_%(z = Cosh n) and Eqns. B8.13.5 or 8.13.6
for P (z = Cosh n), Ms. Stegun has elected to express the elliptic
integrals explicitly as functions of their modulus. Elliptic integral
parameters, such as are cited in the body of the present report, are the
square of the respective values of the moduli.

\*/ Tnhe relations cited by L. M. Milne-Thomson as Egns. 17.3.29 and 17.3.30 in
Chapt. 17 of Ref. A (P. 591) are for elliptic integrals whose parameters

are related (as here) by

4 {mA 1- /1 -m

mg = orm, =
/m)? 1+ /1 -m
(1 + mA) v/ B

\1o/ coo Irene A. Stegun, Eqn. 8.6.6 in Chapt. 8 of Ref. A, p. 334.

\i1/ gee Trene A. Stegun, Eqn. 8.5.3 in Chapt. 8 of Ref. A, p. 334,
\12/ pef. ¢, Sect. 3.9.2, formula (19), p. 164.

\13/ paf. F and Ref. D. The values of Legendre functions of the second kind,
as tabulated in Ref. D, may be related to valtues of functions of the

first kind through use of the equality

. u
PY (2) = (Rl P Oy 4(5)
-

/n/2 My - vt %)

where s = 2/¥z* - 1, or specifically {(with v replaced by 1 and u

replaced by an integer n)

(as® - 2" ()" oles)

)3 - f 2 .
Pr-s(?) T T35 on-3 "¢
2 h
P;(Z) = acs : ] [-0;(5)] for n =1 ; and
2 _ %
pt(z) = O DT 1 005y forn =0 .
~% x 2 1%
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[We note that the associated Legendre functidns G, as tabulated in
Ref. D, intentionally permit the order to exceed the degree.)

\1a/ <o Sect. 3 of the Appendix to Sect. III.

\15/ coe Sect. 1 of the Appendix to Sect. III.

\16/ see sect. 1I.

\17/ { W. Wilne-Thomson, in Ref. A, Chapt. 17, pp. 591-592 (esp.

Egns. 17.3.34 and 17.33.36).

Mo/ 1ne present VAX version of Program SPOLE is based on a similar CDC-6600
Program prepared for use in the Electron-Ring-Accelerator project of this
Laboratory (see ERAN-151; 1971).

\io/ “Reference Manual for the POISSON/SUPERFISH Group of Codes", Los Alamos

Accelerator Code Group, LA-UR-87-126 (Jan 1987).
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