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ABSTRACT

Nonlinear effects, in the SSC ineluding the perturbation of Tune; emittance
growth; Hamiltonian resonance strength; generating functicon resonance strength,
fixed points, Chirikov criteria, island width, ete., are investigated and some

of our results are discussed and tabulated. Tune dlagrams are also included.

I. Introduction

We have studied the nonlinear effects in the SSC using the algorithm
("NONLIN") we have developed [1-3]. In Section II, a brief overview of our theo-
retical development is given. 1In Section III, the structure resonaces of the
SSC CDR clustered lattice is analyzed and tabulated. Some of these results are

also obtained using the alternate program HARMON (given in Reference [4]) and

are compared [5].



II. Perturbation Theory

In this section we include a brief discussion of the theoretical develop-
ment used for investigating the nonlinear effects in the SSC.
A dynamical syatem such as circular accelerators can be described by the

Hamiltonian of the form

He 221, o 28 1 o V (I, Ig, 4ys 0, 9) (1)

where C 1is the circumference; (Iy, ¢x) and (I;, ¢) are the action angle vari-
ables, vy and vz are the tunes; V includes the nonlinear effects due to sextu-
poles, octupoles, etc. and is periodic in ¢x, ¢; and s. To study this Hamilton-
ian we consider a generatlng function that can eliminate the nonlinear terms (n
vV, e.g.

F(Lx!llz'h!h'a)-l‘xh¢l‘z‘z+

fie (Lyoby,s)
Sin'w (n_ vy + “z‘)“’z Cos (n x:" v z:z * &)

k

(2)

Where fy (Ly, Lz, 3) are the generating function rescnant strengths whose magni-
tude gives the extent to which Iy and I, varles from the invariants of the

motion. The Ly and L, are the new action variables and g, i3 the phase, n, and
K

n, are integers that define a given resonant. Then the transformed Hamiltconian
K

becomes

E = H + 'g"s F (Lxr LG by, ¢z| 8) (3)



where we used the generating function F given by eq. (2) with

I, = aF (4)
X a¢x

oF
I = TS ()

From this Hamiltonian eq. (3), we can obtain the perturbation to betatron tunes

{where v, and v are the unperturbed tunes].
X z

Vg * Vy * 2 agxly + 2 agzlz * ... (6)
X

Vg = Vo + zuszx + 2 czsz * e (7)
z

The 2Ly and 2L, are the beam emittance divided by r just before the beam enters
the accelerator.

From equations (2, 4 and S5) we obtain the emittance growth, eqs. (8,9).
That is the estimates to the upper limit that emittance may grow to as long as

the tunes are far from any resonances.

" . —(va Ly, 3)
ExS2nly + f nxk_-&_Sim ) (8)
x 2
K k
By {Ly, Lz, s)
EzS2tlg * f "zk Sinx (n 'vx +n_ vy) 9
" Zy

The above perturbation approach works well when far from resonance. That
is when | nyvy *+ ngvz = P | >>0; where ny, n; and P are integers. To study the
nonlinear behavior when near a resonance we isolate the resonance as we find the
fixed points of the system, which is the distance from resonance at which there

is no motion in a special reference frame where the Hamiltonian is an invariant.



In that we expand V (iln eq. (1)) in a fourier series about ¢4, ¢, and 3. We
then find a term in which the argument of the sine and cosine term varies the
slowest with s {(time variable of the Hamiltonion). We only consider this term
since it has the largest effect on the dynamics of the system. Therefore, the

Hamiltonlian

v_ Ly + T (Ly,Ly) (10)

1

Th (Lx, Ly) Cos (ngdy *+ nzpégy ~ %1 ps + §)

+*

where T (Ly, Lz) is the term causing the perturbation of tune, h {Ly, L;) is the
Hamiltonian resonance strength and § is the constant phase. By defining the
bandwidth & = ngvyg * ngvz = p that determines how far the tunes (vy,vz) are from
the given resonance (defined by ny, n,, p) we can obtain the fixed points [2].

That is, the system will be on a fixed point if

i 1 | 3h(Jy,d,) an(Jdy,dp)
§ *2nn(Jx.Jz)[“x aly "2 7 ad, ] ()

at actions equal to Jy and Jj, where h(Jy,J;) i3 the Hamiltonian resonance
strengths.

We also obtalin a eriterion (Chirikov Criterion) that determine whether a
nearby resénance 1shimportant to the dynamic of the system. That is a resonance

can be neglected, if the bandwidth (§) of a neardby resonance satisfies

oo N2 (o Bralad o g, Mllad) 0 t2)



Otherwise, the resonance must be included in order to accurately describe the

behavior of the system.

IV. NONLINEAR RESONANCES IN SSC

The operating point of SSC, 0 (vy = 78.265, vz = 78.280) 1s near at least 4
resonances of up to the Uth order. Uv; = 313, 2vy = 2vg =~ 0, 2vyg + 2v; = 313,
Uvy = 313, vg *+ 3v; = 313 and 3vuy + vz = 313 (the last two due to the Skew
terms). In addition to these, there are higher order resonances that may be
important as shown in Figs. (1-4), For example, the eleventh order resonance
Svg + 6vy = 861 (Fig. 2), the twelfth order resonance 8vy ~ dv, = 313 (Fig. 3),
ete.,

We have used the SSC clustered lattice with only chromaticity sextupoles
[7]. We calculated the rescnance strengths, the fixed points, stop bandwidths,
island widths and Chirikov Criterion. The perturbation to tune and the emittance
growth are also calculated. Some of our results are shown in the following
Tables,

The emittance growth and the perturbation to the betatron tune at the opera-
ting point of the SSC (vy = 78.265, vy = 78.280) are given in Tabdle I.

These values were calculated for the average beam emittance of E, = 2.49 x 1671

m-rad {corresponding to the expected beam size of 9.1 mm), which is larger than
the expected beam emittance) E, = §$ = 9.37 x 13'% v m-rad which was obtained from

the normalized emittance Ey = 15“1 m-rad at Injection given in 8SC-Design

Manual).



Thia initial emittance was selected because it was close to the estimated

value of dynamic aperture as given in SSC-Design Manual. The bandwidth (e) from

some of these resonances are calculated and are given in Table III.
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_CDR LATTICE FOR SSC BET*=§.

Perturbation of tunes

VX = vx0 + -716.3168 * Ex + -2445.579 * Ez
vy = vz0 + -2445.579 * Ex + -477.6593 * Ez

where the unperturbed betatron tunes are

VX0 = 78.26496 and wvz0 = 78.27999
with circumference = 82944.00
and periodicity = 1

Given a beam with emittances

Ex = 2,.4939999E-07 and Ez = 2.4939999E~-07
(*pi m-rad),

the perturbed tunes become

VX =

78.26417 and vz = 78.27927

The emittance can grow to

Exmax =
Ezmax =

2.7996103E~-07 at the 43 th element and
2.7773686E-Q7 at the 7 th element.

The resonances are numbered as follows:

No. Resonance Strength Stp bndw
Fix pts. Width Chirikov cr
2A O vx +4 vz = 313 1.1625E-15 7.4577E-08
3.9350E-08 1.9500E-10 9.0316E-10
7B 2 vx =2 vz = 0 B8.9925E-11 1.4423E-03
1.3015E-03 7.7978E-08 3.4943E-07
9A 2 vx +2 vz = 313 1.6702E-15 5.3576E-08
$.3576E-08 2.6195E-10 1.9320E-09
13A 4 vX +0 vz = 313 6.8462E-~16 4.3921E-~08
3.6246E-08 1.2220E-10 8.4877E-10




TABLE

- —— - -

Ib

Chromaticity
sextupoles

T CDR LATTICE FOR SSC BET#=6.
The generating function resonance strength
for the resonances:

Resonance numbers

1

2

Elements
7

i e —— Y D A . — Ty g — o " —— " — " — —— - — o -

D T A — - — - i

6.84477E~12 1.27363E-12 1.00860E-09

4
2.74030E-09
7
1.12059E-09
10
2.24002E-10
13
3.61567E-13

1
6.97217E-12
4
2.73891E-09
7
1.12059E-09
10
2.24590E-10
13
3.67257E-13

5
2.59494E-10
8

6
3.84700E~12
9

1.36535E-11 7.96476E-13

11

12

9.89518E-11 6.82071E-13

14
1.42736E-12

2
1.30371E-12
5
2.59353E-10
8
1.36619E-11
11
9.88886E-11
14
1.42967E-12

15
4.54290E-11

3
1.00845E-09
6
3.86933E-12
9
8.46263E~-13
12
6.77308E~13
15
4.55659E~11

+#* The resonance numbers in the above
to the resonance numbers given in the

{Table Ia).

table correspond
Hamiltonian table




TABLE IIa

——— ol v —

CDR LATTICE FOR SSC BET*=.5

—— T S  ——— e . S — . e W S YU TP S S ——— A T T A T Ty kil P . ——— S —— P T ——

Perturbation of tunes

VX = VX0 + -2659.335 * EX + -9080.386 * Ez
vy = vz0 + -9080.386 * Ex + -1773.600 * EzZ

where the unperturbed betatron tunes are

vx0 = 78.26497 and vz(Q = 78.27995
with circumference = 82944.00
and periodicity = 1

Given a beam with emittances

EX = 2.4939999E-07 and Ez = 2.4939999E-07
(*pi m-rad),

the perturbed tunes become

78.26204 and vz =

VX = 78.27724

The emittance can grow to

S —— — — ——— -

3.5259643E-07 at the 331 th elehent and
3.4869160E-07 at the 331 th element.

The resonances are numbered as follows:

No. Resonance Strength Stp bndw
Fix pts. Width  Chirikov cr
2A O vX +4 vz = 313 1.7570E-14 1.1272E~-06
5.9411E-07 3.9343E-10 6.7660E-09
7B 2 vx -2 vz = ¢] 3.3390E-10 5.3553E-03
4.8323E-03 7.7979E-08 1.297S5E-06
9A 2 VX 42 vz = 313 2.6094E-14 8.3701E-07
8.3701E-07 5.3733E-10 1.4715E-08
134 4 vx +0 vz = 313 1.1546E-14 7.4075E-07
6.2142E-07 2.6046E-10 6.7162E-09




TABLE IIb

CDR LATTICE FOR SSC BET*=.5
The generating function resonance strength for
the resonances:

Resonance numbers

Elements 1l 2 3
331 2.59284E-11 4.83069E=-12 1.94224E-09
4 S 6
5.27804E-09 4.99578E-10 1.43731E-11
7 8 9
4.16080E-09 S5.07310E-11 3.12842E-12
10 11 12
8.33345E-10 1.90890E-10 2.51736E-12
13 14 15

1.36763E-12 5.30889E-12 1.69158E-10

*#* The resonance numbers in the above table correspond
to the resonance numbers given in the Hamiltonian table
(Table IIa).

10



Xb
89Z°8 prZ'e wiz'e BBZ’o
L. | | | | m.u&N .@

@eE’'s  @ez'e
I

L

i

j Y
8Zz’'e
UEZ’B

0’8

459

89¢°8

T
PAA

(YET) €Tg= ™y

LA

N, B62°8

xfwmam.m

b 0} p J3pJO WOJJ SIIURUOSAJ

[y

b

SSC-CDR LATTICE 0(78.265, 78,280)

1

FIG.

11



om_.a mm_.a 8z°'e L2°9
| 1

oN_.e mm_.e bZ'0 EZ'B 22°0 ﬂN_.c YA

xB

L

r—t—l— s AL
"”...m":”.... ..." o
e

v -67°8

R

T u

M - 62°8

—0BE"@
TT 0} T[] J2pJo0 wodj S22ueuosad [[y

fb

FIG. 2 SSC-CDR CLUSTERED LATTICE 0(78.265, 78,280)

12



xh

. . R .. -......-....
. o' N R R '
et o' ot X T " ¥
L P " ee galer 1o 1 A .
L -
el 4T g00” T CTRLE LR .
TR .
ke . . .
[ Tt * . '
- ey,
et
- LR .
[ ’ ]
() [
. .
-
» .
* . .
[] ’ '
¥
. 0 o
. )
0
. . . . .
[ . » ’
h L
. * -l
. ] .
[ . . .
. ] [ []
. . .
L] L]
. T -I ) *
' [ * .
. . "
0 ] .
’ Y
. ¥
. L) . " o
. L] . 'Y *
] LN ] - - o , o
N -.o. ot ot !
[ L] ) -
[ of *
1 LI
. - L LI ]
.. o.-..q. ..-.-
e [ .
. » -. L] »* . .
’ N b v
AL "
L L] .
.y
[P ]
et . .
. . +
) ot
.
.
.
ot
-- * o -- .-
.t *
. - L] .
L] . [N .
. . - L]
ot . . .
1 » *
- .
-, . .
. [N . ]
L] ot .
* [N — !
. ' q
' L]
L]
. ' ]
.
] . L] .
]
3 . +
) +
. . . .
0 . . '
. v .
L] .
. .
d . v LT
o . »e
N . veoee PP T ]
* . LLIET] e ol TR *
TR TR L L v .

BE'® 6°0 BZ'0 A2°0 92°0 S2'0 v2'0 €2°8 22°0 12°8 BZ°9
1 J | { l - i L

0z°8
1Z°0
22°0
€2°0
vZ'0
52°8
92°8
12°8
82°0
62"8

aE"od

ZT 0} 21 dopJd0 wWOJj SI9uRU0SAJ [[Y

A

FIG. 3 SSC-CDR CLUSTERED LATTICE 0(78.265, 78.280)

11



Xd
BE'A 62°8 82'8 2Z°9 9Z°8 SZ°9 ¥Z'B £2°'0 22°0 12°0 8Z°9
. | | | . 1 I

_ [ ]
- . N " [N . . . R mN @
a9 T AVERS AN Y (R 4] .. N B DRSS R M L
v . X H ' f . .. AR h PICLIL AR I B [
. . L] ] e B o . . e Y. _.. " L
...” '] .-... | . aetengan R TPRD .’ . AN ..... . o vl
. H Y LR . .+ LR . . T - . Wy
e . . AN . v .
h Tl A . . . ) . . » ) " N . e owe
g » ' . o . . LA .« L . Kl YrE ol
lc- »* . . o- LELEN B
- L * L} ot LI
- L + L4 » LIS .
. . e e
» . . .
’ oo = NNI&
[ . L1 o
VPV TS LR Ui
. . .
0
K .
. 1
.
.
+
N )
ed
. o
e vZ'8
W L
ot + g,
ot
* . 1 4t
st ‘ .
.
. e ¥
vt N N

—— y.nmwm +—-52'8

* IW- . . Jhuu
T 9
.. v, .. . ...".. .. "
3 b . ‘| ..........._.. )
.“.s..“.. ...... .. e - ...... ..... b N-N s
G\t N ; - 820
o . " ...,.. N .t » l_ ..”..n..,..wuwmﬁ. mN s
e BE" D

71 0} p JapJO WOJ] Saoueuosad [[Y

SSC~CDR CLUSTERED LATTICE 0(78.265, 78.280)
14

4

FIG.,



