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Introduction

Accelerated life tests are necessary to sssure that the SSC magnets
can be expected with specified confidence levels to perform at their
specified reliability, availability and lifetime:* Analysis of the pro—
babilistic confidence in specified availability levels obtainable from

accelerated life tests on the SSC wmagnets has been ontlined before 4

Our objective here is to amplify and elucidate that analysis in order to
affirm its general procedure and establish a firm basis for further
analysis.

Analysis

The objective of this analysis is to gquantify the probabilistic
confidence for the specified stationmary availability A, of the SSC mag-
net system over its specifed 20-year lifetime on the basis of accelerat~
ed life test results,

The proposed sccelerated life test protocol allows for sampling in
about one week of testing the equivalent of about one year of ordinary
operational cycling anticipated for the ssci4

Avsilability requirements on the SSC magnet system are severe, be-
cause it is comprised of sbout 9500 individual magnets in a serial-fault
configuration, This means that the individual component magnets must

be extremely reliable. A general relation among the stationary avail-

bility A, , the mean tiwe to repsir WITR, and the mean time bdetween
failures MIBF is

Ap = 1/[ 1+ WITR/MIBF 1 .

For our purposes MITR is specifed® at about 1 week * 1/50 year. This

(1)

determines MIBRF through the above relation for s specified valume of A

. Because of the serial fault configuration of the component magnets in
the system, a mean effective failure rate A for the individual com—
ponent magnets (considered same) can be assigned by:

A % 1/(9500 MIBF) = [(1/A,) -11/[9500 MTTR] .

The assignment of ¢ constant effective failure rate implies that the in
dividual magnets fail for a complex variety of causes. This so—called
exponential-failure—function hypothesis is chosen mostly for the simpli-
city of computation that it allows for obtaining rough estimates.

The SSC Conceptual Design Report! specifies A, for the magnet sys-
tem as required to be 96 percent. On the other hand, it also specifies
the availability for the whole SSC as required to be BO perceat; and it
might be thought that in the sense in which we are concerned the magnet
system is in some way equivalent to the whole SSC. For this rezson we

(2)
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will consider both these values as perhaps two extremes of a range of
values for A, . The value Ap = .80 ipn Eq.(2) specifies X = 1/(760
year); Ay = .96 specifies A ¥ 1/(4560 year).

In general, the probability that a sample of N mugnets will survive
¥y equivalent years of operstionl cycling (y weeks of testing) with no
more than n failures is

n (B
Pa,NylA) = = (Notpot  t1-p ot
420

where p,(y) is the probability that an individual magnet will survive y
equivalent operational years of cycling. Under our assumed exponential
failure hypothesis p.(y) & exp(~Ay). A more realistic model of the
failure function could be inserted into Eq.(3). The important point is
that Eq.(3) gives the probability of a sample of N (identical) magnets
surviving y equivalent operationsl years with ( o failures under the as-
sumption of a definite given failure law with a definite given effective
failure rate® ) . But this effective failure rate is what we want to
infer from the test results, namely, that a sample of N magnets survives
Yy equivaient operationsl years of testimg with {( n failures.

We quantify our c¢onfidence that the actual effective constant
failure rate A is less than A may be inferred on evidence of an N-
magnet sample surviving y equivalent operational years of test cycles
with no more than n fajilures as

-’

) [ P(a,N,yl AP, (A)dA
R( A s X ln;NtYl¢) = o

&
[ Pla.NyI 2P, () aA :
(7

In this espression we have assumed a continuous distribution of conceiv—
able values of the integration variable X . The function P,(A) weighs
the probability distribution of the varisble on this continoum on the
evidence of all prior information, and the label ¢ in the arguements of
R indicates its functional dependence on this prior probability distri-
bution. The awmerator integrates over conceivable values of 2 up to
the hypothetical test value A° the probability of the outcome of our ac-
celerated life test on condition of the prior distribution. The denomi-
nator integrates the same function over all conceivable values of A
The ratio R 1is the probability that the value to be inferred from our
test results lies in the interval 0 { A {(\', subject to the prior dis-
tribution P, (A).

In order to incorporate a tractable, but definite dependence on
this prior probability distribution we will take it for now to be of the
form

(3)

(4)
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This simple form will be shown in later work to be & surprisingly astute
choice &

¥With the above choice of the prior probability distribution P, (2)
the expression for R can be integrated and rearranged into the form

1-R{ )\.S ;\-IlnpN;Yn ¢) = C(n.N.y: A./a Ac)exp [-(N"n) (A/")-c)y] » (6)
ia which

C(a,N,y, 2, »,) = D(s,N,y, X)/D{a,N,y, A ) . (D
with

n _ - .
Do, Ny, A) = O (;‘)e'(“‘" S o=y L (8
£=9 i=n !

n =0 Case

The case of n=0Q is simple since for all N, y.Jf, and A, ,

C(a=0) = D(p=0) = 1 (9)
and
18(1 - B) = =(A" =X,)Ny . (10)
This relation sets the scale for all n, as n #¥ 0 cases are related to it

by studying C of Eqs.(7,8). Some values of interest related by Eq.(10)
sxe given in Table I.



TABLE I

SCALE OF SAMPLE SIZE AND TESTING PERIOD FOR VARIOUS CONFIDENCE LEVELS

AT 2 SPECIFIED AVAILABILITIES FOR VARIOUS PRIOR DISTRIBUTIONS RELATED
THROUGH EQ.(10) FOR =0 .

X = 1/(760 year) (== A, = .80

R= .99, A /X = .4 : Ny = 5833 = (200 magnets)x.56yr of test

"= .99 , * = .1 " = 3889

(200 magnets)x.37yr of test
" = .99 , o= 0 " = 3500

(100 magnets)x.67yr of test

A = 1/(4560 year) <(== A, = .96

(200 magnets)xl.lyr of test
"= 90 , * = .05 : " =11050 = (200 magnets)x1.06yr of test

= 90, * = 0 : " =10500

(200 magnets)x1.0yr of test

"= 99 , # = 0 : " =21000 = (200 magnets)x2.2yr of test




n# 0 Case
For the case of n # 0 Eq.(6) includes a nontrivial C factor. Ino-

stead of the simple form of Eq.(10), it now inciudes an additive loga=—
rithmic term:

1Ia(1 = R) = ~( A’ ~A,)(Nn)y + 1z C . (11)

A specified level of confidence R c¢can be obtained with tests on the same
sample with no fazilures in a test interval y and with no more tham n
failures in the test period [y+ (1aC)/{X-A,)]1/(1-a/N) .

The region of effective support for the last term im Eq.(11) is
limited by the behavior uander which

Inl=20 .

1a C(n’ N, Yoxyk)
and y—0

Inl =20 . (12}

Aecy@l

At large values of its argunements Eq.(11) has the same form as Eq.(10),

but with (N-n) ir place of N, i.e., 1n(1-R) vs. X'y is again a straight

line from the origin, but with & slope (1-n/N) times that of the =0

line. However, the interval of interest seldom extends to values of
Xy large enough for C to approach uaity. ' :

The interval of interest caa be estimated as
Xy § 2.3d /IN0)(21-2p/ A )] : (13)

with d specified by 1 - R = 10"‘* . Gemerslly, d = 3-5., The effective
support of 1nC can be seen from Eqs.(6,7) to extend to about Ay = 3 A'/A,
. So 1nC contributes throungh the upper range of the interval of ino—
terest of XA'y; since for d {5, 3.{ .3X, and N-a2 { 3 the Xy of im
terest is { § <X Xy of upper extent of support of 1aC.

At small values of (X—/‘\c)y the factor C nodifies the slope of B st
the origin such that

tnf1 - R(X { AplnN,y,¢)] prag =(X=2g) (N-2)y/ (a¥1), (14)

times a factor like 1/[1+0(n/N)}] on the right—hand side. Thus, 1aC has
a broad, slightly-humped plateau exteanding to above the interval of inm—
terest of X y . Effects of InC show clearly in the graphs of I1a(1-R)
vs. X'y in Figures 1 2ad 2. "'_ —
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Priors

The prior probability distribution denoted in our anslysis here by
P.(X) and the lgbel ¢ in R( > ¢ In,N,y,c¢) should represent the total-
ity of all prior information on the distribution of probeble values of
the variable 5 , which is the object of our test program aand its
analysis. The priors have been tasken here as chosea imnput--wostly for
purposes of illustration. If absclutely no prior information relevant
to probable distribution of )\ were known we should (presumably) take
the prior distribution to be uniform over the whole space of conceivable
values, Both of these distributions are variants of the so-called mi-
srocanonical distribution. As information is accumulated we cap incor—
porate it into our apalysis through an up-dateing of the prior distribu-
tion used. Preliminary investigations indicate that the extended micro—
canonical distribution used for illustration here is snrprisinsgly close
to that distribution which minimizes the uowarranted bias. Work is conm
tinuing on this spprosch, snd will be reported separately.

The prior distribution chosen for illustration here is close to
that representing no information when A, is taken close to 0. At the
other extreme is the case when the prior probability distribution
represonts almost exact prior knowledge of the value of A to be ex—
pected. For this case the distribution could be any function of narrov
compact support: a delta fusmction in the limit, or a narrow microcanoni-
cal distribution such as P5 (A) = constant > 0 for |- al € A/2 (A,
, and = 0 for A outside this interval. In thess cases R(> (7 ,a,N,¥,2)
¥ becomes a step function rising from zero at A, -2/2 to unity at A, +

& /2 . This just says that if we know the answer boforehand then the pro-
bability of inferring that vaelus from our test will be zero until our
test hypothesis includes that value.



FIGURE CAPTIONS
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FIGURES 1 and 2 are semi-log plots of 1 - R(A("“"[n,N,y.,c) versas , 'y
for n = 0,1,2, with the prior distribution Eq.(5) for N= 5 in Fignfe
1, and for N = 100 in Figure 2.
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5.) Ve consider here a broad overview of & composite system test.
Reliabilities and availabilities of component subsystems can be
analysed soparately. We assume that extensive and systematic studies
on component parts and subsystems have been separately performed
during the previous development of the magnets. As an exsmple, the
study and resolution of the problem of collar fatigue failure at the
Tevatron is described in Sec. III, A, p. 910 of Ref.(2.). Results of
such subsystem analyses will be integral parts essential to later,
more detsiled extensions of the overall problem.

6.) It must be acknowledged that use of formulations such as Eq.(4),
which is the essence of our trestment, have been highly controversial.
Eq.(4) is a form of what is known as Bayes' theorem. Criticisms focus
on the subjectivity in the selected prior probability distribution,
and the propriety of sttributing any prior probability distribution on
a motrical space of conceivable physical variables. The first problem
can be mitigated or removed entirely, as we shall show later. The
second is philosophical, and subject to evolution, but more
persistent. The microcanical type distribution Eq.(5) extended to the
open interval 0 {( A (oo is not normalizable on this interval. This
does not show up in Eq.(5), which is itself of the form of a
normalization condition. If this were to show itself tc be
problematic it could be made normalizable through the introduction

of an upper cutoff on the distribution’s domain of support.



