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Introduction

Accelerated 1ife tests will be necessary to assure that the SSC magnets
can be expected with specified confidence levels to perform at their specified
reliability and availabiiity levels over their specified 1ifetimes. Our
purpose here is to examine rudimentary analyses of accelerated life tests for
the SSC magnets as a preliminary in order to perceive what kinds of more
meaningful analyses can and should be addressed. The ultimate goal of our
analysis program will be to structure the accelerated 1ife test protocol and
parameter ranges that will yield the most critical information affecting the
magnet program.

We begin by reviewing the operational lifetime requirements as they have
been specified in the SSC Conceptual Design Report and the accelerated life
test protocol that has been suggested in collaboration of SSC/CDG and
Brookhaven magnet development department. We then describe the assumptions
and method of analysis that, although it is much over-simplified in our
present treatment, suggests a structure by which the accumulated information
of successive developments may be fed back into the analysis so as to maximize
its value for subsequent analysis and testing decisions. We compute estimates
of confidence in various spécified magnet 1ifetimes as functions of testing
time within the context of different prior assumptions. The results are shown
to include certain relations that are useful for test analysis and are

independent of certain prior assumptions and/or test parameters.



Representative of the conclusions that can be obtained is, e.g., that 99%
confidence that the mean magnet 1ife is >20 yr. can be achieved with the
order of 100-150 magnet-weeks of accelerated life testing, depending on the
number of failures sampled. More detailed relations among observations and
test parameters and assumptions are given.

Specifications

Operational 1ife time requirements that individual magnets must be

designed to meet have been specified with the following equivalents:“”)

Machine lifetime ~20 years

Magnetic cycles ~10* years
Thermal cycles ~20 cycles
Quench cycles ~50 cycles.

The accelerated 1ife test protocol that has been considered in
collaboration by SSC/CD& and Brookhaven magnet development department(’)
consists of the following 25 steps:
1 step of 10 full-strength magnetic-ramp cycles,
5 quench and recovery cylces;
plus,
24 steps of 250 full-strength magnetic-ramp cycles,
1 full 300-4 degree thermal cycle,
250 full-strength magnetic-ramp cycles,

2 quench and recovery cycles.

Each test step after the first preliminary step is about the equivalent of
1/20 of the specified lifetime.



The time-budgets for the various components of a test step have been

estimated as:(?)

1 full 300-4-degree thermal cycle = 120 hr./90 = 5.6 day,
500 full magnet-ramp cycles = 500(100 sec.)/.90 = 0.6 day,
2 quench and recovery cycles = 2(3hr.)/.90 = (.3 day,

Total test-step 6.5 day.

A 90% processing efficiency has been figured into these estimates.(’) So
after the first step, we can expect to test the equivalent of 1/20 of the
design-specification operational lifetime in each test step, requiring about
6.5 days.

We need to point out that the magnet ramp rate assumed for the above
estimates(') is about 20 times faster than the operating rate of 1000 seconds
per ramp specified in the SSC Conceptual Design Report (p. 206). If this
slower ramp rate were used for the test the 0.6 day per step for ramping would
become 12 days, and would make the whole test step require 17.9 days instead
of 6.5 days--a three-fold increase.

At the same time the 5.6 days budgeted in the above estimate for the
thermal cycle is about twice the 3 days estimated in SSC CDR (p. 361), based
on the ability to concentrate the large pumping capacity in the SSC for quick
replacement of a magnet in the ring. This pumping capacity is not expected to
be available for early testing at the system test facility. It could be
available with the establishment of a string testing program involving

early-constructured parts of the operational SSC.(‘)



Analysis

The objective of this analysis is to quantify our confidence R for a given
value of the mean operational 1ifetime x expected on the basis of an
accelerated 1ife test period y of a sample of N magnets. The test period y
can be denominated in units of equivalent years of actual operation, which, by
the above discussion, each requires 6.5 days of testing.

The method by which we attempt this estimate is based on several
assumptions, none of which are particularly essential, and all are most
conveniently described as they occur within a description of the method.

To begin we assume a constant failure rate 'I/-r1 for a single
representative magnet such that its probability of not failling in a period of
y equivalent operational years is the exponential e‘ylti. This so-called
exponential-failure-function hypothesis presumes the individual magnets fail
from a complex variety of causes. 1Its use 1s based mostly on the simplicity
of computation that it allows for obtaining rough estimates.(') With this
assumption the probability of <n failures in a sample of N magnets tested for

a period y at failure rate 1/v, is:
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The above is based on a particular value of ‘l/t1 for the rate. We do not
know this rate. If we knew it we would know the expected mean life. What we

can ask is: What is the probability R that the true mean 1ife t of the



magnets represented by the N magnet sample is 2744 given <n failures occur

in a test period y? We use
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In this expression P1 = the probability of the rate being 1/11 that we compute

with. The 91 are conditioned by prior information: results of previous tests,

intuition, or parameterized for computationa) determination as e.g. by

Lagrangian entropy maximization. So here enters out next major assumption:

choosing the P,. We have considered time bins 5 units wide with = 5§ + 2

i
in 51 < 7y < 5(i41) and 2 distributions of 91:

A) Pyo=c, i =(1,2,3,4,5,6)

P

1 =0, 1#(1,2,3,4,5,6) ; (3)

B8) P1 =c, 1=(1,2,3,...7,8,9)

p, =0, 1»(,2,3,...7,8,9) .

i
The early-time bins 1 = 0,1 contribute almost nothing in the probabilities R

that we compute. Also, the distributions cut off above some maximum <, ; ic

ic
= 6 for set A and ic = 9 for set B.
The effects of the upper cut-off of the prior distribution may be seen as

follows: First we re-express R as
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where o = 2121, Py P1 and & = pi._]Pi,_]. Because P, falls rapidly with i
below 1 = i', the Pi'—I contribution in & is dominant. So,
PPy
T-R(x 215, M N, y) = f___iqi;—_ (6)

1>1
It 1s easily seen from this expression that extending the prior distribution

to high cut-off in 1y eventually leads to a behavior something 1ike

Piig
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where the cutoff value 1s ic>>1'. It is also easily seen in this expression
why

1-Rx 21, 0 N y) ~e ¥, (8)

where a 1s independent of yN for n=0 and nearly for n=1,2; for this failure
law. This behavior is evident in the plots of our results in Figs. 1-5.

We have computed R{x >

—

T My N, y) with the prior distribution A for

i*'=3, 4, 5, 1.e., > 15, 20, 25,
n=20, 1,
N=25,10;

and with distribution B for
i*=3, 4,5, i.e., v 215, 20, 25,
n=0,1, 2,
N=5.

These results are plotted in Figures 1-5.

The figures show some interesting relations that are more or less
independent of the priors for the failure law assumed here. All the results
can be well approximated as

1-R(x 2150, 0 N y) ~ &2V (10)



where the effective rate
a=a{r > T My ic, N) (1)

depends on Tye D and the prior distribution cutoff ic (= 6 for set A, and =

9 for set 8). But the ratios

a(t Ti n;, ic, N)

2
B(nl' nao ") = G(‘l’ > 11|’ n;' ic, ") (12)

are independent of T and fic,

s(n1 =0, n, = 1, N=5) = 1,24, set A and B,

1.64 set A,
B(n, =0, n =2, N=5)= 168, setB . (13)
The B's do depend weakly on N, as
B(n1 =0, n = 1, N = 10) = 1,13, set A'. (14)

As can be seen in Egs. (1,2), for n = 0 R(x > Te N = 0, N, y) is an
entire function of the product Ny, and as ot > Tiee N o= 0, ic, N) is almost
independent of y, so also it is almost independent of N. Actually, the a's
are slightly increasing functions of y in the region of y < T < Ty This
shows as a steepening slope of tn(1-R) vs y that is more noticable inn = 2
cases. But to the degree that the a's are (nearly) constant a useful
practical rule of thumb follows: We accumulate the same level of confidence R
that the mean 11ferexceeds some chosen value t > Ty in y units of test time
on an N-magnet sample as in ky units of test time on a sample of N/k magnets.
This relationship holds as a rule of thumb approximation for n =1 and n = 2
cases; less than for n = Q by an amount indicated by the s1ight N dependence
of the g's, e.qg.

Bn =0, n =1, N=35
2 2 1.28 _ 449, (15)

B(n1 = 0, n, = 1, N =10) 1.13

=)




The question of estimating the prior probability distribution, j.e., the
P1's, remains. This is a weakness of the present method in that it allows the
introduction of subjective judgment in selection of the prior probability
distribution.(‘) But in our present usage it is also an advantage in that it
facilitates the incorporation of new information as it is accumulated in the
testing process{es). In particular, in the two trial distributions
f1lustrated here we have been rather conservative by not introducting a
preference for the prior probability that any one T4 Was more nor less likely
than any of the rest up to some cutoff value Tie above which we assign zero
prior probability. It may be that our subjective choices of trial cutoff
values are far too conservative. In this case if the accelerated 1ife tests
approach the trial cutoff i.e. T4e and we decide that it was chosen too
timidly then we can move it higher and recompute our estimated confidence R.
This will yield a higher confidence estimate for a given Ty My N. Also, as
we gain confidence that the true meanlife exceeds some particular Ty, we may
want to decrease the relative prior probabilities assigned for values of I
considerably below that particular Tiie and again recompute the confidences
R(x > 11‘) for all T of interest. The result will again be an increase in
our estimates R.

The analysis described here has been naive. However, it already offers
several worthwhile observations: 1) It suggests some useful model-independent
rules of thumb relevant to more detailed analysis of the accelerated life
tests. 2) It suggests a modality within which planning, testing and analysis
can begin and still accommdate successive upgrading as the program proceeds.

3) 1t is in consonance with the step-progressive protocol for the accelerated



1ife tests that has been considered previously. As seen in the figures, we

can obtain fairly high confidence levels, 1 - R = 0.01 or 0.001, of lifetimes

r > 15, 20, 25 years with testing times of the order of 1/2 to one year,

assuming the tests do not reveal serious design failures.

(7)
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We are here considering a first gross overview of a composite system
test. The expected lifetime of component subsystems can be analysed
separately. We assume that extensive and systematic studies on component
parts and subsystems have been separately performed during the previous
development of the magnets. As an example, the study and resolution of
the problem of collar fatigue failure at the Tevatron is described in Sec.
I1I, A, p. 9-10 of Ref. (2). Results of such subsystem analyses will be
integral parts essential to later, more detailed extensions of the overall
problem at hand. We are just not considering that level of detail yet.

There are further criticisms of principle that go beyond the
susceptibility of errant subjectivity to, inter alla, issues like whether
or not a prior probability distribution can even properly be assigned on a
physical indepéndent variable. Eq. (2) is of a form known as Bayes'
theorem, about which controversy has attended a large fraction of all
attempts to exploit it ever since its discovery in the 18th century. We
acknowledge this controversy and forge on.

Arguements can be made on the grounds of elementary reliability and
availability theory that the expected mean lifetime of individual magnets
might be required to be much larger than the requirements aimed for here.
We will discuss this elsewhere.



Figure Captions

Fig. 1. 1 - R{(x > Ty My N, y) versus y for Ty ® 15, 20, 25; n =0, 1; N =
5; where R(t > Ty M N, y) 1s the probability that the mean life r exceeds
Ty given that a test sample of N = 5 magnets survives y equivalent

operating years of accelerated 1ife test with < n failures, and assuming the
prior distribution P1 =¢, § = 1-6, all other P1 = (0 (set A).

Fig. 2. 1 - R{t > T n, N, y) versus y for T4 " 15, 20, 15; n =0, 1; N =
10. Same as Fig, 1 except that in this case the number of magnets in the test
sample in N = 10,

Fig. 3. 1 - R(* > Tiue n, N, y) versus y for T 25; n=0,1, 2; N =5;
where R(t > Ty n, N, y) is the probability that the mean life x exceeds

Ty = 25, given that a test sample of N = 5 magnets survives y equivalent

operating years of accelerated 1ife of accelerated 1ife test with < n
failures, and assuming the prior distribution P1 =c, { =1-9, all other P1 =

0 (set B).

Fig. 4. 1 - R(+ > Ty My N, y) versus y for Ty = 20; n=0,1, 2; N=5§,

Same as Fig. 3 except that in this case R is the probability that the mean

Yifetime + exceeds T 20 years of standard operation.

Fig. 5. 1 - R{x > Ty n, N, y) versus y for T " 15; n=0, 1, 2; N= 5,
Same as Fig. 3 and 4 except that in this case R is the probability that the

mean lifetime t exceeds T 15 years of standard operation.
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