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ABSTRACT

Recently Furman derived a practical formula for computing the power lost
by a gaussian bunch in periodic orbit traversing a resonator with quality

factor §Q > 1/2. We give a generalized expression valid for all Q values.



A practical i?rmu}a to compute the power loss by a short gaussian bunch
traversing a resonator was derived by Furman} recently. His formula is valid
for resonator quality factor Q > 1/2. With a slightly different
formulation, we obtain a general expression valid for all physical ¢ values.
We shall take Eg. (10) in Furman's note as the starting point, which states
that, for a gaussian bunch of total charge NBe and longitudinal width I
moving in a periodic orbit of length 2«R with a frequency fo = mo/Zw, the

power loss is given by
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P = Ry(Ngef )*(R/a,) | 3 (1)
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where « = (wR/wO)(aZ/R), and RS, g, and wp are the shunt impedance, quality
factor, and resonance frequency of the resonator, repectively. The conditions

which justify the integral représentation Eg. (1) are o /mo >> § and

; R
(cZ/R)2 >> 1. The discussion of these conditions is given in Ref. 1.

Consider the identity
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where
X, " 5% i+ V4021 7 (3)

Replacing Q@ by -Q in (2), we get
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It follows tﬁg;
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Let x = ax, and s aX, . the integral in Eq. (1) can be written as
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where w(z) is the complex error function2 defined by
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From (3) Im L 0 for Q > 0, clearly Eq. (6) is well-defined for

¥

all nonzero Q values. 1In particular, for Q > 1/2 we can write

1(0) = —£T— Re[s w(s )] (7
40%-1
by using the facts that s, = »s: and w(—s:) = {w(sl)]*. Expression (7) is

just Furman's result.
The function I(Q) given by (6) is obviously continuous at Q = 1/2, we can

easily evaluate it as

I(z) = 2an &5 [sw(s)1]
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Using the identi;yz

dw(s) 21
ds S o= = 2swW(s) ,

) |
we get I(F) = 2nal(1+2a®)w(ia) - o2 1. The positivity of 1(1/2) is

. ; 1
insured by the fact w(ie) > v
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