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ABSTRACT 

We derive an approximate formula, based on the complex error 
function, for the power lost by a gaussian bunch in periodic orbit 
traversing a resonator. We state the conditions that the bunch length 
Uz, quality factor Q and resonant frequency WR must satisfy in order 
that this formula be valid. 
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1. Introduction 

Consider a charged particle bunch moving in a periodic orbit of length 27rR 
with frequency / 0 • If this bunch traverses a resonant structure with impedance 

Rs 
Z(w) = 1 + iQ(!!!a - ~) 

W WR 

(1) 

then the power loss is 111 

00 

P = c21; L jp(mwo)l 2 Re[Z(mwo)] (2) 
m=-oo 

where p(w) is the frequency spectrum of the longitudinal charge density p(z), 

.-R 

p(w) = ~ J dz eiwzfcp(z) (3) 
-.-R 

If p(z) varies smoothly and is nonzero over a distance comparable to 27rR, 
then p(w) is significantly different from zero over a small region of w (measured 
in units of w0 = 27r/0 ), and then a few terms in the summation yield an accurate 
estimate for the power loss. 

If, on the other hand, p(w) is very broad-banded, it is necessary to keep a 
large number of terms in the summation in order to achieve good accuracy, and 
therefore a better method is desirable. This case arises when p(z) is nonzero over 
a very small region, that is, when the bunch is much shorter than the length of 
the orbit. This is clearly the case for large circular accelerators such as the SSC, 
where the circumference is millions of times greater than the bunch length, and 
therefore an accurate evaluation of the power loss may require millions of terms 
in Eq.(2). This is the limiting case we address here. 
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2. Derivation 

We assume, therefore, that p( w) varies little over a frequency interval of 
size w0 • In order to find a useful approximation for Eq.(2) we assume also that 
Re[Z(w)] varies smoothly over such an interval. In this case it is legitimate to 
replace the summation by an integral, 

()() 

P = c2J; J dw l.O(w)l2 Re[Z(w)] 
Wo 

(4) 
-co 

which may be easier to evaluate accurately. 

The condition of smooth variation of Re[Z(w)] is easy to state more precisely. 
Eq.(1) implies 

Rs 
Re[Z(w)] = 1 + Q2(!£& _-"!.. ) 2 

W WR 

(5) 

so the fastest variation occurs around the resonant pea.ks at w = ±wn. The 
FWHM of these peaks is b.w = wn/Q and therefore the smooth-variation condi
tion of Re[Z(w)] translates into the requirement 

Let us consider a bunch of total charge NBe with gaussian density 

* and frequency spectrum 

- NBe ( w
2
u;) p(w) =-exp --

c 2c2 

(6) 

(7) 

(8) 

The smooth-variation condition described above translates into the requirement 
(w0 uz/c)2 < 1, that is to say, 

(9) 

From here on we assume the validity of inequalities (6) and (9). 

* We take the liberty to extend to infinity the limits of integration in Eq.(3) in anticipation 
of our approximation. 
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An obvious change of variable in Eq.(4) yields 

where 

(R) Joo -•• 
P = Rs(NBefo)

2 
- ds Q~(' "') 2 C!z 1 + - - -

a • -oo 

(10) 

(11) 

We consider now the following representation of the complex error function 121 

00 2 

iz I e-• w(z) = - ds 2 2 7r z - s 
-oo 

valid for Im(z) > 0, and calculate 

1 /
00 

2 ( iz2 ) Re(zw(z)) = - ds e-• Re 
2 2 7r z - 8 

-00 

By setting z = x + iy we obtain 

Re - ~~~~--"""------( 
iz2 

) 2xys2 

z2 _ 8 2 - (x2 + y2)2 + 8 4 _ 2(x2 _ y2)s2 

whereas the integrand in Eq.(10) is proportional to 

82 

a4 + s4 - 2(1 - 1/2Q2)a2s2 

Therefore we are led to identify 

x2 + y2 =a2 

x2 - y2 =a2(1- 1/2Q2) 

from which we obtain 

x = 2~ v' 4Q2 
- 1, 

a 
y=-

2Q 
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(12) 

(13) 

(14) 

(15) 

(16) 

(17) 



(the other solutions are not appropriate). Therefore 

and, finally, 

We recall that 

271" Re(zw(z)) 
y'4Q2 -1 ' 

P R ( 1 ) 2 (27rR) Re(zw(z)) 
= s NBeJo --

Uz y'4Q2-1 

UzWR a=--, 
c 

WR Q 
-~ ' 
Wo 

(18) 

(19) 

(20) 

Eq.(19) is our final result. Its virtue lies in the fact that the complex er
ror function can be easily estimated numerically by efficient routines available 
co=ercially. 

3. Remarks 

1) Note that for Q = 1 the known result 1'
1 is recovered. 

2) Eq.(19), despite its appearance, is not divergent at Q = ~ because here z 
is purely imaginary and w(z) is purely real, therefore Re(zw(z)) = 0. 

3) As Q ---+ oo z becomes real and then 111 

Re(zw(z)) = x e-~ 
2 

so the power vanishes as 

Re(zw(z)) a -a• 
-y-r4=Q=;2=_==1 ---+ -2Q-e 

4) Eq.(19) is clearly not valid for Q < ~.although a generalization is probably 
easy to find. 
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