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PARTITIQN NUMBER EBRORS IN IllE SSC 

Introdµction 

The SSC is the first proton collider in which the betatron and synchrotron damping times, due to 

synchrotron radiation, will be comparable with the storage time. They are given by[l] 

(1) th,v,e = ts I Jh,v,e 

where the subscripts h, v, and e on the partition numbers J refer to horizontal, vertical, or energy 

oscillations. A subscript s will always refer to the real synchronous orbit of the SSC, that is, to a 

quantity evaluated on the unique orbit which closes on itself in all three dimensions. The fundamental 

damping time in equation (1) is always very close to its design value (subscript 0) 

(2) 

where k is a constant which does not concern us here, and angle brackets < > signify an average taken 

around the synchronous, or the design, orbit. The quantity G is the total bending strength at a given 

point, so that 

(3) 

where Gv may be due, for example, to a vertically displaced closed orbit in a quadrupole, or a non-zero 

ao in a dipole. 

The partition numbers J are the quantities which are interesting here, because if any of them are 

zero the corresponding motion is unstable, albeit with a long rise time. Robinson has shown[2] the 
general result that if the magnetic fields are not time varying 

(4) Jh + Iv + Je = 4 

Nominal values of the partition numbers are clearly indicated in the parameterisation 

(5) 

where, in a generalisation of the results ofreference [l] to include bends in the vertical plane, the 

fundamental quantites Dh and Dv are given by 



(6.1) 

(6.2) 

in which K is the quadrupole strength on the synchronous orbit, and Tl is the dispersion function. 

(7) 
On the design orbit of a perfect, separated function, flat, SSC, 

GK= 0 

Dv = Gv = 'l'lv = 0 

while the horizontal D-funtion is negligibly small with a tune Q == 100, 

(8) Dh "" 'l'ltypical Gtypical = RJQ2 · l/R "" 10-4 

(separated function) 

or even zero[3] if the dipoles are rectangular. Also, the first, G3, term in the numerator of (6.1) and 

(6.2) turns out to be negligible by comparison with the second, GK, term, in all the cases studied 

below, because 

(9) 

where L112 is the half cell length. It is therefore a good approximation, adopted hereon, to say 

(10) ~[v] 

where the denominator is conveniently evaluated over the design orbit These equations will be used to 

study what happens to Dh and Dv when different kinds of error are present. Note that Dv tends to be 

much less than ~. even in the presence of large realistic errors, if the lattice is decoupled (as is 

implicitly assumed), because then the vertical dispersion is (usually) relatively small. 

Synchronous eneri:y errors [4) 

If the frequency of the accelerating cavity is not matched to the length of the SSC for some 

reason, whether by accident or on purpose, the relative synchronous energy will be non-zero, 

(11) 

where h is the harmonic number, and a is the compaction factor. The synchronous orbit is 
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horizontally offset by 'llh·Bs, so that a quadrupole of design strength Ko aquires a dipole strength 

(12) 

which, in a separated function machine with no other errors, ('llv = 0), leads to 

(11) ~ = 2 A 15s I ( 1 + A Bs 2) 

Dv = 0 

= 2A B s 

where the A is given by an average over the design orbit 

(12) 

Edwards[3] has shown that, for a FOOO cell lattice with a phase advance of cj> per cell, there is a strong 

dependence on the quadrupole length, 

(13) 

where rQ is the fraction of the cell filled with quadrupoles. Appropriate SSC values give 

(14) rQ = Lquad I L112 = 3.l / 96.0 

A = 514 

«I> = 60 degrees 

and the conditions for stable energy and horizontal betatron oscillations become 

(15) -2 < Dh < 1 

-1 /A < BS < l / 2A 

-1.94 x 10-3 < BS < 0.97 x 10-3 

These numbers are comparable to the energy aperture found by tracking, and correspond to systematic 

orbit displacements of a few millimetres. 

Closed orbit errors 

Horizontal closed orbit errors x in the quadrupoles will also lead to a non-zero numerator in 

equation (10), since GK=xK2, but there will tend to be a strong cancellation between different phases 

of the oscillating displacement. In a worst case analysis, assuming that the displacements in N=400 

focussing and defocussing quadrupoles in a FOOO lattice SSC are all totally random, 
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(16) 

where R-2 has replaced the denominator. Using SSC values 

(17) R = 13.4 kilometres 

'llmax = 3.9 metres, 'llmin = 2.4 metres 

<x·2>/<x 2>_R./R -113 mm max - Pmm l'max -

KLquad "' 2 sin(cj>/2) /L112 = 0.0104 metres-! 

then, with the rms orbit error < Xf 2> 112 measured in metres, 

(18) DJt = 5.98 < Xf 2>l/2 

showing that even for an orbit scraping the vacuum chamber, this is still only a 10% effect 

Ouadrqpo!e field errors jn the dipoles 

If there is a systematic quadrupole error in each of the dipoles, measured by b1 metres-1, the 

familiar coefficient, then since K=bi Gin the dipole, and assuming an otherwise perfect machine, 

(19) 

A typical value for b1 ("b1 of 1 x 104 at one centimetre") is 0.01 metres-1, showing that this effect is 

also negligible. The effect is even smaller for random quadrupole errors in the dipoles. 

Indjyjdua! contributions from the IR triplet quadrypoles 

So far it has been assumed that the vertical dispersion, and hence Dv, is negligible compared 

with the horizontal dispersion, and DJt. Furthermore, nominal (horizontal) dispersion values have been 

used, since this will at least give a feel for the numbers. At the IR triplet, however, both the vertical and 

the horizontal dispersions functions are designed to be zero. In order to see whether the very strong 

quadrupoles, and high betas, might nevertheless still be dangerous, consider an error dispersion, vertical 

or horizontal, given by 

(20) Tl "' q. 'llarc max ( p I Pare max )112 "' 0.22 q pl/2 
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where q is a quality factor, which is probably around 0.1 for a good machine, and as large as 0.3 or 

more for a bad one. There is a dipole component in the IR triplet quadrupoles, even in the absence of 

closed orbit errors, because of the crossing angle 0 *, so that, due to a single IR quadrupole, 

(21) D .. ( R/2lt). Tl p112 p* 112 e* K2 Lq .. ( 0.035 R). q pp* 112 e* K2 Lq 

Using the extreme SSC values for the middle quadrupole, of length Lq. 

(22) e * = 70 microradians 

K = 0.003 metres-2 

the contribution is found to be 

(23) D = 0.049 q 

* P = 0.5 metres 

Lq "' 30 metres 

P = 8,000 metres 

Only. if all the 12 middle IR triplet quadrupoles conspire together will this effect be important Note that 

the displacement due to the crossing angle, e*cp p*)l/2 = 4.4 millimetres, is much larger than closed 

orbit errors which can be reasonably expected. 

Conclusions 

There appears to be no particularly dangerous partition number effect lying in wait to disrupt 

SSC operation. The most pronounced behavior will occur on day l, when the synchronous energy will 

have to be adjusted to match the true circumference of the machine. If the length error is OL, the 

necessary relative adjustment in the accelerating cavity frequency will be only about filJL, which is 

(presumably) negligible. 
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