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Introduction

The machine impedances have Deen discussed in the SSC reference

1 The purpose of this report is to refine the

design study.
gstimates of the surface impedance of the copper laver on the beam
pipe wall at 4.2°K by considering the anomalous skin effect and the
magnetoresistance at low and high frequencies. Physical properties of
the copper layer that can be important but may not be known for a
particular copper layer include impurity scattering, scattering by
structural defects and alterations of the scattering for large
cyclotron radii of the electrons at low magnetic fields.

The contribution of a copper surface layer on the beam pipe wall
to the SSC machine impedances has been estimated in the SSC reference

design study by use of the "resistive-wall" impedance. The resistive

wall impedance Zgiﬂ is given by
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where Z0 = ““0780 is the free-space impedance, R is the
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effective machine radius, b is the effective beam pipe radius, o is
the copper layer (wall) electrical resistivity and § is the
‘classical' skin depth at the excitation frequency f = nfo for fo

the revolution frequency =2.5 kHz.
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where SI units are used unless stated, the inductive reactance ig
positive here and ¢ = 1/p. The transverse impedance Z; {(per unit

length) has been related to Zy by

Z
2R Cl
b= 2 =+ (5) 3
The resistive wall impedance Zﬁ can be related to the surface
impedance ZS of a hollow right circular cylinder with well developed

skin effect by

R s
Zu = 5‘ Z % Z = e— ¥ (4)

The surface impedance ZS can be found by the Rayleigh formula.z

The broadband average1 of the wall impedances is dominated by the
high frequency portion. As an estimate of the high frequency portion,
we calculate the impedances at the cutoff fregquency of the beam pipe
f = ncfo = fg R/b = 2.39 GHz. We can estimate the impedances at

c
10

T =4.2°K if ZD = 377Q, b = 1.5 x 16"2 my p =5 x 1077 "Q-m, 2R = 90 km

and f = 2.39 GHz. We find

2.89 (1+j) mQ

L

M

=3

Z, = 0.368 (1+j)
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For coupled-bunch instabilities™ the excitation frequency is 2.5 kHz.

The narrow band average 1is

Zy
Lo 283 (1400

(6)
Z, = 360 (1+]) =

The effective values of the impedances in Eq. (5) will be compared
with the values in the SSC design study in the conclusion. The value
for Z, in Eq. (6) agrees with the value in the SSC design study in
Table 4.3.1.

The above expression for the resistive wall impedance was derived
for zero static magnetic field but the copper resistivity at 4.2°K was
estimated by assuming that the resistivity is larger than it would be
in bulk copper in a zero magnetic field. A reduction of 30 over the
room temperature resistivity was taken for the design study. How good
is that estimate? In this report an attempt is made to answer that
question but one should note that the zero magnetic field d.c.
conductivity (rééist%v%ty} of copper at 4.2°K varies considerably from
sample to sample. Single crystals of exceptionally pure copper
possess a much smaller d.c. resistivity at zero magnetic fields than
the design value. Recently d.c. resistivity ratios of 100 to 500 for
zero magnetic fields have been repsrted3 for copper layers of 8 mils
on cylinders that were constructed as models for the SSC beam pipes.

The resistivity ratio (RR) is the ratio of the resistivities at two



temperatures; in this report the resistivity ratio is the ratio of the
resisitivity at a reference temperature (room temperature =295°K or
273°K) to that at 4.2°K. Although reducing the bulk copper d.c.
resistivity ratios in zero magnetic fields can give useful guesses of
the machine impedance contribution of the cold copper in magnetic
fields, the variation with frequency and magnetic field is more
complicated. To estimate the corrections to the surface impedance we
need estimates of certain parameters. Many are straightforward to
calculate but believable values of the collisional mean free path 1 of
electrons or the related mean collisional time T are more elusive.

The most complete discussion of different ways of determining the mean
free path in metals is given by Chopra,¢ However, for copper he

5 for the mean free path of

quotes only one measurement at 4.2°K
34,000 A for copper whiskers. Since the estimate of the electron mean
free path in copper at 4.2°K is necessary, we first consider that
question. Other than the approach of Isaevas the two approaches
commonly used for calculation of the mean free path are based on data
from the surface impedance of copper at high frequencies in the
anomalous skin effect regime. However, the mean free path value
cannot be unfo}aéﬁ from the surface impedance data unless the bulk
conductivity of copper is known at low temperatures. We, therefore,
start with a discussion of possible values of the electrical

conductivity of bulk copper at liquid helium temperatures for a d.c.

electric field and zero magnetic field.
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Electrical Conductivity of Bulk Copper in a d.c. Electric Field

and Zero Magnetic Field

The reported range for resistivity ratios of bulk copper in a d.c.

6

electric field and a zero magnetic field is from 2.3° to

7,8

8,600. For this case p(273°K)/0(4.2°K) = 2.3 and

0{295°K)/p(4.2°K) = 8,600 but the difference between the use of iced

water and room temperature is not significant. Kitte}g {p. 238)

quotes a resistivity ratio for good metals of 193 or more.

Measurements have been made of commercial copper. Rosenberg quotes
vaiues of bulk copper resistivity ratios of about 200 for high purity

samples from Johnson Mattley Spectrographically Standardized

6

materials. Mendoza and Thomas™ found resistance (resistivity)

ratios of about 100 for copper where the reference temperature was
273°K. They used wire with less than 39‘2% impurities of Ca, Cd,
Mg, Si, Pb, Mn and Zn. One reel of copper wire had 0.94% of Sn

impurities as well as some Mn impurities. The resistivity rotio for

10

this case was about 2.3.  Berman and MacDonald found slecirioal

10 10

conductivities of 1.85 x 107" and 1.5 x 107" siemens for copper near

1iquid helium temperatures. The measured impurities were Ag < 0.0005%,

Ni < 0.0003%, Pﬁ < 0.0004%. The resistivity ratios for a reference

temperature of 273°K (¢ = 6.45 x 107 s%emensll}

12

are 287 and 233
respectively. Sondheimer™" quoted a resistance ratio (reference
temperature 273°K) of 345 for a pure sample of copper but a ratio of
20 for a copper sample with 0.026% of Sn. We conclude from the

experimental data that small amounts of impurities in copper can
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markedly reduce the electrical conductivity of copper at liquid helium
temperature.

Theoretically we expect the presence of impurity ions in copper to
depress the electrical conductivity at low temperatures. At room
temperatures the dominant scattering mechanism is electron-phonon
collisions; this swamps any impurity scattering at room temperatures.
At low temperatures only electrons in the high energy tail of a
distribution function can emit phonons. Hence, electron-phonon
collisions are improbable and scattering off impurity ions as well as
of f structural defects (dislocations, stacking faults, interstitials,
vacancies and grain boundaries) is dominant. Chrog&4 claims that
significant changes to resistivity come from vacancies and grain
boundaries. Rosenberg put emphasis on other structural defects.
Annealling can reduce the scattering by causing migration of the
single vacancies and the disappearance of the grain boundary area.

Theoretical estimates of the resistivity of bulk copper at liguid
helium temperature from room temperature measurements do not help
much. At room temperature different specimens of copper with guite
varying amounts of impurities have nearly the same electrical
resistivity but'those same specimens at liquid helium temperature have
widely varying electrical resisitivities. The conventional formula

for the temperature dependence of the electrical rﬁsfs%tﬁvityiz

o= oy [ +a (T-T,)] (7)
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where the subscript o denotes the reference quantities only works at
temperatures considerably above the 1iquid helium temperature. In
fact for the o« in Harnwell's book one finds a negative resistivity for
copper at 4.2°K. A more sophisticated model employs the
Block-Gruneissen formula for resistﬁv?ty,g The approximations to

the integral give

= e e B = 320°K (8)

where the subscripts L(h) denote low (high) temperatures. However, at
low temperatures one must add the residual resistivity to 05 which
exceeds py there, and this residual resistivity depends on the purity

of the copper.14’15

Anomalous Skin Effect

The anomalous skin effect is important itself because the
expression for the surface impedance is significantly altered in this
regime., In addition the data from metais in the anomalous regime
afford a common method of determining the mean free path of electrons.

The ansmaia&s skin effect occurs when the electron mean free path
is longer than the skin depth. The effective electrical conductivity
decreases because only the electrons moving at small angles to the
surface are in the electric field for any length of time and thereby
contribute to the current. Apparently Lomd@nis first offered a

17,18

qualitative explanation. Pippard derived an expression for the
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syrface resistance by means ¢of the ineffectiveness concept. He
assumed that most electrons did not contribute to the current because
they did not travel parallel to the surface. He then applied the
Kramers-Kronig relation to find the reactive part of the surface
impedance. Sandheimerlg contributed to the theory as well.

20 made the most detailed measurements of the surface

Chambers
impedance.

An approximate expression for the surface impedance can be found
from the usual surface impedance ZS by calculating an effective

electrical conductivity Toff. " From a crude free electron model the

electrical conductivity is given by

5 - ne’t (9)
= om (1-TwT)

where n is the number density of electrons, e is the electron charge,
My is the free electron mass and » is the angular frequency of the
electric field and T is defined on page 4. If only a portion of the
electrons are in the skin depth for any length of time, the effective
density of e%ectn@qs decreases to Naff = Ténix where T is some
constant equal to 10 or so and x is defined on page 4. For the
extreme anomalous regime, x» >> &, the effective conductivity is
considerably reduced with Noff substituted for n in Eg. (9). The
subsequent replacement of o by Oaff from Eg. (9) in RS (wt << 1)
gives an approximation to the surface resistance in the extreme

anomalous limit. The surface reactance XS can be found from
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the surface resistance RS by the Kramers-Kronig relation such that

X = V3 R,
More fundamental derivations were given where Reuter and
Sé;mdheimerz“L assumed wT << 1. K%ttelg and Pippard17 presented

modified approaches based on the Boltzmann equation for solving an
integro-differential eguation for the electric field (planar
gecmetry). Explicit expressions were found for purely specular or
purely diffuse scattering of electrons. Surfaces that are not clean
and smooth appear to exhibit diffuse scattering. Experimentally the
numerical difference between the two cases is unimportant because they

differ by a factor of 8/9. The surface impedance for purely specular

ref%eationg’}? in the extreme anomalous limit, x >> &, is
\1/3
1/2_ 2
- 813 A \ sec o
Lo = g7 — (1 * Jﬁ)(“ﬁ?ﬁ) (10)
C op

where the factor of 8/9 is omitted for diffuse scattering and the

subscript s is suppressed. In SI units the surface impedance for

purely diffuse sc&tter§ﬂg22 is

5 \1/3 .
7. = 3.7897 x 107° (9-.5-.’:») (1 * 3*’37) Q) (11)

fee}

in the extreme anomalous limit. Also Biquard and Septierzz

20

give
formulas due to Chambers for the surface resistance and surface

reactance at temperatures T
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—0.2752>

o)
1

R (1 +0.32578 ()

tg = x (1 +0.13319 70275

Q)

v

for o(T) = 2nwes (T) (1/6)?

and this «{(T) differs from the a in
Eg. (7). Qualitatively one sees that the effect of replacing ¢ by
Suff in Eg. (1) in the surface impedance is to increase the surface
impedance over its value with ¢. This increase is in addition to the
usual surface impedance increase due to squeezing the current into a
skin layer.

The mean free path of electrons in the copper layer can be
calculated by two ways from the surface impedance data. One quick way
is to measure the electrical conductivity and use the electron number

20 for the valence electrons. The

density n determined by Chambers
other way is to determine the mean free path directly from the surface

impedance data. We next discuss the latter approach. If we use the

surface conductance $ = 1/R, we can writezz
s . 15. (g)1/3 13
z s ) f o A
295 K 0

where (ofx) is measured at 4.2°K, f is the excitation frequency and
4 is the electrical conductivity of copper at 295°K and all
guantities are in SI units. The conductance ratio in Eg. (13) is
determined from the resistive parts of the surface impedances in Eq.

(4) and Eg. (11).



~11-

Biguard and Septier have measured the surface conductance of
copper cavities in the S~ and L- bands. They suggested that the Joule
neating losses in linear accelerators could be reduced by cooling the
microwave cavities to liguid helium temperature. The microwave
measurements in a TEQEE copper cavity and copper coaxial cavity were
performed at f = 1.42 GHz and 3.16 GHz which are in the desired upper
range of excitation frequencies for the proposed SSC accelerator. We
can calculate the mean free path from Eg. (13) if we assume 7y =
5.8 % 107 siemens {U/m) at room temperature for copper and obtain
resistivity ratios for copper. Since no d.c. resistivity ratios for
zero magnetic fields are quoted for the copper layers by Biquard and
Septier, we choose p (295°K)/o(4.2°K) = o/o, to be 100 and 300. The
values of 100 is a conservative value for good copper wire. As the
copper used in cavities had a purity of better than 99.999%, the data

of Berman and MacDonald suggested a resistivity ratio of at least

300. The values in Table I for x, &, x/&, are given for the differ
reported surface conductance ratios and at the two resistivity rativs.
The mean free paths can be compared with the mean measured value

6 m and the

in copper whiskers at 4.2°K which was 3.4 x 107
calculated value from the free-electron model from Eg. (9). To find
the mean free path from Eq. (9) we let x = VeT for Ve the electron

speed near the Fermi surface and let mvglz equal the Fermi energy
23 8

of about 6 eV (older values of 7 eV®” and T ~ 80,000°K" exist).
Then Ve = 1.45 x 306 m/sec and we take the customary value for n
1029 m"3. The corresponding mean free path is 1 = 2.98 x 10"6 m.
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Both these mean free paths are smallier than the caleylated oneés in
Table I. The authors indicate some theoretical values for the
conductance ratio but do not explain how they calculated those

14

values. They do state an estimate of x»/§ ~ 40 for their case and

mention that A/é& can reach 5000. Their estimates appear to be taken

17 On the other hand, Sondheimer

directly out of Pippard's article.
quotes A/s ~ 100 for a pure metal which suggests longer mean free
paths. If the authors measured the d.c. resistivity ratio, then the
mean free paths from the high conductance ratios (electrolytic
polishing) and RR = 100 are closest to the data. This follows because
in those cases A/é& is nearly 40 and their theoretical and experimental
values for the conductance ratios are quite close. Nonetheless the
distinct possibility exists that the longer mean free paths are valid

since much higher d.c. resistivity ratios have been reported for such

pure copper.

Table 1
f (Hz) Z ratio  ofog A {m) § (m) A
3.16 x 109 3.23 100 2.53 x 10-5  1.18 x 10-7 215
3.16 x 109 3.33 100 2.31 x 10> 1.18 x 10/ 197
3.16 x 109 5.23 100 5.96 x 106 1.18 x 10~/ 50.7
3.16 x 109 5.57 100 4.94 x 10-6  1.18 x 10~/ 42.0
3.16 x 109 3.23 300 7.59 x 10~® 6.79 x 10-8 1120
3.16 x 109 3.33 300 6.93 x 10~  6.79 x 10-8 1020
3.16 x 109 5.23 300 1.79 x 10~ 6.79 x 10-8 263
3.16 x 103 5.59 300 1.48 x 105 6.79 x 108 218
1.42 x 109 5.30 100 8.55 x 106 1.75 x 107 48.7
1.42 x 109 5,30 200 2.56 x 10-°  1.01 x 10~/ 253
2.51 x 103 - 100 - 1.32 x 10-4 -
2.51 x 103 - 300 - 7.63 x 105 -
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Recently measurements of the reactive part of the surface

: : 4
impedance have been made.2

Calculation of Parameters

We are now ready to calculate the parameters needed for a
discussion of the magnetoresistance in a d.c. magnetic field and the
anomalous skin effect in a magnetic field. The design parameters for
the SSC give T = 4.2°K as the temperature of the cold copper, and

¢ G for the peak static magnetic flux density.

B=6.6T=26.6 x10
The electiron mass is taken to he the free electiron mass. The free
electron approximation is supported by the number of electrons per

atom of copper found by Chambers to be nearly one. The electron

gyrofrequencies W and fCZS are

2R 7 .
£ 2.80 x 100 (
c = . x 107 B (Hz) . (15)

For 8 = 6.6 T w,_ = 1.16 x 102

10

rad/sec: fc = 185 GHz; for

B =0.33 T; w. ='5.81 x 10

In Table Il we find the values of the cgilision time for selected

rad/sec; and fc = 9.24 GHz.

mean free paths ax from Table 1. The values are selected to cover the

range of mean free path values.
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Table II
f {(GHz) ZIratio o/og A o{m) § {(m) T {sec)
3.16 5.57 100 4.94 x 10-6 1.18 x 10-7 3.41 x 10-12
3.16  3.23 300 7.59 x 107 .79 x 10-8  5.23 x 10-11
1.42 - 5.30 100 8.55 x 1076 1.75 x 107  5.90 x 10-12
1.42  5.30 300 2.56 x 107>  1.01 x 10-7 1.77 x 10-11

The first value of v in Table [] is similar to the T = 3.8 x 10

sec quoted by Pippard.

be 107

The electron cyclotron radius re = VF/w

for B = 6.6 T and re = 2.50 x 10°

10

17

5

m for B

C
0.33 T.
-4

H

of the copper layer is about 8 mils = 2.03 x 10" m.

-1.25 x 108 m

-12

Kittel, on the other hand, estimated T to

sec for a good conductor which gives a certain Tatitude.

The thickness

The layer was

chosen to be about as thick as the skin depth at 2.5 kHz at a

resistivity ratio of about 30.

In Table III are given the length

ratios for the A in Table Il where M corresponds to the top value

of the i column in Table II and the others follow in order.

Table I11
relx x8 A/t rels
6.6 T 0.37 7 6.6 T 0.337
xp 2.53x10-1 5.14 42.0 2.43x10-2 10.6 212
Az 1.64x10-2 3.29x10-1 1120 3.74x10-1 18.4 368
A3 1.46x10-1 2.92 48.9 4.21x10-2 7.12 142
\g  4.87x10-2 9.74x10-1 253 1.26x10-1 12.3 247
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The dimensionless combinations of frequencies and T are displayed

in Table IV.
Table IV
weT we T wT wT wT
(185 GHz) (9.24 GHz)  (3.16 GHz)  (1.42 GHz) (2500 GHz)
1 6.30x10-1 3.15x10-2  1.08x10-2 4.84x10-3  8.52x10-9
2 9.68 4.84x10-1  1.65x10-1 7.43x10-2  1.31x10-7
3 1.09 5.45x10-2  1.86x10-2 8.37x10-3  1.47x10-8
4 3.26 1.63x10-1  5.58x10-2 2.5x10-2 4.41x10-8
The ratio of f to f_ for f_ = 185 GHz is for 3.16 GHz, 1.71x107;
-3, 8

1.42 GHz, 7.68x107°3; 2.5 kHz, 1.35x10°
for 3.16 GHz, 3.42x1071; 1.42 GHz, 1.54x107%; 2.5 kHz, 2.71x107.

and for fc = 9.24 GHz is
The T through T, correspond to A through Ay in Table II.

Magnetoresistance in a d.c. Electric Field

For d.c. electric fields or low frequencies copper in static
magnetic fields exhibits magnetoresistance. In weak magnetic fields
defined by (WCT)Z << 1 the resistance R(H) at magnetic field H is

related to the resistance R(0) at zero magnetic field
byll,83,,&?,26,?27

ELE%T67&LQl = (w T)2 <« 1l . (16)
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For strong magnetic fields, (wcr)z >> 1, the magnetoresistance

9

differs for different crystals. Kittel” has described three cases

for the transverse magnetoresistance., With crystals of type 1 with
closed Fermi surfaces the resistance saturates for high magnetic
fields for all orientations; the saturated value is perhaps several
times the zero magnetic field value. For crystals of type 2 with
equal number of holes and electrons the resistance increases for all
strengths of magnetic field. For crystals of type 3 with Fermi
surfaces with open orbits the resistance saturates in some directions
but not in others. Copper forms crystals of type 3. The dependence
of the magnetoresistance with orientation of a pure copper crystal is
shown in Figure 1 (Figure 4.29 on p. 109 in Rosenberg's book which in
turn is from a paperzg), As the sharp changes in resistance with
angie are seen only in single crystals, the angular dependence with
respect to crystal direction of the d.c. magnetoresistance snould not
be important for copper coated pipes.

o

e
The transverse magnetoresistance (B LE) is more commonly

appl
o

studied than longitudinal magnetoresistance (B ﬂg) because it

appl
is usually much greater. E is the electric field here. Since the

theories are complicated and did not always explain the phenomenon in

29

the past, Kohler's™ rule has proven useful. This is a simple rule

relating resistivity change to the magnetic field and the reference

30 The change 1in

resistivity based on dimensional arguments.
resistivity ap = p(H,T) - 0(0,T) divided by the resistivity o(0,T) at

zero magnetic field is a function of H/p(0,T) where § is the magnetic
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lfiﬁ(}).

Figure 1
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field. Experimental data for transverse and longitudinal
magnetoresistance are displayed by a reduced Kohler plot. The reduced

Kohler rule is

A H 0(0,273°K)
sy < ( o 10,T) ) (17)

31 has furnished

for f some function of its argument. Ralph R. Shutt
the reduced Kohler plot for the transverse magnetoresistance of copper
in Figure 2. If we let B = 6.6T, 5(0,295°K)/o(0,T) = 100, 300 we find
from Figure 2 that o{0,273°K)/o(H,T) = 32, 42, respectively, where
0(0,295°K)f0(0,273°K) = 6.45/5.8. The depression of the resistivity
ratio by the peak magnetic flux density is marked and additional
increases in the resistivity ratio increase the effective resistivity
ratio only marginally. Note that for a zero magnetic field
resistivity ratio of 100, the effective resistivity ratioc is close to
the SSC design value of about 30.

Theoretically, the magnetoresistance can be explained by
departures from the free electron model that has proven helpful in
describing the anomalous skin effect. In fact Kittel shows for a
single carrier, isotropic effective mass and constant relaxation time
in a simple geometry that no transverse magnetoresistance is
predicted. Since the magnetoresistance is usually seen

experimentally, departures from this model include two carrier types,

variable relaxation time and open orbits.
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Magnetoresistance in Time-Dependent Electric Fields

Magnetoresistance in time-dependent electric fields is an even
more compiex phenomenon. Several systems have been studied: metals
with normal skin effect in a.c. electric fields, metals in which
cyclotron resonance occurs in high-frequency electric fields and
metals with the anomalous skin effect in high-frequency electric
fields. The first two systems have been reported in some detail; the
last system which is the one of primary interest in the SSC design
study does not appear to have been treated to any extent
experimentally or theoretically. Here we use the results of the first
two systems to analyze the third system.

Donovan25’32’33

proposed a theory for magnetoresistance in

metals which are subject to a.c. electric fields and which exhibit the
normal skin effect (A << &) based on a two-band model. The
calculations are similar to those for the d.c. model. The factor of
1/t is replaced by (1+juT)/T and a surface resistance is introduced.
The model predicts a constant magnetoresistance at low frequencies but
at high frequencies the magnetoresistance drops to zero. The
transition occurs at o7 = 1. Experiments were performed with bismuth,
since it has an unusually long mean free path at room temperature. At
300 MHz the magnetoresistance retained its d.c. value, at 3 GHz the

34 and at infrared

35

magnetoresistance was one-half its d.c. value

frequencies the magnetoresistance dropped to zero. Since even for

the d.c. magnetoresistance the two-band model does not give

24

quantitative results,” this model is probably qualitative. We also
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may doubt that a normal metal theory applies when wt = 1. If we

require A << &, wT = 1 with A = VFT, then

> ()< [Eo . (18)
0

If we use oy = 5.8x107 siemens, Ve = 1.45x106 m/sec, we find

wlca

\j

the conditions 0.20 >> sigo = 100 and 0.34 >> c/go = 300 for the
most likely of/x to satisfy (18) from Table III. Since neither
condition is satisfied, at all, we conclude that the normal metal
condition does not apply for most copper samples when wT = 1.

The magnetoresistance of copper in high-frequency fields such that
the extreme anomalous skin effect regime holds was not directly
treated to any extent. However, the models for cyclotron resonance
and some of the measurements are relevant since the models include the
effect of a magnetic field on a surface impedance in the extreme
anomalous regime even when the electric field frequency ¢
for the resonance condition. C{yclotron resonance in metals and
semiconductors has been studied experimentally and
theoretical%y.17518‘26”27’36”42 The resonance affords a useful
method of finding the effective masses of electrons and holes in the
valence and conduction bands. The microwave measurements are
performed at liquid helium temperature since the mean free collision
time is sufficiently long such that the particle can complete at least
one cyclotron orbit, w.T 2 1. Actually cyclotron resonance has been

detected for mCT somewhat less than one.
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The surface impedance for the static magnetic field parallel to

the surface of a metal in the extreme anomalous skin effect regime
159,39,41

T
“c

7(H) = 2_(0) tanmh}/3 [M} . (19)
Here Z_(0) is the surface impedance in a zero magnetic field in Eq.

42

(11). Quantum corrections have been given - but should be

e 5

negligible. The expression (19) is valid for longitudinal (B I E) or
fransverse {g i E) cyclotron resonance. The surface impedance in Eq.
(19) is the first term in an asymptotic series found from an integral

for which & > & and x >> 0. T8 {r. > &) hold. From Table 11l we

o
see for f a few gegahertz that A >> & always holds. On the other hand

e is greater than § if not overwhelmingly so for B = 6.6 T whereas
it is always much greater than s for B = 0.33 T. However, the

condition for cyclotron resonance that wiwC be an integer or we is

a subnarmonic of the excitation frequency does not hold at B =6.6 T
since m/mc << 1 for f a few gegahertz. At the start-up magnetic

flux density, B= 0.33 T, wfwc = 0.342. For B =6.6T the

1/3

correction factors tanh to the surface impedance in Eq. (19)

which have been calculated for the four cases in Table IV are: TI’

1.00; t,, 0.679; 73, 0.998: T4 0.907. The corresponding complex

23:‘
numbers have been calculated for the start-up magnetic field but are
so close to 1 that we neglect m!wc. We find that the surface

impedance, in marked contrast to the d.c. dependence, decreases with
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increasing magnetic field. Experimental measurements on copper at
4.2°K at f = 24 GHz for B up to about 1.7 T confirm this dependence,
The results are shown in Figure 3 taken from a paper by Fawcett.39
The plot of RS(H}XRS(G} shows the decrease with increasing H and
is particularly suitable for our interests because it was on the
ragged edge of the cyclotron resonance regime.

Tne original integral that leads to Egq. (19) can also be evaluated
at low frequencies. The condition that x >> w T8 retrieves the
normal skin effect result. [f the transition condition is then that

A= e T8 (r = §), we can sclve that for the frequency f. The

c
values for f are: f = 28.0 MHz for B = 6.6 T and f = 69.9 kHz for B =
0.33 T for afca = 100; for a!ac = 300 f is one-third these values.
Since both these frequencies are well above the revolution fregquency
fg = 2.5 kHz, we conclude that the d.c. magnetoresistance is valid
for the surface impedance excitad by coupied-bunch instabilities.

We have so far ignored the determination of the surface impedance
for the magnetic field perpendicular to the surface of the metal.

Early thearie$3?’38

concluded that the surface impedance was
ingependent of the magnetic field in the extreme anomalous skin effect
1imit. However, later expressions for the surface impedance in the
extreme anomalous skin effect regime were given which included
nonlocal effects. The conditions for the inclusion of nonlocal
effects is

)2 2

1+ (aB)” << B (20)



Y.

100

/
/

e
o

100

RESISTAMCE AATIO v &

9
$0 9 10 IS

MAGRETIC FIELD H IN KILOGAUSS

Fi6. 2. Cyclotron resonance ahsorption in copper at 4.2°K for
Plane polarized radiation near 24 kMc/sec and magnetic ficld
Parallel to the metal surface. Specimen orientation—see text;
UDDQ; (%xrveawf X, lower curves—J[[¥V; O—H||J, X—HLJ;
wr=105,

FIGURE 3



w25

where o = wé /Vg {(w+wc}fm)3lzs B = A/8 (wf(w*wc)}ljz

and « is not the same a« as in Egs. (7) and {12). The London skin

depth is
5 = = = 3§ foT _ ﬁgi (21)
L5 o) © N2 % T me
o e
6

If f=1.42 GHz, B =6.6 T, & = 8.55x107" m, we find the largest a

and smallest g. Even for this case we are in the nonlocal regime as

o = 0.262 and 8 = 26.4. From Table I in the article by Miller and
Haering we find an approximate expression for the surface impedance
under the conditions ZS(H} = Z_ in Eq. (10) for this case. Since

the zero magnetic field surface impedance is a good approximation for
the least favorable case, we conclude that the magnetic field does not
change the surface impedance if B is perpendicular to the metal

surface in the extreme anomalous limit.

Thin Films

Thin f%3m34 are layers of materials where the layer thickness t
is much less than the carrier mean free path. From the ratios of a/t
in Table IIl one sees that the proposed copper layers are not thin
under that definition. However, even thick metal films may have
higher resistivity than the bulk metal. Yet for Au and Agg the
evaporation process can produce films with a resistivity much higher
than very high-purity bulk material. For d.c. electric fields a size

effect dependence of longitudinal d.c. magnetoresistance has been

shown. These calculations were done numberically for wiresaa’ﬂg and
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films. The results are shown in Figure & from reference 4, p. 393,
An analytical formula valid for 8 = t/rC >> 1 has been given where
this g is not the same as defined in Eg. (20). The quantity y = t/a.
From Table IIl y > 2.67 for our mean free paths which is off the graph

for films. However, from the analytical formula valid for 8 >s 1

é«%:
= - 1 -83;5- (22)

for or the resistivity of the film and °g the resistivity of the
bulk material, we find prpB = 1.007 for B=6.6 T and 1.14 for
B=0.33T.

Therefore at peak static magnetic fields we neglect any size
effect of the copper layer but include it for the start-up magnetic

field in the surface impedance at f = 2.5 kHz.

Conclusions

The surface impedance of 8 mil copper layer on the SSC beam pipe
at 4.2°K has been investigated. Excitation frequencies excited by
coupled-bunch instabilities and single-bunch instabilities at the
revolution frequency of 2.5 kHz and several gigahertz have been
considered where the applied magnetic flux gensities range from the
start-up value of 0.33 T to the operating vaiue of 6.6 T.

For high frequencies of several gigahertz the surface impedance is
roughly represented by the surface impedance for zero magnetic field
in the extreme anomalous regime. The resistive wall impedance Zy/n

including magnetic corrections is then given by
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e S s S 1) tanh”“’*(f;» (1+:;m>> (23)

£

C

where I is the measured conductance in the microwave cavities measure-
ments at 4.2°K in copper since we are in the extreme anomalous limit.
The values of the impedances are tabulated in Table V. The impedances
are given with (B = 6.6 T and without (B = 0) the magnetic correction

term tanh1[3 (

ﬁfmCT (1+jwt)). The impedances for B=0 apply to the case
of the magnetic field perpendicular to the metal surface and for B =
.33 T for the magnetic field parallel to the surface: the impedances
for B = 6.6 T apply to the case for the magnetic field parallel to the
surface. For the magnetic field parallel to the surface w/wc is smatll
compared to 1 for B = 6.6 T and neglected; for B = 0.33 T m/mC is the

order of 1 but n/wCT is so large compared to 1 that the correction

factor is 1. The values of A are the same as those used in Table III.

Table V¥

(m2) (mQ) (MQ/m) (MSY m)
A\ 2.63 (1+V3)  2.63 (i+3/3)  0.335 (i+¥3) 0.335 (i+3/3)
2 4.62 (1433) 3.12 (i+3v3)  0.588 (i+iv3) 0.400 (i+3v3)
3 4.16 {i*jigj 4.15 (i+jv3) 0.530 (i+jv3) 0.528 (i+jv3)
\1 4.16 (i+373) 3.77 (i+j¥3) 0.530 (i+j¥3) 0.480 (i+jv3)

For the revolution freguency fo = ¢.5 kHz the surface impedance
for the normal skin effect given by Eq. (1) is appropriate. The zero

magnetic field resistivity ratio must be corrected from the Kohler
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plot to give the equivalent resistivity ratio in a magnetic field and
for the start-up magnetic field a size effect correction made. Since
the Kohler plot is for a reference temperature of 273", we find the
zero magnetic field resistivity ratios become 90 and 270

respectively. The effective resistivity ratios from the reduced
Kohler plot in Figure 2 are 32 and 41.5 respectiv§1y. For B=6.6T
the corresponding Z,/n are: 2.78 (1+3)9 and 2.44 (i+3j)9. For the
transverse impedance Z; the corresponding values are: 354 (1+j) MU/m
and 311 (1+J) MQ/m. The value for Z, for the lower resistivity ratio
is nearly the same as the SSC value in Eq. (6). If the d.c.
resistivity ratio is tripled, Z; decreases slightly. For the start-up
B = 0.33 T the lower resistivity ratio gives a point off the graph.
For RR

[}

270 we find with the size correction that Zj/n = 1.18 (1+j)Q

and Zg

h

#

150 (1+j)MQ@/m. The impedances are the narrow band averages.

To calculate the broadband average of the impedance we use

2 2
- wﬂg

- 9 B c2 »
Zi = E;%:f dw Zi(w)e s Oy = 7 %10 2 m . (24)

from £Eq. (4.3.1) in the SSC design study. From Egs. (1) and (3) we
see that Zi(w}uwmllz for the surface impedance in the normal skin

effect regime. From Egqs. (11) and (23) roughly we find that Ziaw~1/3

in the anomalous skin effect regime. If Ziam“n; then the integral

evaluated in Eg. (24) gives
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[

47

by integral 662 in CRC tables. For m = 1/2 we find

- 0.011 (1+§)a , I, = 1.1 (1+)) X8 (26)

:Bl :»,;«;N;

which are close to the design values of 0.01Q and 1.5 MOQY/m

respectively.
For n = 1/3
?é - M
— = 8.181(1+j¥3) m2 , 7, = 1.04 (1+j/3) - . (27)

No magnetic correction is included in Eq. (£7): that could reduce the

impedances further. Actually the integral should be over the exact

-1/2 -1/3

Z,(w). For low frequencies Zi aw

and for high frequencies ZL aw
in the normal and anomalous skin effect regimes respectively. The high
transition freguencies (for %g—m 100 as found on page 23) between

these two regimes are 28.0 MHz (6.6 T) and 69.9 kHz (0.33 T) which are
small compared to the freguency CIZKG} = 682 MHz at which‘the Gaussian in

the integral in Eg. (24) is e’l. Consequently, the integral over the

normal regime can be approximated by replacing the Gaussian in Eq. (24) by 1;
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that part of the integral is small compared to the total integral. We
conclude that the effective values of cold copper impedances (broad
band averages) are better represented by Eq. (27) than by Eg. (26)
with the proviso that corrections at the peak magnetic field may need
to be added. The correction factors given near the bottom of page 22
for our cases give at most a 30% reduction in the impedance depending
on the strength of the magnetic field and magnetic field orientation
with respect to the normal to the copper surface.

In conclusion the cold copper impedances associated with the
coupled-bunch modes, the narrow band average impedances, are well
represented by resistive wall impedances of a metal with normal skin
effect. The resistivity ratio used to calculate the cold copper
resistivity is an effective one found from the zero magnetic field
resistivity ratio and the reduced Kohler plot for magneto resistance.
The calculated values for this study are given cn page 29. The cold
copper impedances associated with single-bunch modes, the broad band
average impedances, are well represented by the Gaussian-weighted
average over the resistive wall impedances for a metal with anomalous
skin effect. Reductions in the zero magnetic field values of the
broad band avara@e impedances up to 30% are found if the magnetic
field corrections are included. The calculated values of these

impedances in this study are given on page 30.
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