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Part 1. Improvement on the Longitudinal Invariant in the Absence of Coupling
with the Tranverse Motion for the Stationary RF-bucket.

The problem of finding 3 six-dimensional invariants for an accelerator
system is an interesting mathematical problem. (Even though they do not
usually exist, except in a formal power series sense).

This has also some applications in the context of the computation of the
“Don Edwards® smear.

This problem requires two different approaches depending on the values of
the fractional tunes vy Yy and vy If these three tunes are all
respectable fractions of unity, then the problem has been solved even in the
presence of strong linear coupling. This has been incorporated to the code
MARYLIE to 3rd order* in the phase space varﬁab]esz. Translation codes are
available at SSC for computing the same invariants from 2nd order** matrix
codes such as Dimat or Transport.

Unfortunately (or fortunately), the temporal tune v, is often very small

t

35C _ 1.4 }0"3). Therefore an expansion in t and p, is not the

(“t

wisest choice. In fact, it is preferable to keep (t, pt) to all order and

expand in vye
OQur ultimate goal is to provide 3 invariants, two transverse invariants and

one temporal. These invariants will be exact in (t,pt) and expanded in

Vs while staying exact in (ux, vy) and expanded to fourth order in

(x, Pyr ¥s Dy).

*  guartic invariants
*%  cubic invariants



In this paper we will confine ourselves to a more modest goal, namely
developing a well defined perturbation approach for the improvement of the

Dome-Mizumachi invariant. This is an approximate invariant for the map:

Yy o= Y+ P (1.1a)

P = P - kg(V) (1.1b)
where g{y¥ + 2%¢) = g{¥) {1.1¢)

g(0) = 0

g'"{0) = Tord

The last condition on ¢'(0) is just a normalization of g. 1In this paper
we will derive the invariants for ¢'(0) = 1. The non-linear case, g'(0) = 0,
is a simple extension of our treatment. (see (4.25), (4.26), and (4.27) for a
formula). In the next section, we derived the Dome-Mizumachi invariant using
a simple technique. We later develop more power tools to handle higher order

invariants.

2. The Quadratic and Dome-Mizumachi Invariants

To simplify the mathematics (and improve the invariant as we will later
prove), we will rewrite (1.1) at the center of the cavity. Consider the

following two maps:

4% Yy = Y+ P (2.1a)
P =P
Yk ¥ o=y (2.1b)

P = P-kg(y




The original map (1.1} 1s the product %?T 3?3. {We choose the

anti-matrix order when we compose maps).

Let us define & new map 7?’obtained by similarity transformation for

"y
=723 T 70 BH (2.2)

K k
=77, 7, (5 .

This is the map which brings a particle from the center back to the center of
" the cavity.
First let us find the quadratic invariant ef:?7. To do this, we look at

the linear matrix approximation of M, and M, :

2 1
[ 1 .
M= | . (2.3a)
) 1 0
e = 1 (2.3b)
\ 2
_ k k
o= M5 B K
k
1 - 5 1 ” (2.3c)
seb -y

From the usual Courant-Snyder theory, we must have for the Twiss parameters:

2y _ ko
sin 5 = g m= tune of M. (2.4)

1

sin u
¥y = sinu
a = 0.



From (2.4), we deduce immediately the quadratic invariant of M:

2 1 2
I, = ¥°+—5 »p (2.5)

sinTyu

The invariant 12 is clearly degrading as we go away from the origin.
12 is correct to all order in k, but is only quadratic in (y, P). Since we
assume a small k, we should look for an invariant which is exact in (y, P) but
first order in k.

This can be obtained by computing the map %7 of line (2.2):

Y4+ Pp- % a(¥) (2.6)

) =

P -5 (v - §a(w P -5 a)

To help us in ordering the expansion, we look at the Twiss parameters (2.4).

We notice that P is smaller than VY by sin u, hence to Towest order in u (2.6)

is just:
_ k
T-v = P-Sgm .. = P+ (2.7a)
P-pP = -k g(¥) + ...
or T- y= ay = P-2sin? L og(y) +... = P+... (2.7b)
P -P = AP = P = -4 sin® L) + ...

Notice, again by using the Twiss Parameters, that sinzulz g(y) is one
order higher in u than P. Now, we turn (2.7) into a differential equation
involving a parameter ¢ where ¢ goes from 0 to 1.

dy

de = P (2.8}
a8 _ 4 ipl
de = 4 sin 2 g{v)



This can be writtén as:

¥

g.; = [-H,Y ] (2.9)

%% = [-H, P] [f, g] = Poison bracket of f and g.
2 2 u

where, H = §_+4sin 5 T(¥) (2.10)

k4

ry) = f g{w) da
0

The function H is the Hamiltonian which generates equation (2.8). Since
it is independent of e, 1t must be a constant of the motion parameirized
by e¢. Furthermore, we can insure that H reduces to Iz by substituting sin u
for 2 sin w/2. This only affects third powers in u, which are neglected

anyway in this treatment.

H = §-+s1n2u () (2.11)

The expression (2.11) is precisely the Dome-Mizumachi invariant.
In the next section, we prepare the ground for a more elegant method which

allows the computation of high order invariants.

3. Lie Operators

Consider two functions of phase space f and g. We can form their Poisson

bracket by the usual rule:

(3.1)

@

&
Qﬁ[ﬁ)
B3 {ob
o -

[f.e] = 35 32 -



The Poisson brackets defines a Lie product. Hence the set of functions of
phase space forms a Lie algebra under the Poisson brackets.
Now consider a homorphism denoted by :: which promotes a function f to an

operator status:

: - f: (3.2a)
fr g = [f.9] (3.2b)
We can now define the commutator of two Lie operators:
{:f:,:9:) = :fiig: ~ :gi:f: (3.3)
The commutator of Lie operators (of any operators) forms a Lie algebra. The
homorphism comes from the Jacobi identity which is satisfied by all Lie
products. This reads as follows:

{:f:,:q:} = :[{f.,q]: (3.4)

Finally, we can also define the adjoint representation of Lie operators and
their commutators. If :f: is a Lie operator we denote by #f# the adjoint of
:f:. By definition, it acts on an operator :g: by taking commutators:

#ffig: = {:f:,:g:} = :If,8l:. (3.5)

Incidentally, the operators #f# also form a Lie algebra under commutation.

{ #f,9g#) = # {:f:,:8:1# = #:1£,8):4. ' (3.6)
Equation (3.6) results from the two homomorphisms # # and : :. Equation
(3.5) will become very useful in our perturbation treatment. In fact,
consider any function F(x) defined by a power series. The following relations

are true:



F(#E0)ig: = L a ## Mg (3.7)

: F(:f:) g:.
After this mathematical interlude, we are now ready to proceed with the higher

order theory.

4, Computation of the High Order Invariant

A. Rewriting the map %

This process starts with a rewriting of %7] and ‘é?z(kIZ) in terms of
Lie operators. It is easy to check that the following expressions are correct:

2
exp (: -B5:) (4.12)

7

L}

7,05

The map ?72 can be rewritten:

exp (: -% r(y):) (4.1b)

%72(5) = exp (: —% v(¥):) exp (: ~§ ¥1) (4.2)
2
v(¥) = () -

Expression (4.2) is exact since {:y(V¥ ):,: WZ:} vanishes. (Use (3.4)).
The function y( vy ) is of order 3 and higher in VY. Using (4.2) we can lump

the linear parts of the map together.



7 = exp(z 5 v Y exp(: & x(1)2) (4.32)

2
kK ,2
2?L = exp{: 4 Y&y exp(: ~E§:) exp {: ~§ ?2 2} {4.3b)

Each factor in %7t is a linear map. In fact, we have already computed the
matrix representation of 2? , the result is given by (2.3c). Can we join

the exponents of %VL? In fact, this can be done and we do have the

answeuﬂ
w2 PP
3?1 = exp(: -5 (sinu ¥ + sinu):) (4.4a)
= exp(: ~E§%ﬂﬂ I,:) (4.4b)

The function 12 is the Courant-Snyder invariant of equation (2.5). Notice

that (4.4b) explicitly implies that I2 is an invariant.

7.1,

exp(: 1¥§§§H 1,:) 1, (4.5)

= 12 , Since [12,12] = 0.

Our final exact expression for %? is just:

K sin k
7= exp (: 5 vi) exp(z EE L) exp(: -5 i), (4.6)
where k = 4 sin’ % .

Equation (4.6) is made of 3 maps with Lie operators of order pz.

Unlike
in %VL, where every Lie operator was quadratic, it is not easy to check if
we can combine the exponents. But, for one moment, let us assume we can do
it. Then the following is true:

3 H such that %7: exp({:H:) (4.7)

== H is an invariant



In the next part of this section, we will find an expansion for H in powers

of u. This is the departure from the adiabatic expansion of Dome-Mizumachi.

B. The General Approach to the Computation of Corrections to
Adiabatic Invariants

For more generality, let us consider a map %7 written as follows:
77 = exp(:f:) exp(:g:) exp(:f:) (4.8)
It is possible to introduce a parameter o:

ZJ(0) = exp(:of:) exp(:og:) exp(:of:). (4.9)

The quantity o is just a so-called "smallness" parameter. Ultimately it
can be set to unity.

We assume that H can be expanded in powers of o:

He) = § o"H (4.10)

Hence, 1f H exists,7?7 can be written as:

7 = exp(:H(0):) (4.11)

Using (4.8) we can derive a differential equation for 7?2 We differentiate 7?7

with respect to o:

i%

i = :f: 77+ 7 :f: + exp(:of:) :g: exp(:og:) exp(:of:) (4.12)

Using the properties of Lie operators mentioned in section 3, we can prove an
important property: (See Appendix)

¥ (f,g) exp(:f:) :9: exp{:-f:}) = exp(#fé#):g: (4.13)

= cexp{:f:) q:



With the help of (4.13), we can simplify (4.12):
d
a-? = f: B+ T 77+ cexp(iof:) q: W (4.18)

= f +2f + exp(:of:) g: %7
Finally, (4.14) can be written as:

d -7
a—-?—’? = f +%Ff + exp(:of:) g:. (4.15)
Here, a minor miracle occurs. Assuming the existence of H(o), we can rewrite

%;Z?7'4 in terms of the adjoint representation of Lie operators. (See Appendix)

4%
do

dH.

-1 _ JdH
7 = dex(im) g

= :iex(:H:) %—5 :, where iex(o) = EXRLe) =1 4 6,

1)

We now substitute (4.16) into (4.15):

fex (:H:) %g = § + exp{:H:) T + exp(:of:) g + & (4.17)

where, ae R (A can be set to zero).

Equation (4.17) produces a hierarchy of equations for the various Hn' In
the last part of this section, we will prove that all Hn {n even) are zero.

We will then derive H,, H, and H_.

1° 3 5

C. Explicit Expression for H

Consider the map ?7 (o). Let us first prove that %7(—0) is just the

inverse of'%7.

10



it

27“](5) exp(:uf:)_l exp(:cg:)"] exp(:of:)'] (4.18)

exp(:-of:) exp(:-og:) exp(:-of:)

77 (-o)

On the other hand, 77~ (a) is given by:

L]

'%7f](a) = exp(:-H(0):), (4.19)

which implies that -H(o) is H(o). Hence, we deduce from (4.19) the absence of
even Hn:

_ 3 5
H{o) = dH]+ o H3 + o HS + ... (4.20)

Using the result of (4.20), we proceed at calculating the invariant H with the
help of (4.17). To first order, we recover the Dome-Mizumachi invariant:

H1 + ... =f+f+g = 2f + gq. (4.21)

Then, to third order one gets:

2 2
367 Hy = % [H,,[H, ] + % [F,0F,q]1, ' . (4.22a)
Hy = ¢ [9.06,F11 - 1 [f[f.q1] (4.22b)

We now, find an expression for the 5th order invariant:

4 1
f+ E[H],[H3,f} (4.23a)

3 3 1o

STH  [Ha Hy TS TH, L TH 1] + SHo = 4y cHo
1 1

+ % [Hy[H, F1T + 3,24

Hg = %![H1,[H1,[H],[H],f]]]} + %5 [Hy . [Hg,F1] (4.23b)

+ 15 [Hy,[9,F11 + 1,0F,0F,0F,0f,9111]

1



Just as an example, we will give the functional expressions of H

for the standard cavity kick:

T'{¥) = 1 -cosv
H, = —t— (‘¥2 sinly + Pz) +4sin® (cos ¥ -1 + :iz
1= Zsing s 2 7 )
o 2 wsinfue Csin ¥ —¥72
3 3 sin u
1 wosin®w/2 . .2 2. 2
+3 B2 LBLE fsin®y (ysiny -y©) - P (cosy - 1)}

sinu

1

and H3

(4.24a)

(4.24b)

(4.24c)

(4.24d)

It is easy to check that H, is, to order u3, the same invariant as

what is obtained from (2.11). In the case of a non-linear bucket, the

expression in (4.24) are modified. We assume that ¢'(0) is now zero. This

implies that ZVL is just exp(:-p2/2:).

For the example of a Fourier series representation of g(v); we obtain:

g(¥) = 2 A sin (ny)

=
[

- (cos(n ¥)- 1) + EE

o |
o
~y
 ~18
-3

where 4sin? ¥ = k.

12

(4.25a)

(4.25b)

(4.26)



Finally, HB is given by:

2
An sin{n y)~y (4.27)

=
w
i
=1
1%
oo
=
~
W~ 8

nAn (cos(nv)-1) .

13735
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APPENDIX

The purpose of this appendix is to prove properties (4.13) and (4.16).
To prove (4.13), we intoduce a parameter ¢ as follows:

Ale) = expl:ef:) :g: exp(:-ef:) (AT)

We now obtain a differential equation for A. Let us differentiate A(e)
with respect to e.

dA

de = fiA-Af: = { :Fe,A } = fif¢A (A2)

It 1is easy to check that exp(#f#)A(0) is a solution of (A2).
Furthermore A(0) is just :g:. This proves the result:

exp(:f:):q: exp(:-f:) = exp(#f#):q:.  (A3)

Equation (4.16) is proven in the same manner. We introduce a parameter ¢

as follows:
77(ose) = exp(:eH(o):) (A4)
Now, consider an operator A(e) defined by the equation: B
Ae) = [ﬁ; “%)} %7 (e) (A5)
Differentiating with respect to ¢;
dA d -1 d -1
dc = E;(:H:’?)j? - (567?)?7 :H: (AB)
R R
[+

cH: + #H#A

{1

14



Fguation (Ab6) is wvery similar to (A2}, except that it has a driving term. The
homogeneous part has been solved on line (A2). We will try a solution using
the variation of parameter method:

A exp (i) F (¢) (A7)

i

Substituting A into (A6) gives the result:

Qﬁéﬁﬁl = exp(f-cHif) :H: (A8)

Kotice that A(0Q) 1is zero. Hence F(0)} must be zero also.

€

Fle) = [ exp(# - xH#)dx | :H: (A9)
0
_ —exp(#-eHi)+ 1 H:
i e
Finally, we get for A(1):
Y, S _ . .
A1) = %;—ib L #ﬁz# Ui = dexcan) :h: (A10)

15
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