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Summary

Formulas are derived for calculations of coil motions when a "cogé" dipole
is azimuthally prestressed and powered. It is assumed that a distribution of
azimuthal Lorentz force components has been calculated from field distributions
and currents. Azimuthal stress distributions and minimum prestress to minimize
coil motion are calculated, as well as coil motions if applied prestress is less
than minimum. Angular location of maximum coil motion for different prestress
conditions is given. Calculations are also discussed for different elastic moduli
of spacers used at and near the magnet poles. For a linear stress-strain
relationship in the operating range, and for force distributions which depend more
or less on azimuthal angular location only, coil motions are proportional to the
square of the coil radius, and minimum prestress is linearly dependent on radius.
Coil motion is dependent on the inverse of the elastic modulus, and minimum
prestress is independent. Radial pressure exerted by the coil is independent of
the radius. Since integrated coil forces are proportional to coil radius,
friction effects, therefore, would begin to become important at higher fields for
smaller magnets. Since motion decreases with the square of decreasing radius,
heat energy produced by friction is much smaller for smaller magnets. Generally,
from the point of view of the present considerations, smaller magnets should
encounter fewer difficulties than larger ones. For the stainless steel-collared
SSC dipole, maximum coil motions vary from approximately 0.002" at the poles
without prestress to 0.0003" to 0.0004", at smaller angles, with minimum or more
prestress. More than minimum prestress has no direct effect on coil motion but
will increase friction forces. Minimum calculated prestresses (at operating
temperature) are about 3000 psi. For non-metallic pole spacers (with smaller
elastic modulus), coil motions increase only by a few tenths of a thousandth of an
inch which is a small fraction of the expected magnet construction. accuracy.

Loss of prestress due to cooldown of coil-collar assemblies has been
calculated, also taking into account increases of elastic moduli with decreasing



temperature, indicated by measurements of straight conductor stacks at BNL. If
for actual collared magnet coils the average modulus also changes in this manner,
loss of prestress during cooldown becomes greater than for constant modulus. With
Nitronic 40 collars prestress losses of 800 to 1500 psi are calculated for
pertinent cases. With aluminum collars prestress gains of 400 to 600 psi are
found, and with direct constraint by the iron yoke prestress losses are roughly
twice as large as with Nitronic 40. If the elastic modulus of the constraining
structure is much larger than that of the coil, which is indeed the case for
relevant materials, good approximate results can be calculated by means of a
simple expression (eq. 49). '

Finally, a procedure is given for considering prestress conditions when
the stress-strain relation for coils is non-linear, which will be especially the
case for low stress. Calculations will be performed at a later date.

Relevant and illuminagting discussions with R. J. LeRoy were highly
appreciated,

1. Calculations assuming pole spacers with large elastic modulus.

In order to limit conductor motion in superconducting magnets employing
coils with a cosfé current density distribution (4 measured from magnet midplane),
it is necessary to prestress the coil azimuthally. This reduces field
perturbations and the probability that the coil becomes normally conducting
(quenches). Prestress will also tend to preserve the mechanical integrity of the
coil, reducing abrasion of insulation, loosening of shims, breakage of bonds, etc.
In ISABELLE Technical Note No. 280, "Estimates of Dynamic Energy Releases due to
Elastic, Frictional, Bondbreaking, and Grinding Motions in ISA Dipoles, and a
Comparison with Estimates of Quench Initiating Energies”, many of the mentioned
effects were considered in detail. Here we merely intend to derive general
formulas for estimates of required prestress, or lack of it, and resulting coil
motion, for the static case, neglecting friction, bonds, etc. Coil motion will be
of particuldr interest.

The Lorentz force acting azimuthally on a conductor element is determined
by the local radial field component multiplied by the local current density and by
the size of the element. (The azimuthal field component is responsible for radial
forces, as is the azimuthal prestress when combined with azimuthal force
components, resulting in radially outward pressure. These radial forces also

affect azimuthal conductor motion through friction (see the already mentioned

Tech. Note 280).)



The magrietic field inside the inner coil diameter of & dipole ideally has
the same direction at the poles as in the midplane.. Therefore the azimuthal force
would be maximum at 4 = 90° and zero at § = 0, if the field remained parallel to
the central field, as it passes through the conductors (actually it does not
remain parallel). The azimuthal component would follow a sind distribution.

Since the conductor density distribution, ideally, follows a cosé distributioen,
assuming that the current in the conductors is constant, the azimuthal force
distribution would follow a sin# cosf -~ sin2d8 distribution. In spite of this much
oversimplified consideration, for actual single-layer coils the sin2d
approximation, multiplied by the right amplitude, turns out to be quite good. For
two- or more-layer coils, of course, we cannot expect such an agreement for
individual coil layers. For the inner layer of a two-layer coil the conductor
distribution would usually still become zero near the poles, but for the outer
coil, this happens at a much smaller 4, and therefore the force distribution
deviates strongly from sin2d. Generally, we shall call the angular force
distribution g(#4).

The azimuthal stress-strain relation for a coil rises slowly (coil is
fgoft", has low "elastic modulus® E) for low stresses, and much faster for the
usual operating stresses, where E then is usually fairly constant at a value of 1
to 2 x 10° psi at room temperature and possibly higher at magnet operating
temperature (see Section 3). In order to take into account the presence of wedges
in a coil quadrant, we can use a somewhat modified modulus for an average value of
E. Otherwise, one would have to consider each coil block separately, complicating
calculations and resulting formulas unnecessarily.

We present a very simple model for a magnet coil guadrant:
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As a result of force distribution g(§), we obtain deflections y_ at angle 8., V1
at §;, etc. Length elements are § = rAf,. r is the average radius for each coil.

If the azimuthal Lorentz force per coil turn (£,) is given, g(8) is given by

L
g(d) = T

Integrating g(§) would then result in

64 T,
I g(§)rdf = E: fn .
8, ny

A scaled-up magnet would contain more turns for fixzed current. Therefore the

given integral is indeed proportional to the coil radius r.
92

j g(8)dd, as used below, is then obviously independent

g1
of r.

k = hE is the spring constant per unit axial length of the coil for a unit
azimuthal length. h is the radial width of the coil. The spring constant per

element of length é§ is thus k/é§. (The average elastic modulus E is calculated

from

max n

where 9max

cluded or, otherwise, the angle where conductors end, if the pole spacer elastic

is the maximum coil angle (x/2, if pole spacer and shims are to be in-

modulus is much larger than that of the coil). The Af are the ranges of § where
the material has elastic modulus En.)

(y1-Yo) is the length by which element § is compressed or extended from
its unstressed length.  Similarly (y,-y;) applies to the mext element. -The forces
necessary to produce these length changes are (k/6)(y,;-yo) and (k/8)(y,-y,). The

difference between these forces is g(f)§:



(k/6) { LYQ‘Y1} - [Y1‘Yo] } = -g(8)é (L)

As can be seen from the sketch, g{(§) > 0 as drawn, acts so that element r(f,;-04)
is under greater tension than element r(4,-6,). Therefore the negative sign at

the right gide of eq. 1. Proceeding to differentials

{yz oy, d %%5 rdéf, etc.}:

2
- §;§ - -g(8) (2)
r- dé

We will be interested in compressive strains due to compressive stresses. Thus
g{8) < 0 (referring to the above-given sketch). Also y(¥) would be < 0. A&s a
simplification, we shall count both compressive stress and negative y as positive
and thus use eq. 2 without further concern with sign reversals.

Boundary conditions for eq. 2 are:

g = 0 7 w0
(3)
R 'glz’
9 amax dé 0
if coil motion is not constrained at § = amax and
§ = bpon © Y = Ye (&)

if the coil is stressed prior to being powered (“"prestressed"). If the prestress
becomes imswfficient, boundary conditions (3) will again apply after it is ex-

ceeded.

Assume that the coil, to begin with, is not prestressed, up to some dis-

tribution ga(ﬁ). Then integration of eq. 2 with boundary conditions (3) results

in
¢

§ “max
v - [ [ e a0 w10 (5)
g 0

The maximum deflection Yamax 1S &iven by

;3 Yamax ~ Ia[émax] | )



Now assume that we prestress the (unpowered) coil to a deflectiony =y, at {
= 8,a%- Then, when the coil is powered, it will reach force distribution ga(8)
without motion at § = fmax- Defore powering, the prestressed coil is deflected

according to

g
£ E= 3
ya(ﬁ) # yamax # ys 7
max max
since we have assumed that the stress-strain relation for the coil is linear in

the operating range. The prestress required to provide yn(8) is

Vs r
% "5 - P =55 La[Pnax) (8)
max max
Note that this prestress 1s proportional to the average coil radius r. (The
double integral 13{5), as presented here, again, is independent of the radius.) A
small aperture cosf magnet requires less prestress for a given magnetic field,
simply because the integrated azimuthal force is smaller than for a larger magnet.
Note also that o, is independent of elastic modulus E.
Next, assume that we power the coil to still higher fields so that force
distribution g(§) > ga(&) results, thus exceeding the constraint provided by

prestress ¢ Corresponding to eq. 5, we now would obtain

a
] gmax

E;; ¥y, (8D “J f g(8) dédd = I(8) (9)

r 0 8

if oy, (ot ga(é)) had been zero. If o, * 0, we must subtract eq. 7 from eg. 9,

since we are only interested in the net motion between prestressed unpowered and

powered states. Combining egs. 6, 7 and 9:

k k 8
3 V) = T3 (3 (8) -y () = 1O - g (A ] (10)
b r max

Summarizing:

s 1f no prestress at all is provided:



(2)

motion at § = 9ma :

(3>

g,(8) =0

. b amax (11
y(8) = J j g(8) dade
0 ¢

If minimum prestress ¢ or more (to be proved below) is provided to prevent

X

g,(6) = ()

2 g 0max gmax emax
y(8) = = J j g(d) asas - & J £(4) dods (12)
0 4 mEX 0 4
g g
max max
r
¢ = 7 % j J g(§) dedg
max. 2
If less than minimum prestress is provided,
g, (8) < g(§)
] - g 8
s 6 max max = max
y(8) = = J J g(6) d0ds - - § J f g, (6) d6ds (13)
0 4 mE0

B

max max

g, (0) d9ds
max

Q
w
L]
=
2
o
O By STy
Sy Sy

For application of these formulas it may also be convenient to write



] 9max
r2 aah
y(8) = P j j g(§) dgds - = ¢ (14)
o 8

which is valid up to o, = o.
If o exceeds the minimum value given in egs. 12, we shall use the boundary

condition given by eq. 4. The solution of eq. 2 iz then, for the total motion Ve

8

k
=y (6) = 1(0) -

1(9 } + k ¥
max 2 73
r max r

The prestress alone (without powering) must have resulted in the function Ys8/8 nax
which must again be subtracted in order to obtain the net motion, resulting again
in eq. 12.- Therefore, prestress exceeding the minimum value has no further effect
beyond the result obtained with the minimum. This is not surprising because of
the assumed linearity of eq. 2 (constant E). Obviously some prestress margin may
be desirable but we shall see that there is not very much need for it. Of course,
we must use the conditions for the coil when it is at operating temperature;
effects due to temperature changes and also due to stress relaxation in time must
have been taken into account.

While we have assumed linearity for these derivations, intentions are alsoc
to investigate effects of the actual non-linear stress-strain relation. This
would be of particular interest for prestress near minimum, where quite low
stresses would result near the poles (see Section &4 for some derivations). A
report on this subject may appear at a later date.

Without prestress, the maximum coil deflection y .. must occur at location
§ = 8- With prestress yp.. will move to smaller #. With minimum prestress no
coil deflection will occur at 9max' (We are still assuming that the pole spacers,

extending from 4 = 6. to § = 180° - 8 are made of a material with elastic

® max’
modulus much larger than that of the coil.) To find the location § = §,, where

occurs, differentiate eq. 13 and set dy/dé = 0. Result:

’ - s
: {gm} & I[gmax} (13

where v = ga(B)/g(G) - aa/amax’ assuming that ga(é) is proportional to g(d), and

Tmax



4

max
I (ém) - J g(8)de.

g

m
Equation 15 can simply be solved by using the figures 1 and 2 given below. y_..
as a function of v is then

£2 v@m
aaxle) | ) " T (e as

We present results for the S8C dipole magnet. Field distributions at the
coils had been calculated by G. H. Morgan and forces f on the conductors
presented by R. J. LeRoy. We have applied eqs. 13. Based on the available force

distributions, figures 1 and 2 give the expressions

g
max

r j g(8)ydd = rI*(F), and rI(F)
8

required for the calculations, and fig. 3 gives y . (6.) and § as functions of v.
For these calculations a value of E = 2 x 10° psi has been used for the elastic

. X 2 . : . .
modulus of the coils. ig ~ 1/E and ~ r", thus increases fast with coil

Ymax
radius.

From fig. 3 one sees that for the inner coil 4 moves from § = § . = 76°
without prestress (v = 0) to § = 42° with minimum (or more) prestress. For the
outer coil ¢  moves from 47° to 28°.ymax moves from 0.00210% to 0.00044" for the
inmner, and from 0.00163" to 0.00026" for the osuter coil. It is obvious that
operation at somewhat less than minimum prestress should not be particularly
detrimental, but it should not be forgotten that coil motion can proceéed in a
"stick-glip" frictional mode which can easily produce sufficient heat to quench a
coil as has been analyzed in detail in the Technical Note No. 280 referred to
above. From the expression for the azimuthal stress distribution given below ore
can simply calculate the radial pressure which at radius r would be given by p. =
o.h/r if o, is the stress due to combining prestress and coil force. The radial
pressure at the outer coil surface is somewhat less by, approximately, the ratio
r/rci if r,i 1s the outer radius of the coil. At minimum prestress, the maximum
radial pressure (at 4 = 0 and outer coil radius) for the inner coil is 1690 psi

i - . &L : . .
and, similarly, for the outer coil alone is 1040 psi. For inner and outer coils
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combined one finds 2300 psi, having reduced the value for the inner coil further

by the ratio r I, Deing the outer radius of the outer coil. With a

0i/Too:
friction coefficient of £ = 0.2, a frictional force per square inch of 460 psi is
* then obtained. To this one must add the radial component of the Lorentz force
which is 2580 psi at radius r for the inner coil and 200 for the outer coil at its
average radius. Combining pressures, p, = 3840 for inner coil at § = O, and

= 1210 for outer coil at radius r

radius r and p, = 4100 psi at r_  for

oi» Pr 0o’
both coils combined. For £ = 0.2, the azimuthal friction force per square inch of
coil surface at § = O is then 820 psi. For the inner coil alone one obtains 770
psi at radius r ;. The integrated azimuthal Lorentz force at § = 0 is 2020
lbs/inch (see fig. 1) which varies slowly near # = 0. Cowmparing this with the
friction force shows that at full coil power the friction force would not restrain
motion at § = 0. Near ¢ = § ., for minimum prestress only a small radial Lorentz
force acts and the integrated azimuthal Lorentz force is also small. Resulting
¢oil motion here is not clear without detailed analysis. At low power, the
prestress provides enough radial pressure that friction should prevent motion.
Obviocusly prestress above minimum would alse restrain coil motion more at full
power. On the other hand, if stick-slip motion should occur then, more heat would
be produced.

Fortunately, for the SS8C coils expected coil motions are quite small (fig.
3). (Since the azimuthal pressure for a coil is ~ r for given y(4), and radial
pressure p, ~ 1/r, p, is independent of r. But coil motions are ~ r’. Therefore
much more heat can be produced in a larger coil due to friction than in a smaller
one. Quenches could then start at lower fields.) Maximum inner coil motion
amounts only to a fraction of one-thousandth of an inch as long as at least nearly
enough prestress is provided. Field perturbations should also be small for this
reason. They would be expected to increase with decreasing coil radius for a
given movement. But, since coil movements decrease ~ rg, harmonics due to Loréntz
force-caused coil motion should decrease with coil radius r.

The required minimum prestress ¢ to prevent coil motion at § = O nax 1S
given by eqs. 12. Using fig. 2, we obtain o = 3250 psi for the inner coil and
2940 psi for the outer. We are also interested in the total stress distribution

in a coil when it is powered. This is obtained from

dy,.(8)

at(a) m B ~ar

io



where y _(#) is the total deflection as a funetion of § of the coil, due to
prastress and powering. We cobtain

1

r F es———
at(é) i ( 17¢8y - 7 I[gmax) }v+ g, {17
max

where o, is the prestress, now arbitrary but equal to or greater than minimum.
Using figs. 1 and 2, we obtain for the inner coil

§ =0 1  0.(0) = o + 1800 psi

s
g gmax: at(emax) =0y - 3250 psi

and for the outer coil

ot(O} =0  + 1230 psi
Ut(gmax) =0, - 2940 psi
Note that the stress increase at § = 0 is much smaller than the decrease at gmax“

However,

r ¥
Ut(O) - at(emax) - E‘IV<0> (18)

where, according to fig. 1, rI’'(0) is the total integrated azimuthal force.

For interest, we present fig. 4 which gives maximum coil motion and §  for
an azimuthal Lorentz force distribution fsinZf. Here ymax(v~0)/ymax(vnl) ig equal
to n while for the inner SSC coll we had a ratio of 4.8 and for the outer 6.3: the
actual force distributions differ considerably from the sin24 distribution, and
the actual given ratios are larger than x because the force distributions are

skewed toward § = 9max‘

2. Pole spacers with small elastic modulus.

So far we have assumed that the elastic modulus of the pole spacer
material is much larger than that of the coils, so that the pole spacer will not
"follow" the coil at § = 4§ .. when the latter is powered. This assumption is well
justified (even for the outer coil which has a very large pole spacer) for the
presently used stainless steel collars. However, if collars were not to be used
for some reason, larger deviations from the presanted~results can be expected.

Furthermore, instead of using average elastic moduli for the coils, one could take

11
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the two inner coil wedges and the outer coil wedge into account individually.

This would result in 6 equations of the type of eq. 2 to be solved with 12
boundary conditions for the inner coil (and 4 equations for the outer one) which
can be done easily with a computer program but does not appear to be necessary,
since the wedges are relatively small. We shall restrict ourselves to considering

the pole spacers with elastic modulus E,, or ky = Esh.  Analogous to eq. 2:

= ¥yi = &)
r

(19)
k?
=970
r

since g(#) = 0 for ¢ » emax' Subscript (1) refers to the coil, (2) to the pole

spacer. y"; = dzyl/dég, etc. Boundary conditions:

§ = 0: g, = 0

§ = Bpax’ Vi = Yo» Ky¥1' = Koy,'
n

9"“"2". y‘?*‘A.ﬁ

AP produces the prestress. It could be applied anywhere else, for instance by a
shim at § = § ... Glving some more detail on the proper procedure for the

integration of the general function g(#),

; (71 Cmax) - ¥{(8)] = - T7(6) + Gy, (20)
gmax
where, again, I'(8) = j g(48y4ds,
g
ky
;gy;m = Cy (21)
Next
Ky, ky
;5 (Yl(g) - yl(O)} = 1(8) - Gy + ;§9Y£<9max> + Dy (22)

12



k2
r

Since yl(O) = 0 and I(0) = 0O, Dl = 0. Similarly, since yz[g} = AJf

Kk, AL
Dy = - Cy 3
r2 2

Applying the boundary conditions at § = § .. results in
k1
571 CUna) - G = G (24)

since I'(émax) = (O {(therefore also Cy = 0 as seen from eqg. 20).

k
i¥ 2
2T {“5 5 wma] ) 2
2 max Ky :
2
T
) = — [1(8 CHé 26
T I’z
yz(ﬁ) = AL - 62 [E - 9] EE (27)

Al s (necessary "shim" size) to produce minimum prestress 1s obtained by setting
kl y'l(emax) = 0, resulting in the condition that CZ = ) or

2

Alpsn = EI I(8pax) (28)

Note that A£ ;. is independent of k,. The minimum prestress follows by setting

g(8) = 0 and obtaining

k,y!
272 T
“min = 7R T %2 & (2%
dy2
remembering that the azimuthal force is ky a7

Thus

k2 T . T kz )
min ~ EI h I(emax) 2 - gmax(l ) EZ"J (30)

13



r

I(émax). Thus, a factor

max

emax (k2/k1)

‘ 3
k
3 " Ynax {1 ) ﬂ%]}

reduces the prestress found for kZ > kl’ whert k2 is not »» kl‘

Finally, the relative motion when the coil is powered is found by
subtracting the initial deflection y;y due to prestressing from the total
deflection due to prestressing and powering, namely y1- To obtain y;5, we set
g(d) = 0 in eqgs. 25 and 26. The relative coil motion for ¢ = Onin 2F § = gmax is
then

; ,
. r
Vi Cnax) ~ Y10Cnan) = & Tnay) (1R (32)

The following Table gives R and (y; - ¥ig)-

INNER COIL OUTER COIL
1 Jio Y1 * Yo
Ko/kq R 107% inch R 10™% inch
1 0.84 1.4 0.52 3.2
2 0.91 0.8 0.68 2.1
3 0.94 0.5 0.76 1.6
5 0.96 0.3 0.84 1.1
10 0.98 0.2 0.92 0.5
15 0.99 0.1 0.94 0.4
o 1 0 1 0

All of the values for (y; - yjqo) are very small. For ky, = kq they are
approximately equal to the motion for v = 1 found for the outer ;oil for R = 1

(fig. 3). 1If non-metallic pole spacers were to be used, their elastic modulus

14



would probably be 2 to 3 times as large as that of the coil, therefore ky/k; = 2
or 3; the calculated effect appears to be negligible. The minimum prestress (eq.
30) could be reduced somewhat for a plastic pole spacer.

3. Prestress loss or gain during cooldown.

Due to differences in thermal expansion with temperature, the coil
prestress will change when a magnet is cooled down, depending on the materials
involved. 1In addition, it has been observed that the elastic modulus (in the
linear stress-strain region) of the coil material increases considerably at low
temperatures (presumably due to the Kapton and fiberglass-epoxy insulation between
coil turns and the plastic shim at § = ¢ Call B (T) the thermal expansivity

1 42 dax
B, =% 3 = ar

the elongation.) EC(T) is to be the elastic modulus of the coil assembly.

max) *
of the coil assembly as a function of temperature T. if A is
Similarly ﬁk(T) and Ek(T) shall refer to the material of the constraining
structure, such as the collars. EC(T) and Ek(T) are defined as the slopes of the
stress-strain relations ac(ec) and ak(ek) at temperature T. During a temperature
change accompanied by a stress change the elongations (or contractions) per inch
of the materials shall be AC(GC,T) and kk(ak,T). Since the collars are to

constrain the coils, one obtains for small changes dT, do,, still neglecting

changes in length with radius,

SAC akc e axk akk
dAC = Eps dﬂc + 55” dT = dAk = g;" + gf— dT
¢ jT o k JT Iy

By definition, (axc/aaC)T = (3ec/aoc) = 1/EC and, similarly

(axk/aok)T = 1/Ek. Also (axc/aT>OC = ﬂC(T) and (axk/aT>ak = ﬂk(T), as defined
above. Therefore we obtain, calling d¢/dT = ak',

a' §
c 14
EC<T) + ﬂC(T) = Ek(TY + ﬁk(T) {33

Assuming, for the moment, that Ek b Ec’

15



o, = [ B (T) - B (T) ] E.(D)

or

gc<T) = %0 T

{ B.(T) - B (T) ] E(T) 4T (34)

e R N |

o

Thus one cannot use simple integrated thermal expansions for thermal stress
caleculations if elastic moduli are temperature dependent.

Elongations B(T) appear to decrease relatively slowly with temperaturs
near room temperature. As the temperature decreases the decrease of A(T) becomes
precipitous. At T = 30° K, B becomes negligibly small. Quite good fits can be

obtained by means of exponential functions of the type

B(TY = b - ae” Ty - D (35)

where T = 293° K, a, b, and vy are determined from two values along a measured

function B(T) for a material and the value of the integral

T

W
J B(T)dT,
T

O

which is more often available for materials (or coil assemblies) than B(Ty. For
different materials we shall merely use the values of the integrals for direct
scaling of a and b, keeping v constant.

Elastic moduli of relevant materials increase with decreasing temperature,
some guite linearly, others less so, often depending on heat treatment of a
material. For our purpose a linear approximation will be sufficient, especially
since for coil assemblies only end values are usually available, at room (E,) and

at cryogenic (Eo) temperatures:

T
E(T) = Eo - (Eo - Ew) f; (36)

If, with the wvalues for 8us bcg Y, Eco (= EO), E¢ (= Ew), to be given below, the
integral, eq. 34, is evaluated, one can express a result for a coil constrained by

stainless steel (still E, »> E.) simply by

16



o, = A + (oqo - ”min> + B(ECO - E'") + C(EC - E") - (37

(This expression has been generalized below. See eq. 49.) A = -4100, o ;.
= -3250 (minimum required prestress for S$3C inner coil), B = -3.05 x 10'4,

A = . . . 6 '
C= -5.45 %2 107, E'" = 10 . For instance, if Oco = -3250 psi, Eco s Ec = 10 psi:
o. = -4100 psi, a prestress loss of 850 psi during cooldown results. Making E,
- 10°, but E,, = 2 x 10°, o
with doubled elastic modulus at low temperature. For E. = 1.5 % 106, E.o
- 2x10°: o = -4680.

We proceed to consider coils that are prestressed by means of collars

= 4400, an increase of the prestress loss to 1130

made, for instance, of stainless steel or aluminum. The following sketch shows a

quarter coil section.
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All lengths are averaged over the radial width of the component under

consideration. Thus

Oe1t average azimuthal stress in inner coil of azimuthal length £_,,
radial width h,,, average radius r,.
Tugt average stress in outer coil of length £.,, width h,,, radius r,.

Using average values here is appropriate because there is strong evidence that,
for "keystoned" cables, these stress distributions are radially very non-uniform,

and so far unexplored.

Ot average stress in pole spacer region of collar, of average length
Ly -
S average stress in length £, between end of ocuter coil and pole

spacer region.

o3t average stress in collar along outer coil, length ly,, with width hy
given as an average that takes into account that two different
sections of {4 carry different loads. Roughly one-half of f,4 of
every other collar lamination can ecarry no hoop stress because of the
way the laminations are pinned and keyed together. Considering this
fact, we must use for hy values that are only ~ 2/3 of the actual
width hy, of this collar section (hy = 2/3 hy. ). The resulting
calculated average stress can then be multiplied by 2/3 to obtain the
actual stress in the section where all collars carry equal hoop

loads, and by 4/3 where only every other collar carries the load.

Next, for equilibrium we must set for the cold stresses (tension in collar
sections, compression in coils):

- ¢ h - g h =90 h
Cl Cl C2 C2 k3 k

- - 18
Uclhcl dk2(hc2 * hk) (38)
0 =0 (hcl * hcg + hk)
Using a condition for equilibrium of radial pressures, of course, must - and
does - result in the same set of equations., It follows that Il = 0: there is no

average (hoop) stress in the pole spacer region. Each half side of the coil could

be prestressed by only a half collar. But then these assemblies would tend to

18



straighten in a vertical direction. Therefore the pole spacer region of the
collar must supply the bending moment to prevent straightening. The prestressed
assembly will thus deflect inward at the midplane and outward at the poles.

Next, we can write

2r,
kB) * £k2 Ty, + ¥y [l il

S

'(14-,\ kz)

2+ ren) = A
(39}

Hlmﬁ

2ot + 2e2) = A x3)

where Axcl® Me2' Ak2 Ak3 are the elongations per inch of the compoments due to

(1 + 2
A

3

stress and temperature changes.

For linear stress-strain relations we have

] y
E*“'l e . = S22 (40a)
< [

k3 (40b)

where E,, E, are the relevant (temperature dependent) elastic moduli. In equation
39 we have reduced the lengths £,, and £, 3 by the proper ratio of the pertinent
radii. At constant temperature the three sets (38, 39, 40) of & total of 9 simple

equations result in

A
acl =B Ec (41

¢l hk 2

(oo o013 follow then directly from eqs. 33) where

h
cl 1
Oup = - {a + Cl] = (62)
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R
2.k T2
I RS B fe1 , Ok
r, hk 02 [hcﬁ + th el c? r, Ek cl
sl
2
C, = =« E
1 202 k
C,F}S_.*“EE_.Z,
2 Ec hk
rl 2:1
AR, = 2 A (43)
1 cl k3 rq k2 irz + r3i
r»
2
aly =2y - sz'ég
Except for Aﬁl and Aﬁz, we have made use of the fact that
£y 2x1 ; r, "
£ = {2 e = g and £ =4 —wm f . Al and AR, are
cl k3 r, k2 Irz + rBi k e2 k3 r3 k 1 2

the shim thicknesses required to pfovide the prestresses if 201 - Ek’,ﬂcz = 4",
in other words, the interferences required to produce given prestresses 0.1 and
g.9 at a given temperature.

For given prestresses the Af;,, can simply be expressed (using eqs. 41,
42, ££.) by

T T LY S
1 Ec cl rzhk C2
(44
AS ) 20262 hcl el o
2 Ek hk C2 cZ

Assume now that the required prestresses o,y and 0,94 at magnet operating
temperature are given (as, for instance, calculated in the first Section of this
Note), and we wish to raise the temperature. We can then differentiate egs. 39

and obtain, following the derivation leading to eq. 33,
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34 r o/ r
el 1 k3 T
2 + B ATy | o= £, == | e+ B (T)) + £
el EC(T) - Te k3 r3 Ek(T) k k2 r, + I,
1‘7'
k2
g;zfg + £, (T) (43)
o’ T al
cl 2 k3
f | @ PP | T e | B AT

Making use of eqs. 38 and of the above-stated fact that 2&1 = Ek‘ and £¢2 = £k",
we obtain
, 2t 5%
a1 R .
(46)
gl = vy
c W
Q= (§y - CPEL(B, - B
R=¢y -(§y - $1)8E/Ey

Q™1
V=B - S "RE
k
¢ b By §
- geRB2
c k k

Initial conditions for integrating eqs. 46 are
T = TO w 300 Ucl s Uczo
Tc2 T 9¢20
{Properly, we should use T = 4, the magnet operating Cemperature, but
BosBy = 0 for T < 30° K, and elastic moduli at low temperature are sufficiently
uncertain that the exact low temperature used is unimportant.) We define further
g‘l fand ﬁclrz/ﬁczrl = 1.6183
o =1
pp = ho /by = 0.6413
#2 = hcz/hk = 0.6701

&
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For Nitronic-40 stainless steel we have, for expression 35, obtained

a, = 7.375 x 1077

by = 1.5738 % 107>

v = 0.011637
For the coil assembly, scaling by ratios of integrated values of the A(T)’s, as
mentioned above,

a, = 9.575 x 1077

b, = 2.0432 x 107°
After eqs. 46 have been integrated, we can obtain the stresses in the collar,
epecially, k

k3 T H1%1 T H2%2 (47
in the link comnecting top and bottom halves of the collars.

Assume now that thk > hcl,QEc’ Then both egs. 46 for .1 énd 0.5 revert

to the simple integration in eq. 34, the result of which we give:

(48)

Aa = a, - ap

Ab“bc‘bk

y =1.164 x 1072
T, = 293

T, = 30

Eq. 48 results in a prestress change during cooldown of

Iy " T ™ 85.9 Aha [13.2 Eco + 7.15 Ec) - 263 Ab {0.449 Eco + 0.551 EC) (49)

8y, bk are found from
ap = 2.59 x 107% oy
by = 5.52 x 107> oy

where
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293
o = f 5k(T) daT
30 ’
is the integrated thermal expansivity f,. o, at least, is available for most
materials that one may want to use for constraining the magnet coils.

For Nitronic-40 or aluminum collars, and for the iron yoke as a
constraint, agreement between computer solutions for eqs. 46 and calculations by
means of eq. 49 is obtained within 100 psi, the latter disagreement applying to
aluminum collars of 15 mm radial width, aluminum having the lowest elastic modulus
of the 3 materials considered.

The following Table gives the computer solutions. Additional, approximate

results can easily be obtained by means of eq. 49.

L B “9c10 el "9c20 “9e2 Ir3max  ~(%c179:10)

Py PSp  PST el psp psp pEg ey

10 = 107 x 107x 10 10 10 10 10

1 1 3.25 4.06 2.94 3.74 10.2 - 0.81
Nitronic-40 2 1 3.25 4,33 2.94 3.99 10.9 - 1.08
collars
{15 mm)

1.5 1.5 3.25 4 44 2.94 4.10 11.2 - 1.19

2.5 1.5 3.25 4.70 2.94 4,34 11.8 - 1.45

1 1 3.25 2.81 2.94 2.52 6£.98 + 0.44
Aluminum 2 1 3,25 2.68 2.94 2.41 6.66 + 0.57
collars .
(15 mm)

1.5 1.5 3.25 2.62 2.94 2.36 . 6.53 + 0.63

1 1 3.25 4.93 2.94 4,62 - - 1.68

2 1 3.25 5.52 2.94 5.20 - - 2.27
Iron
Yoke

1.5 1.5 3.25 6.05 2.94 5.73 - - 2.80

coil data used to calculate this Table were
hcl = (J,379" r{ = 0.977" 2cl = 1,289"
hc2 = (0.396" ry f 1.364" 2cé = 1,112"
hk = (,591"
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From the Table one sees that the for Nitronic-40 collars the prestress loss

(acl - aclo) increases if either E., or E, increases. Prestress losses are
moderate, increasing from 0.81 kpsi for E_ = E_ = 10° to 1.45 kpsi for E_

= 2.5 x 10° E.=1.5x 10°. For aluminum, prestress gains (<1 kpsi) are found,
due to its large expansivity. For direct constraint by the iron yoke prestress
losses are about twice as 1argé as for Nitronic-40 collars.

The maximum calculated hoop stress O)3pax 10 the Nitronic-40 collar for
Eco = Eo = 1.5 x 10° is 11.2 kpsi while for aluminum with the same radial width
6.5 kpsi was found.

If we wish to calculate "warm" interferences A£1,2 between collars and
coils, required to produce minimum "cold" prestress, we can use eq. 44, inserting
the calculated values for o, ; and o_.,. Depending on the case considered, the
Aﬂl’z amount only to a few thousandths of an inch.

Values for the elastic modulus E, at room temperature for the coils have
been measured at BNL to be =~ 10° psi or even less. For straight stacks of
conductors considerably higher values (1.5 to 2 x 106) were found. This large
discrepancy is probably due to the fact that the conductor cable is keystoned and
thus much more compressed near the inner coil radii, especially the insulation
material. At low temperatures a considerable increase of the elastic modulus,
from E, to E 4 has been measured here for straight stacks. An increase may also
be expected for coils but has not yet been measured. Because of the high
compression at the inner coil radii, the increase for coils may be much smaller

than found for straight stacks.

4, Derivations for Non-Linear Stress-Strain Relation for Coils.

At the lower stresses, the coil stress as a function of strain is non-

linear. Therefore eq. 2 must now be written, with ac(ec) for coil stress vs.

= -4
€. ec(é) ~as 2t angle §

d (6)
wailoe(ee ]| - - B2 (30)

with boundary conditions for an arbitrarily prestressed case:
§ =0 : y = 0

6 = Opay ¢ ¥y = Js
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assuming that the powered coil remains stressed at 6 = 6 .. Integration results

in
g
max
T r .
a(ec(ﬁmax)] - ac(ec(e)] - - EJ g(6)ds + K = - = 1'(8) + K
é
or, calling
K- ac(ec(amax)] - Kl ’
r L
ac(ec] =5 1(0) - K (51)

Since oc(ec) is assumed to be given, one can find ec(ﬁ) with K, as a, so far
unknown, parameter. Thus, eq. 51 can again be integrated:
g
7(0) - 3@ =t [ e (9ra +D
0
where D = 0 because y = 0 at § = Q.
At § = 6 .:

6
max

y[amax} -y, = I € (6)d8 (52)
0
With the help of a computer program, eq. 52 can be solved for K,. So far, we will
then have obtained the total motion in the coil. To obtain net motion, we have

still to subtract motion before powering, due to prestressing:

yf
Vo) = 5 (53)
resulting in
g
8
y(8) = r I ec(e)dﬁ - Y emax (54)
0

Calculations will be carried out at a later date. One can expect now that motion
at § = 6 .. is less likely than that for the linear case, some prestress remaining
down to lower strains. ©Note that motions are now not independent of the prestress
in excess of the minimum value, as they were for the linear case.

Prestress changes between warm and cold states for non-linear stress-
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strain relations (o(¢)) can be treated by replacing constant elastic moduli by the

slopes (80/8¢) which then will be functions of ¢ as well as T.
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