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Recent studies of instabilities in the CERN 3@331, the CERN Antiproton
Accumuiatarz and the Fermilab Tevatrons have identified high order
nonlinear resonances as a source of instability in particle beams which are
stored for long time periods. The resonances alone do not generate the long-
time instability, but tune modulation provides synchrobetatron sidebands to
the resonances. Overlap of these sidebands causes stochastic (chaotic) motion
which leads to diffusional beam blow-up. In this section we study constrainis
on resonance size and consequently on magnetic field quality placed by this
instabitity in the 538.4
The nonlinear beam-beam interaction also can cause beam blow-up through
the overlap of synchrobetatron sidebands, the resulting constraints on SSC
design are described elsewhere.
A resonance is defined by a condition upon the betairon tunes v vy

of the form

ﬁvx + ny = P (1

where N, M, P are integers. The order of the resonance is given by the sum
IN} + 3%1. Accelerator tunes are chosen to be far from low order
resonances, but it is impossible to avoid all resonances.

In the resonance approximation the dynamics is assumed to be dominated by
a single nearby resvnance.s To simplify discussion we first consider only
one-dimensional motion (y = 0, v' = 0), so that the resonance condition is

vi = P, and extrapolate the results to include the effects of coupled



resonances (M # 0) of the same order. In this resonance approximation the

Hamiltonian of 1-D particle motion can be written as:

H=1 (o- -s-) + A(L) + B (L) cos(nW) (2)

where IX is the amplitude of motion, Wis the resonant phase, and the
independent variable is @ = s/R.

A(IX) gives the variation of tune with amplitude and includes the
zero-harmonic contributions of all multipoles and nonlinear fields in the
ring, including the beam-beam interaction. If we place all linear focusing in
the first term of the Hamiltonian, include in the nonlinear fields only

multipole content of the dipoles, and ignore closed orbit and momentum offset,

we find
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Assuming the ring is composed of m independent dipoles with random
mulitipoles of magnitude bN*T’ the contribution of a particular muitipole may

be estimated by:

N N
12 (1) B By (4)
AVD) = NN, o2
My (W

The nonlinear detuning is is found from the derivative of A (I}
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The contributions of the multipoles to AQNL are included in Table 1. These

9

are evaluated at I = 100 x 10 ~ m-R (10c radius at injection).



BN gives AQN, the stopband width of the resonance of order N, from
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Only the lowest order contribution to the resonance » = P/N is included in
this formula.

Synchrotron oscillations and power supply ripple can cause tune modulation
of the form

v = v + A cos(vS 8)

where A is the modulation amplitude and v is the modulation frequency in
turns. The single resonance Hamiltonian becomes
P
H=1 [{» - N) + & cos(vse)]

rn
+ A(I) + BN(I) cos(nW¥)

The time dependence can be removed from the first term in equation 7 by a

change in variables

_— A .
Y = W v, sin (vse)



which changes our single resonance Hamiltonian into one containing an infinite
number of subresonances.

H = I(vn%) + ACT) + B (D) EE:Jk(%;) cos (N Prkv ) (8)

The subresonances dre spaced vS/N part in tune, with their central

amplitudes, found from the solution of

P
vogt kvs + NA'(I) =0

spaced in amplitude by

vS
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The resonance full width in amplitude is found after expanding equation 8 to

second order in 4p/p

NA
A = 4 [B (1) 3, (v) (9)
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If the resonance width is greater than the resonance spacing then the Chirikov
overlap criterion is satisfied and we may expect stochastic motion with
particle trajectories that travel from resonance to resonance. This threshold

ococurs when:
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This condition sets a lower limit on v for each resonance order. The
Timits on v under the pessimistic assumptions of using <x2> = (}Oa)2 at
injection, aQNL = 0.01, and replacing the Bessel function by its maximum
value (1.0) are displayed in Table 1. The results indicate that it is

necessary to avoid all resonances lower than seventh order within the tune



spread when vg = 0.001, as is planned for the SSC. The constraint is
somewhat less restrictive than that placed by the beam-beam interaction. In

that case, avoidance of resonances through ~ tenth order is desired.



Table 1

Resonance widths due to random multipoles in the dipoles.

2
Resonance <bN‘]> A0y Ay, s
Order ~(N-1) Stop Band Nonlinear Stochasticity
N {cm ) Half Width Detuning Threshold
3 2.15 x 107 0.0076 0 0.12
4 0.35 x 107 0.00028 8.3 x 10°% 0.027
5 0.59 x 1077 0.00010 0 0.018
-4 -6 -5
6 0.059 x 10 2.3 x 10 2.3 x 10 0.003
7 0.076 x 1077 6.7 x 107" 0 0.0017
8 0.016 x 10} 3.2 x 1078 1.1 x 10°° 0.0004
9 0.021 x 1074 9.3 x 107° 0 0.00023
-4 -10 -8
10 0.003 x 10 3.0 x 10 4 x 10 0.000044
X 0.007 x 107% 1.6 x 10710 0 0.000034
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