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AVAILABILITY STUDY FOR SSC CRYOGENIC SYSTEM--MODELS

We study the availability of systems with characteristics representative
of large-scale cryogenic systems for the SSC. By large-scale we mean an SSC
system composed of units roughly equivalent, or at least comparable to the
whole Tevatron cryosystem.

In order to exhibit the essense of the computations and results in an-
alytic forﬁ, we consider a system of 9 units for a first-pass study. The
aspects of a larger 1Z2-unit system that are distinctly different in the 9-
unit system will be explained after we first see them in the smaller system.
We will study 2 models. The first model is a repairable system with one re-
pair crew and the system down when any 2 units are down. The second model
has 3 repair crews and the system is down when any 3 units are down (3-unit
kill).

Model I 9-Unit Repairable System with One Repair Crew and 2-Unit Kill

Assumptions

We assume 9 identical refrigerator units around a closed ring.— Each unit
operates with an independent probability-of-failure rate x» (all same) in its
normal, unstressed operating model. When any individual unit is down its
function load may be taken over by the excess operating capacity of the 2
units adjacent to the down unit. We assume that excess operating capacity of
an operating unit can be switched on immediately and distributed to take up
only 1/2 the load of a single adjacent down unit. That is, we assume each
unit has operating capacity at least 50 percent in excess of its load in its
normal, unstressed state, and ignore any possibility of distributing excess
capacity beyond an adjacent 1/2 unit. We assume a probability-of-failure
rate for a unit operating in the stressed state where it is picking up 1/2

the load of an adjacent down unit to be a'. Presumably a' > a. We assume



that there is a single repair crew that starts repair immediately when the
first unit goes down and works with a repair rate p until that unit is again
operative and carrying its own load.

If a second unit goes down before restoration of a previously down unit
the whole system is shut down until the single repair crew finishes repairing
the first down unit and starts repairing the other down unit while the system
is again up and operating. Note that 1/2 of the 36 states of the 9-unit sys-
tem with 7 up units and 2 down units could leave the system operational even
if only one were being repaired. That is a different model that we can also
study.

Up-down Configurations or States

States of our system corresponding to particular configurations of dis-
tributions of up and down units are illustrated in Fig. 1. There is a single
state with all 9 units up. This state i§ by itself class-0. There are 9
states of the class-1 in which the system is operating with one unit down and
being repaired. There are 9 states with 2 adjacent units down plus 9 states
with 2 next-adjacent units down that form class-2'; in which, by our assump-
tions the system is necessarily down. There are also 18 states with 2 units
down that could leave the system operating in class-2; except that in this
model we agree to shut down in this case.

Probability Egquations

The probability that the system is in a state of class-j, we call Pj.

The probability transition rate equations are then the coupled set,
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P2. = -y Pz; + (2 A"+ 22) P1 .

Because of our stipulation that the system be shut down when any 2 units are
down, this is actually only 3 equations in 3 unknowns. The last two equations
can be added to obtain an equation for the single variable P2 + PZ,; which is
all that occurs in the remaining equations.
Solutions ‘

Subject to the boundary conditions: Po(t =0) =1 and PO(t) + Pl(t) + Pz(t)

+ PZ,(t) = 1, the solution is
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where the eigenvalues are



Availability

Availability is the probability that the system is up at time t after

virgin start in class O:

A(E) = Po(t) * Py(t) = 1 = P,(t) - Pyi(t)
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Stationary Availability is the long-time limit:
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Availability for all p/na remains large for times t < 5/a and for times

t >> 10/x approaches the stationary availability
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Po = 7 MAl(n = Tl ", - (3 - A G
wle + mj Wi+ 1)

For u/mx >> 1 this goes Tlike



Maintenance Function and Mean Time to Repair

under the condition that it was initially down.

The maintenance function is the probability of the system coming up at t

ferent set of equations:

The

and

The

Ppo = ¥Ppy

Pp1 = “Pp1 * u(Phy * Pppi)

P = ~vPpyo

»

Ppor = —#Pho

condition that the system is initially down means:

sz(t =0) £ 04 sz.(t = 0). The solution is:
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= PbZ(O) + sz.(O).
maintenance function M(t) is then
Pbo(t> + Phl(t)
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This requires solving a dif-

PbO(t =0) = pbl(t = 0)

This is the same maintenance function as for a single unit; reflecting the

fact that there is no more than one unit under repair by the single mainte-

nance crew. Note: these equations and M(t) are independent of A and A'.



Mean Repair Time is

o]

MRT = j( [1 - MIt)] dt = % .
0

which is the same as for a single unit.

Mean Time Before Failure is

[e2]

MTBF = ./_ t[Py + Pyl g dt
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0 172
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p=0

Note: we call this "mean time before failure," which is the mean time to the
first failure starting from the totally-up initial state 0. A mean time be-
tween failures cannot be computed this way for this system because the dis-
tribution function for the first up times is not the same as the distribution

of second up times, etc. An alternative for Mean Time Between Failure in

Stationary Operation for very long operating times may be obtained from the

(supposedly general, but unproved) equation for the stationary availability

and mean repair time calculated earlier:
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This relation generalized for 9 > n gives

vt ona
mfn -3)a+22'] =9

MTF =

This expression has the desirable feature that it increases MTF with increasing
repair rate p. However, it does not go to MTBF as u » 0. For large u/x >>n
we have MTF ~ u/(m)2.

Parameter Values

We expect A' = 2x or ' = 2 will serve as typical, i.e., that the inde-
pendent failure rate of a unit operating in its stressed mode might be twice
as great as for operation in the unstressed mode. This might be a reasonable
range, since at least 50 percent excess unit capacity is required for this
model. |

The failure-rate ratio x'/x is speculative at this stage, whereas the
repair-rate ratio u/a should be indicated in the Tevatron experience. How-
ever, at the present, speculation on typical values for u/x covers quite a
broad range of uncertainty, depending on what aspects of the data are crit-
ical. We compute for »'/x = 2 and 1, and u/x = 200, 100, 30, 20, 10, 1, 0.1,
0.

Tevatron I Experience recently indicates a mean down-time interval for re-

pair of the cryosystem is ~0.5 to 1 hour, with mean time between failures ~4
occurrences per month., Typical repair jobs are stuck values or broken valve

stems, etc. This suggests

Treparr 0.75 1

- 240 :

- Toperate 3% (24)



The major maintenance item is malfunction of electrical transducers, but these

cause no down time--although they might at SSC, because they may be in the SSC

tunnel.

Central Helium Liquefier experience has indicated 17 to 24 weeks between

failures, and ~100 hours for typical repair time. This suggests

Trepair
A CHL _ 100 _ 1
b operate T 17(7)28 T 30
CHL

These data suggest we consider values of u/x = 20, 30, 100, 200 for n = 9, 12
and A'/x = 2, 1. The mean times between failures and associated stationary

availabilities for these parameters are shown in the following table for both

n=9andn = 172,

Mean Time Between Failure and Stationary Availability
For One Repair Crew and Two-Unit Kill

¥

(2,2)  (20,2) (30,2) (100,2) (200,2) (20,1) (30,1) (100,1)  (200,1)

A
Forn =9
HTBF = 0.235 MTBF = 0.254
MTF 0.322 0.433 1.211 2.322 0.403 0.542 1.514 2.908
A 0.866 0.929 0.992 0.998 0.890 0.942 0.993 0.998
For n = 12
MTBF = 0.160 MTBF = 0.174
MTF 0.205 0.269 0.718 1.359 0.242 0.318 0.848 1.606

A 0.804 0.890 0.986 0.996 0.829 0.905 0.988 0.997




For u/x > 20 the eigenvalue rate xy > 15x and (x, - A)/x >/(n - 1) u/x >/160
= 12.6. So the system is at its stationary operating state, i.e., has dis-

sipated more than 95 percent of the transient [A - A_| in its approach to A_,

by t =35 + = 0.2 L. which is of the order of MTBF.

Eigenvalues and Availability Coefficients are given in the Table:

b B u/x A /xl A /*2’ A Al A2
2 200 164.8 254.22 0.9978 0.00611 -0.00396
100 77.87 141.13 0.9918 0.01827 -0.01008
20 15.35 43.65 0.8657 0.2072 -0.07285
10 9.487 29.51 0.6786 0.4737 -0.1523
1 7.298 13.70 0.1000 1.926 -1.026
0.1 8.482 10.72 0.01001 4.745 -3.755
0 9. 10 0 10. -9.
1 200 168.5 248.5 0.9983 0.005341  -0.003621
100 80.21 136.79 0.9934 0.01587 -0.009303
20 15.84 41.15 0.8896  0.1795 -0.6909
10 9.542 27.45 0.7252 0.4212 -0.1463
1 6.628 12.37 0.1219 1.891 -1.013
0.1 7.575 9.624 0.01248 4.638 ~3.650
0 8. 9. 0 9. -8.
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Model 11 9-Unit Repairable System with Three Repair (Crews System

Off when Three Units Down

Assumptions

We assume identical refrigerator units around a closed ring, each operating

independently with failure rate x in its normal, unstressed state and ' in

its stressed mode when taking over 1/2 the load function of an adjacent unit
that is down. We assume that each unit has excess capacity to take over 1/2
load of & single adjacent down unit only, and that switching into this mode
requires no time. Down units are assumed to begin repair immediately with
repair rate u. We assume there are 3 repair crews, and the system is turned
off when any 3 units are down, inspite of the fact that not all states with 3
down units are necessarily down states of the system. The set of such states
is small for n = 9, but sizeable for n = 12. This is the principal distinc-

tion between n = 9 and n = 172,

i

Classes of States

States of the 9 unit ring that we must consider include again the single
state of class O with all units up; 9 states of class 1 operating with one
unit down; and 18 states of class 2° in’which the system must be down with 2
units down. In addition, we consider the 3 states of class 3, in which the
system could operate with 3 units down, but does not, due to stipulation of
our model. We must also consider the 72 states of class 3', which can be
reached by failure from operating states of class 2 and which do not allow the
system to operate because at least one pair of the down units do not have at
least 2 up units between them to take up the interior 1/2-loads of the pair of

down units. Actually, this does not completely specify the classes of states

that must be considered for exact solution of this model. This is because



11

some states of class 3' can repair back into the non-operational class 2°'

rather than the operating class 2; we will call this class 3°'.

Alsp the

subclass of states of class 2 which decay into states of class 3 must be

distinguished as a concommitant of the need to distinguish among various

3-down-unit states.

However, as part of our computational model we shall

finesse these details, as described more conveniently below along with the

probability transition equations.

Transition Probability Equations

* ZU(PZ * ch)

~(3x + 4y' + 2u) PZ + 4AP1 + 3u93 + 2u 93‘ - AP'§T

3!

o = 9Py * Py
Pl = - (6x* 22" *u) P+ 9P,

P, -

Poy = <2uPy + (20 + 20') Py * uPy, + u Por
Py = -3uPy * iP5

Pyr = =3uPy + (3 + M0') P, - 2Py

For n = 9 there are only 3 states in class 3; and only 9 states of class 2

having the jth and (j + 3)th units down can decay into class 3, each at-a rate

A. HWe finesse this by defining the effective failure rate X in the assumption

that aPx(t)

jth and (j + 3)th units down:

K'Pz{t) for all t. Py

2

is the sum of probabilities of states with
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9
:{: P(3.5 +3) = 9P(1,4)

by symmetry. P‘2 - Pg-is the sum of probabilities of states with jth and
(j + 4)th units down: P2 - ?5»: 9P(1,5). Thus we expect that the time-
average value of a is 1 = 1/2 a.

We finesse the P3, the same way. P§T is the sum of probabilities of 9
states with j, j + 1 and j + 3th units down plus 9 states with j, j + 2 and
J + 3th units down plus 9 states with j, j + 2 and j + 4th units down. Again

set uPs— “?3,, with w= (27/72) uw = (3/8) u on average.

3 -
With these finesses the above eguation set is complete for determining PO’

Pl, Pz, ?2,, P3, 93. as functions of time. The eguations leave PO * ?1 + PZ
TPy TPyt P 20 =P3=P3 =0

at t = 0. We are not interested in the individual Pi‘s so much as the proba-

30 = constant and we set PG =1 and P1 =P, =P

bility of the whole system being up: A = P0 + Pl + Pz =1 - (92, + 93 + P3,).
It is convenient to describe our technigue for solving the probability

transition equations in the Laplace transform domain where Pi(t} is mapped

into pg(q) and ﬁi(t) into [qai(q) - PZ(O)] x. Denominating all rates in units

of x so that ' axs x  ax, w Bx, u Bx the Laplace transform equations

are
(Q*‘Q) 90 391+1
(@ +6+ 20 +8) py = 9o * 28{92 + 021)

(q +3+ 40 + 28) oy =4 0 * 3805 + (28 - 8) Pa
(q +23) 021 = (2+2Q) Gl *+ (3 '*'B) 93!



13
(Q * 33} 93 = gpz

(q+38) D3;*(3+4(1‘“?;) 92°

The solution for the combined probabilities that the system will be in an
up state, called the availability,

A=P,*P, * P2 =1 - (P

0 1
is of the form

2t +P3+P3!} ¥

where q; are the eigenvalues of the matrix of coefficients of g for the La-

place transform rate equations. For a = a'/a =2, & = %-x, g = u/x = 20,
’é’=~§~s,

q; = -21.13427

q, = -41.0752

4y = -50.0126

g = -77.7780

Note: the 2 lowest eigenvalues differ by 4 - qy = 41.1 - 21.1 = 20.0,

so for times greater than about
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all the transients of §qu > !qlf are negligible compared to the g; transi-
ent. Furthermore at © = 0.2/x
e-‘el(.Z) - e-4 = (.07
qlxt
is all that is left of the Ale transient as A(t) approaches the stationary
availability, A_. Our previous model indicates that as u/x gets larger the
dominance of the lowest eigenvalue becomes even more pronounced. This is also

the case here.

Maintenance Function M(t)

The maintenance function for this system is

M(t) = PbO + Pbi + sz .
where Pbi are solutions of the transition equations with x = 2" =X = 0 and
(sz + Pb3 + PbB') =1 at t=0. That is,

Poo = ¥Pp1

Pop = wPpp * 2u(Py * Py

PbZ = -—2;.;!:’2 * 3;193 + ZuPB. - pP-g-,—- (np—g—,—‘ = ;PbS‘)

sz! = -211?2, + uP3. * UP':;‘T

Pp3 = —3wP3.

Pb3[ = “3“P3; °

Solution of these equations is
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Pog = Po3(0) €5 L Pg = Py (0) &7

Poor = (1 u/u) P 5 (0) [et - 73Uty

Ppp = [3P3(0) + (2 - W/u) Pb3;(0)][e”2”t - e

Poy = 3[P3(0) + PLq (0)I[e ™t - 272t 4 o~3uty

Po = 3[Pp3(0) + g (0)[5 - e™h + 2t _ L o73uty
Since sz,(t = 0) = 0 we have PbB(O) + PbS'(O) = 1 and

Phy * Ppg = €

sz + sz' _ 3(e~2ut _ e~3ut)

Py * Phg = 3(3 - 2+ L),

The Maintenance Function is

M(t) = Py * Py * P

bl b2

i

1= [3(1 - Py3(0) - (2 5/u) Pyyu(0)] e72ut
+[2 - 3P5(0) - (2 - W/u) P, (0)] et
p30) = (2 - w/u) Pp3 (0)] e 00

The Mean Repair Time is

[o.o]

-/~ [1-M(t)] dt

0

MRT

i

[3 - 1/2 Py (0) - (2 - w/w)

]

o

1
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We note that this expression depends on the distribution among classes 3, 3',

3" in the initial down system. If we choose a distribution weighted equally

for each state in these classes, i.e., PbB(O)ing‘(G} = 3/72 = 1/24, then
1
H
Using this in the relation

MRT = = 0.5533 .

1 _
WMTEF
gives
0.949 1 10.35 1
MTBF = MRT T—porg = 18.69 MRT = 10.35 & = 12:32 2
- 0.5173 -i-

for mean time between failures. This is 0.5173 times the mean time between

failures of single independent units.

Availability

n =9, 3-Repair Crews , 3-Unit Kill

At = 22

Wl x A xlfx A1 szl AZ x311 A3 xdfx A4

0.1 0.0225% 0.2112 -1.0%4 8.421 29.87 10.24  -47.39 11.93  19.741

1 0.2055 2.114 -0.004432 7.154 2.27% 12.0% -1.81% 16.68 0.3339

10 0.8510 12.26 0.2546 20.65 -0.003376 30.03 -0.1032 47.06 0.0010010
20 0.9492 21.13 0.08776 41.11 ~0.000239 50.01 -0.03651 77.78  -0.0002438
30 0.9753 30.80 0.04385 61.34 0.00007620 70,00 -0.01884 108.6 -0.0002586
100 0.9974 99.59 0.004859 202.0 0.00007187 210.0 -0.002353 318.4 ~0.00001345

200 0.9993 199.3 0.001278 402.2 0.00002613  410.0 -0.006437 6£18.5 -0.000002083




Mean Repair Time:

17

MRT = 0.5533 1/x, for various u/a.

Mean Time Between Failures: MTBF = MRT

ufx % X MTBF
0.1 0.1276
1 0.1431
10 0.3160
20 0.5173
30 0.7241
100 2.152
200 4.201

I - A,

Rules of Thumb for interpreting results for model II shown in the table for

u/x > 1 and n = 9 are:

1) A =1~<§3~2%
or

A =1-0.6h
and
2) A= ()78
3) Alfx = ufx

holds well, and corresponds to A =1 - (55}2 in

model I. The n-dependence here is presumed on basis
of model I.



5) A2/A1 ~ 1/100
6) x4lxl = (3-4)
A1l of these are consistent with corresponding suggestions from model I.

General Observations and Conclusions

The ratio of repair rate p to failure rate » for the individual units

determines the availability of the n-ring system; mostly in the form

nx 2 1
where r is the number of repair crews. Models I and II have a couple of char-
acteristics in common which could be quite different from the actual operating
SSC. First, both of these models assume a continuous repair rate, u, charac-

terizing the probability 1 - e M

that a down unit will become repaired and
operable in time t after it went down. Immediate commencement of repair and
switching into the crippled operating mode were assumed. These assumptions
may be incompatible with a 60-km-diameter ring that operates with a continuous
(non-pulsed) beam, in a very deep tunnel. The second assumption that may dif-
fer from reality is our Timitation in these models that excess refrigerator
capacity cannot be distributed beyond an adjacent 1/2 refrigerator sector. If
this 1Timitation on the distribution of excess capacity can be Tifted it would

have a salutary effect on the availability in the resulting models in compar-

ison with the present more restricted models.
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