GEM TN-93-478

gem

GEM Cryogenic Control System
Options for FNAL Test Beam

October 6, 1993

— - ~— \'/ -) - - Yl -~
~
‘fru 'S :,f“ f'i L Tgf,'f— ‘,c 1w
_ e ts Lo, b3
,"‘\Jf—,‘\ v 2 L‘/y}‘\.,/“—)f‘up E“ M, }‘
- ‘ -
C,;; Ary LVch(Roos C‘ﬁav-y WP m{f@f S.’;‘c.-.j; %
Mule e \'-l arrin 0 YeeS 0 Naetie 5% S

o SR EE T ATOT T T e @ g
| v—m’&‘\ SIERP: \COME —- 2005 — ca.\%mu%C—%@%\—

e H__J_oﬁ_lg_gggczﬂk- L AooY - Kaup_aals@_s;;__u
S R I R B N IS S N S i
: } /f),,'f‘ou/o AL ~R R t i 9005 BRI R M&)eézs @SSC UY/

P Py i o o TR [b F ! (g
l vt)] L | @QmMﬁm“ ' ‘S'Sd
F P || '
} ‘
1
|

i
2001

)
}-..1
_‘:)
L
A
o
-
3
LN I
N
Nl
2
N

e - -

Sl = L]
..?j‘_';__;
% AlE;

h

1

e * g ad
- ‘-r .
‘
. 7

)
¥ ?_.:
s [
r
Cl:
l' i
~‘—‘ it ‘;'z "-‘. T
oy
: v
)
N
O |
T LFRE
1-] B
*
A
)
$
A
% i
G-+
h ']

. . | |
o | I | i
TS DLl EF o [Faal T
-: } F T JLF“ E] b oo | h I l |
~o Eau —J,r-\"'fe»ﬂ\! [F Q) C’Fil’?!oc | | |
w4 || ANAN b4 1] I l L
L i HENR | !
! i Co b ! T
o L0 tlo | i | 11 | i i
- N i | |
- ! 7 F |
i | - -]
! - °| i] :
’;- ! it [
RN | | | | N
‘ L] n P P Cod Y i !
! I b i Py ’ L | | i
e \ HEEEE | | P ! i B RE I
~ P Col P b : Do
L BN i N RN
Ll Lt e bbbt L IR HERNE

gem

Presentation by:

Jimmy Voyles

GEm Test Baam

Cdor\c:('m , Cruosenics

E L)
e Culorvwadur Cryopmics Comtvol
System

—PRorpone

v Monitor & Centrof LKy
Ful process for +he

Colevimeter
~ Ww‘am 'e(‘ L.Kr /9#‘4/
afLter L7/
r Ma:;r-‘mn LKy nﬂ"“a’ ‘
— Plyswed Sansors & controls!
- resiure ~low
. lerd ~ Termpurehore
- a‘mfg*ﬁssws - Pumps
'~ Crntn ! Vadies A Sa/uosy Vt/ra
~ 57"""’1 60%"5

1 Tl

n Culnmeter Craegenics oats/ ~

- /-/Aabwme Lozt -I"mm:sat.

Ka-usable Harcware

o Sltf. Rgorvesn, Limided

© 5Vs-km Gensi darahons {—37,%%2

- The C&./mw‘gy (w‘o‘uu;;
Lentvol sUb.ays fem wi!/
be Pard oF B H Befms.
Sy s femn
- #’I‘ I/ Covnt
= Distn budcol |
= Pur k Pasr GMM
- WM&? o A+ fw

— Mot Rasmnable fo epact
- Pormi Rt sysheme e
Ui Ahwe Bemw syslewy

- For Cost/mambonanc /operctimg
Peatons | e ol $v use 1%
Same sysdemm & BOA @s ASD
CRYD Com-+tnok.

4

Jwv,

REQUIRSMENTS _ _
~ Stuud alrme ool System (025 BOY

= @‘*3«\)3:’.&%. ﬁmlh'ra:».%
© Sﬁﬁvmﬁ;‘(’ Lontrof
¢ Cerulatory Gontref
0 Indevheing, ¥ Qlarn,
o Datn Legying
« Commerciad Hareduare ¥ Soptriare |

- Qs-bn Sottoare Deus .I.H Cor Cdf
- Ab{l,l.a o m#wgu-@un‘"h 625

- Ethernt &2.3, TeR/TP JA/ s
- M'"“’_-"S" Exlernal Swnad dvd/%;més
- IF Bk qllay:

- Zvanobnev ¥ io# Swep

= Industied Haydeney) 2955 e

5 Sl

~ CpyodBues (ontvds T UsE =

e Commarciad Coup-Facilihe,
wse Iwuﬁ'vw(bes /re

Supelisrs .

o NIY" arfe, Ha ﬁO‘Fﬂgm‘-#w ;V’
Magret Tw'hus |

e Swmens Ptc/bcs 7'2‘-%
o Turn b, Syster, Startve

Problems £ Cost over zm
o Syskmm g *ms n‘“".

6 ﬁmu e &Fhscn-hr Hr
 Aceslerarr Magrete
o PL Rayd
K T adevFed Yo EPOVRL

o C»EBA»F Mo Pefneraior Auslernto

Ra. o Unix f Thum.,‘l'wsu_ éu-‘-w‘«'

Covvel Loyie
o TEEE .45y +OAMAL :i’ufz

Rlock Didersan N
FERMT TEBLT
CAlomimeTse 2RYS . fonTlrucs

iuamkvi / ees
A1

Wok't Siarkrawy ferial

oﬁ.f":‘\; "“:“- -Pe TN A e L e |

T AW
prmmmnmbe, = fon) \lit R

N Bus Contvaller / ()
Pressoee
Ausioe T 8 - Vo ©

) s

MemaL TN 3t b e

Ampe
324 Ve % | Values
(G 4)
"‘ PP
n.ﬂ.,h.‘
Sxid AP
(&)

(Y. TN

@

&ECS
(8e)

STRAW
“A68 s
L&;S____ 24vpe OV

el

- _ kil
ol

DleTn, ouT 32
Td w0

l;-:- ‘. ’;g i '{:X*i‘- .6‘ -& -50" ,-;'_- -%
I NN AN N % -5 27
o TN o T L) -2 A“‘;} "‘ o~ <
N\ > SR, 2> = _\=
E IO 2
AN ow'::%
ﬂ#oas! ‘_ |
SysTem .
/ o FPres —_— e | * — oi" - ! - 4—
e TUCL ‘ _ ;
PLL :
' A”fﬂ .W — — * '}. *.
¢ Madldam k‘a + - + S
' AF
VMES T70 Scamer
+ Sameny — -~ |
+ dillen By | T | ‘ 1|k
« Magli g6
Drsteibyded Aqslems | |
‘Mare +ASS | -l— -~ |4 7-
.Sknm _ + + + + _ “'
AT :
Novﬁsﬁw;ﬂ L . J,
VME - ' :
«Sun + +' -+ + + 4 - - b
. M“]
. PC :
(z) M
E
| () Mo+ A n'.qunm-l Forr Fermi

TaT

(2) SignFicant regol remen ¥ -
For Fomi Tat g

PROS ¢ cong oF Diflerent Systm
8

- 1.
| Recommendaens For
- Ferm. Tast, Oulovimedtra~

\ Control SySéen,

I
- r~ @ L5t 4 within Riagon -~

L]
Thim |

- o USE A commaveid Sndntrad DES
Produet

- -ABRG

= TJohnsen Yekoga wie,
- Neore

- W‘&Lﬁ-m soluhrem WPor
Process covieed | sspecie (/.
erited Procssses

- CPV, .':/o £ Csmmonication

- Qldumdm%.
- Heot-swap of yslens
) Com ponsnts |

. Oxellam ¢ Frelel J'rpwm';d
¥ desrg m Svppert /

0 Nad +o st budsctary, cost
es Fimutes Sor this Systum

| 9

-2
Zacommenslabrons Fon |
Farmi Tart Culormstn
| Cendrol Suddena

IVE ~
Aot mauam‘{_gc. Des 1D TS TRPIVS |

3
1-.'\{7‘ 2

o Use & Workydwhon with commereief
| V¥~ VOUVR |
- Use om «u-h;u. wevkadation
or Mae

® Sugturt Lok v Due Yo cort & venslor
Suppert)

- Nedwwit \v"«"f' _\

- qw&m cdcoe
- v Tavls f’Mu;M |

L

o Sumst YME or T Bus Chatssy
Cer TN

- Opan Sysdms = wriehy o F nders
- Cayts .

Yl
S“‘o

10

Ohat s wev+ ?

Rﬂ-l T ne Aﬂvﬁ
Data Comm Bate \)\A
GLS nderface

Lo tound /rype”™?
CRyp Gv&cu?j] A g
EEM LaD, STadw /
GSM CamAer SRPS

STRICTU AL, SBayP
baM Electricad

Define Combrol
575-@" Filncﬂém /;-}ta..

‘.s+ ¢s+o V-‘o
* Wark statin
N WA §

Feam /e,m,
/————’
TalegraTien
(LITTRY :

gem

TACL

Submitted by:

Jimmy Voyles

1730

[EEE TRANSACTIONS ON NUCLEAR SCIENCE. YOL. 36, NO. §, OCTOBER 989

USE OF THE TACL SYSTEM AT CEBAF
FOR CONTROL OF THE CRYOGENIC TEST FACILITY

Edwin Navarro, Marie Keesce, Rolf Bork, Caroline Grubb, George Lahti, and Joan Sage
CEBAF, 12000 Jefferson Ave., Newport News, VA 23606

Abstract

A logic-based control software system, called Thaumatuargic
Automated Control Logic (TACL), is under development at
the Continucus Electron Beam Accelerator Facility in New-
port News, VA. The first version of the software was placed
in service in November, 1987 for control of cryogenics during
the first superconducting RF cavity tests at CEBAF. In
August, 1988 the control system was installed at the
Cryogenic Test Facitity (CTF) at CEBAF. CTF generated
liquid helium in September, 1988 and is now in full operation
for the current round of cavity tests. TACL is providing a
powerful and flexible controls environment for the operation
of CTF.

THE CRYOGENIC SYSTEM ATCEBAF
Overview

CEBAF's cryogenic system will consist of three stations -
the Central Helium Liquifier (CHL), the Experimental End
Station Refrigerator (ESR), and the Cryogenic Test Facility
(CTF). CTF has been in operation since the fall of 1988 and
will contiunue to service the test laboratory after CEBAF
construction is complete. Construction is now underway for
CHL with completion planned for July, 1990. ESR is an
existing machine which is being moved from Lawrence
Berkeley Laboratory and will be overhauled and commissioned
in 1992.

CHL will provide the refrigeration and liquid production for
the superconducting RF cavities used in the linacs at CEBAF.
It will produce 12 kW of shield refrigeration at 45 K, 4.8 kW
of refigeration at 2.0 K, and liquid helium production of 10
g/sec. at 4.5 K. Upon completion, CHL is expected to be, by
a factor of 10, the world's largest 2 Kelvin refrigerator.

CEBAF will contain three experiment halls which will
each be fed by a separate transfer line. ESR will be used for
cooling a large toroid magnet, as well as several large
quadrupoles and dipoles. The refrigerator will produce 1.5 kW
of cooling, along with 3 g/sec. of liquid. A transfer line from
CHL will be available for additional liquid helium needs.

CTF has been designed to provide helium refrigeration and
liquefaction from 4.5 K to 2.0 X for use in the CEBAF test
laboratory. CTF users include production testing of
superconducting cavities, cryomodules and magnets, injector R
& D, and accelerator R & D. The facility consists of three
compound helical screw compressors, three cold boxes, a
warm vacuum pumping system, a helivm purifier, an oil pro-
cessor, and auxiliary distribution equipment. The first cold
box provides 1kW of shield cooling for the cryomodule shields
and for transfer lines. The second has thres operating modes -
a 4.5 K liquifier at 5 gfsec., a 2.0 K liquifier at 8 g/sec., and a
4.5 K refrigerator at 550 watts. The third cold box provides
liquid at 2 g/sec. to a 1000 liter dewar. With these capabilities
it is possible for CTF to supply a number of different users
stmultaneously.

Special Control Problems in Cryogenics

The fundamental control problem in refrigeration is the
precise maintenance of pressures and temperatures throughout
the system. In CTF these are influenced by variable-position
valves and variable-speed motors on expanders. It is therefore
necessary to maintain very precise control of these valve posi-
tions and motor speeds. This is done in CTF through the use
of software proportional, integral, and differential (PID) feed-
back loops and two custom-built CAMAC modules.

Another critical issue is the necessity for 24 hour a day,
non-stop operation of the refrigerators. A controlled shutdown
and starmp of any of the refrigerators can take a minimum of
several days. An uncontrolled shutdown can result in the loss
of thousands of dollars of helium as pressures are relteved in
the system by release of helium through safety valves.
Extensive fault protection is built into the TACL system to
minimize interruptions in operation.

TACL CONTROL SYSTEM
Ov_erview

TACL is being developed at CEBAF to control machine
operations. It provides a fully adaptable system for CAMAC
interface, for sophisticated logic manipulations. and for easy

0018-9499/891.1(9-1730501.00 2 1989 [EEE

Zeneration of custom sereens tod operater conrol, The ~oit-
~are runs under UNITX on Hewlew-Packard series 9000 work-
«tations and was developed in the € programming language.
CEBAF will usc a distributed network ol 7 supervisory and 30
fowal computers when commissioned i 1993,

Early in CEBAF's design, 1t was dctermined that then-
cxisting control systems would not be adequate for CEBAFs
nceds. Two critical decisions were made at that early stage
which were somewhat unusual for such a long-term project,
The first was to use as much as possible the state of the art in
computer hardware, operating systems, and fanguages 10 pro-
duce a set of tools in order for users of the software to build
the control logic and screen displays necessary for their par-
tcular application. These users would include engineers and
physicists working on specific aspects of the CEBAF design,
as weli as the staff of the controls group. In CTF the entire
definition of the logic database and the building of the screen
displays has been done by one electrical engineer with the
assistance of a part-time high school studenz.

The second decision was to develop the software very early
in the project so that it ¢could be used in ail of the pre-con-
struction tests, thereby providing familiarity for the users of
the system, as well as giving the users time to critique the
system and offer suggested improvements well in advance of
the commissioning of the full accelerator. Version 1 of
TACL was developed in approximately 2.5 man-years and was
available in November, 1987 for control of the first RF cavity
tests. Version 2 required about one additional man-year and
was first used in the spring of 1988, and in addition to being
used throughout the CEBAF test facilities, is aiso being used
to control an operational Tandem accelerator at LLNL.

Though Version 2 contained 80-90% of the capabilities
necded for operation of the accelerator, it was decided that Ver-
sion 3 should incorporate a much improved user interface,
speed improvements, and 2 host of features to faciiitate control
of the accelerator. A set of standard menus and dialog boxes

was developed and incorporated into each of the TACL pro-
' grams. Full zoom and pan capabilities were added. The net-

working memory interface was redone which resulied in sig-

nificant increases in speed. Many additional logic functions
. and display elements were created. This has requirced an addi-

tional 4-5 man-years of development. Though some minor

enhancements will likely be made to Version 3, it is believed

that this version is capable of handling the CEBAF commis-
' sioning and operation.

Logiv Edinar

The TACL Logic Editor s an icon-hased dabase cdinor.
Onc section of the editor is gsed to detine all of the hardwire
interfaces in the syswem, These include LAN connections be-
tween computers and the definition of all CAMAC crates and
modules. A name is assigned to cach CAMAC [/O point in
this section.

The second secton of the Logic Editer is used o detine the
logic flow of the system. The user places icons. which repre-
sent logic functions, on a 100 x 100 grid (expandable to 100 x
1000). As this logic diagram is being drawn, a databasc is
being generated which will be executed at run-time. Logic
functions are available for I/O operations, math functions,
boolean algebra, as well as a3 number of custom control algo-
rithms such as the PID loop. Users may also define their own
logic functions.

Display Editor

TACL's Display Editor provides extensive drawing
capabilities, and can be used to link symbols to the system
logic in order to display different states of system variables at
run-time. Drawing functions include lines, labels, numeric
display boxes, user-defined symbols, bar graphs, dials, and two
custom PID displays. Symbols can be built which when
selecied with a mouse button at run ume will oggle a variable
in the logic database. Other symbols can be built to change
color, size, text, etc. when a value changes in the database.

The cryogenics staff have built 20 process flow screens for
the operation of CTF. One of these is a compressor page
which represents the piping from storage to the compressors
and supply to the cold boxes. The compressors can be reset
and started from this screen using the mouse. Other pages
represent each of the cold boxes, the transfer lines, and the
helium storage. In addition several screens of PID displays are
used for tuning PID parameters.

Run-Time

At the start of a run, four processes are executed. All of
the processes use shared memory for access to the database and
for inter-process communication. The Network process uses
HP Link Level Access for transfer of the database between
computers. The Logic process evaluates the logic array,
updates the database in shared memory, and handles CAMAC
[/Q. The Disc process logs data to disc once every minute.
The Run-Time Display process provides the user interface to

16

1732

the system using the displays built through the Display Ed-
itor. In addition 1o these processes, users may write their own
processes which can be accessed through the Run-Time
Display, and can directly communicate with the database in
shared memory.

Graphs

The TACL Graphs program can plot value versus time
graphs for up to 10 parameters at a time in 10 colors. The
Graphs program has two modes of operation. The first is a
real-time mode in which the program accesses data from shared
memory and dispiays a running strip-chart of data for the 10
parameters. The amount of data on screen can vary from 15
minutes to 2 hours. In the second mode, the Graphs program
can be used to call back data from disc that has been logged by
the Disc process. In this mode any time range can be
requested by the user. It is possible to zoom 4in on sections of
the graphs.

The cryogenics group keeps a real-time Graphs screen
active at all tmes to monitor trends of critical pressures,
flows, and temperatures. Data retrieval from disc is especially
useful during the cavity tests to determine heat loss in the
cavities, and is also used for examining failures and stabilizing
long time constant PID's.

PID Algorithm

The software PID feedback loop was developed at CEBAF
for control of vaives and motor speeds in order to maintain
pressure and temperature settings. The implementation pro-
vides for run-time setting of the following parameters: input
set value, sample tme, gain settings, maximum and mini-
mum position, maximum and minimum change, and loop
enable and disable.

In addition to numeric display of the current input and out-
put of the loop, bar graphs and a running 5-minute time graph
of the input, output, and set value are provided for each PID in
the system. With this full PID display, 3-4 PID's can be
shown on one screen. A small PID display is also provided
which shows a subset of the full PID data and can be used as
part of a more complex flow diagram.

The algorithm used was based on reference [3]. The Logic
Analysis program checks for each PID if more than the defined
sample time has ¢lapsed. If the tume has not elapsed, the out-
put of the PID does not change. If the time has elapsed, a new
outpur is computed from the following formula:

17

Qutput Change = (PG + iG*ST + DG/ST) * ER(n) - 1)
(PG + 2*DG/ST) * ER(n-1) +
(DG/ST) * ER(n-2)
where,
PG = Proportional Gain
1G = Integral Gain
DG = Differential Gain
ST = Sample Time
ER = Error (Set Value - Actual Value)
n = Current Sample Number

The program saves the Emor values from the last two out-
put calculations, and uses them in the computation of the new
output. Once the output is computed, the program checks that
this output will not exceed the currenuy set maximum or
minimum limits, either in absolute position or in change
from the last output value. Setting of the gains by operators
currently involves some trial and error and experience with
setting previous loops. Once the gains are property set, it is
generally not necessary to change these unless changes are
made to the hardware. Some type of gross self-tuning al-
gorithm is being investigated t¢ aid in configuring new PID's.

Two types of PID output can be selected by the user. In
one, the output is the amount of change from the current
position. This is used in CTF to control electric and hydraulic
valves through the custom CEBAF electric valve driver card.
In this case the counts sent to the CAMAC card represent a
pulse length in msec to drive the valve. In the second type of
output, an actual position is sent to a CAMAC module,
which in CTF's case is a 0-24mA carrent module. For this
type of output, protections are built into the PID algorithm o
assure that on program startup the actual position of the valve
or motor is sent to ‘the card until the algorithm has run a
complete cycle. CTF currently uses 36 change type PID's for
controlling valves and 4 position type PID's for controlling
expander engine speeds and vacuum pump motor speeds.

A new feature was recently added to the program 1o allow
the output of one PID to be the set value for a second PID.
Using this technique, it is possible to cascade any number of
PID's. In CTF, this technique is used to control the mass
make-up vaive on the input of the compressors using both the
suction and discharge pressures. This helps to minimize
losses of helium in the event of a compressor shutdown.

Fault Protection

Several levels of fault protection have been built into
TACL. In the event of a2 power failure on the computer, when
the power is restored, the computer will reboot and then will

start a run, returning the system to the settings that were in
effect at the time of the failure. This allows CTF to run
unattended and not be adversely affected when brief interrrup-
tions of power occur. Uninterruptable power supplies will be
added in the future which will incrcase the time that the sys-
tem can be without power.

In order to maintain high-speed [/O 10 the CAMAC crates,
ne run-time Logic program addresses only the controller
module using the FO scan CAMAC command to do a block
read of an entre crate in about 2 msec. The program then
parses the data into the database. The disadvantage of this
technique is that if a module fails or is removed, the data
recetved does not match the database. The solution to this
problem was 1o use a module in the last siot in the crate that
contains a two-byte register. The current read count is stored
in this register. If this count is not the iast byte read from the

crate, the program addresses cach card individually to detenmung
which card has failed. The new read count is then loaded e
the register and the scan reads continue. Information on which
siot has failed is then passed to the operator. This has made
it possible to remove and replace cards while running, without
affecting the status of any other cards in the crate.

References
[1] W. Chronis, et al, "CEBAF's Cryogenic System”,
Presentation at 1989 [EEE Particle Accelerator

Conference, Chicago. IL. March, 1989.

(2] R. Bork, et al, "The CEBAF Conwrol System”, CEBAF
Preprint PR-8§9-013, April, 1989,

{3] M. Maritin, et al, "Quasi - Optimal Algorithms for the Con-
trol Loops of the Fermilab Energy Saver Satellite
Refrigerator”, JEEE Transactions on Nuclear Science, NS-
28, No. 3, 3251, June, 1981.

18

e a L

Jre———

Accelerator Simulation and Operation Via. Identical Operational Interfnces”

1. Kewisch, A. Barry, R. Bork, B. Bowling, V. Corker, G. Lahti, K. Noiker. J. Sauge. J. Jang

A

Continucus Electron Beam Accelerator Facility
12000 Jefferson Avenue
Newport News, YA. 23606

ABSTRACT

The CEBAF accelerator contains approximately 2500
power supplies, 340 klystrons, and 800 beam monitors.
The operation of such a complex machine requires a con-
trol system which can provide a high degree of automation

‘with strong support by simulation and modeling programs.

We present the architecture and first results of a con-
trol systemn which allows one the use of identical opera-
tion procedures and interfaces for operation of the real ac-
celerator and high-level accelerator simulation programs.
The interfaces were developed using TACL (Thaumatur-
gic Automated Control Logic) control software, developed
et CEBAT for accelerator control. This setup provides
the capability to: (1) test and debug the various operation
procedures before the completion of the accelerator, (2)
execute machine simulations under realistic environmental
conditions, and (3) preview and evaluate the effectiveness
of operational procedures during run time. The optimized
simulation program adds only two seconds to the normal
TACL operational cycle.

These capabilities make TACL the ideal environment

for an accelerator simulation system which runs in paral-
lel to the real accelerator. The concept of this system is
described in this paper.

THE TACL SYSTEM

The CEBAF control system uses two levels of com-

puters. The supervisor level employs graphic workstations
used for operator interaction and running the high level
operation procedures. The local level performs hardware
operations and CAMAC access using rather inexpensive
computer hardware.

The TACL software is identical for both types of com-

puters. A set of system files determine the configuration of
TACL for each computer. Therefore it is also possible to
perform all software tasks on a single computer. Figure 1
shows a complete TACL system for one computer.

The heart of TACL is a shared memory segment which

is used for all communication between the different pro-
cesses. The data in this segment are inputs and outputs
to and from the operator or operations procedures. They

INTRODUCTION represent not only readings and settings of the accelerator,

The CEBAF control system consists of a program-
ming environment referred to as TACL[Y and a large num-
ber of user applications. TACL offers the following services
to the user:

o Easy access to the hardware. TACL contains a database
for the computer and CAMAC configuration. The user
only needs to know the signal names for an access.

e Logic transformations of signals. TACL computes signal
transformations in the “logic array” which is user gener-
ated with a graphic editor. This signal processing is used
for example to convert units (i.e., bits into amperes), to
combine signals (i.e., magnet current and beam energy
into deflection angle) and for feedback loops (cryogenic
controls).

¢ User processes for more complicated operations. TACL
provides methods to execute user written programs which
may or may not be synchronized to the logic cycle of
TACL. These programs are used for the calculation of
optical (Twiss) parameters, orbit corrections, ete.

e User interface. TACL handles the operator interaction:
input via mouse, knobs or keyboard and output via num-
bers, bar graphs, dials and icons. User writien programs
can be executed in a window for non-standazd presenta-
tions. A graphic editor exists for the layout of screens.

o Networks. TACL provides a two layer network for the
transpott of signals between computers.

*Supported by D.0.E. contract #DE-AC05-84ER40150
0-7803-0135-8/91303.00 ®IEEE 1443

but also control signals for sequencing of procedures. RE-
SOLVER is the set of function calls used in all TACL and
user programs to access this shared memory.

Four TACL processes are active at run time:

e RUN {RUNtime) program is the main operator inter-

face. It has various built-in basic features to display
data from the shared memory, and allow for input of
data from keyboard, mouse and knobs. For more com-
plicated problems, user-wriiten programs can be exe-
cuted in a “IWindow” on the RUN screen which allows
shared use of the input and output devices. The layout
of the operation screens is defined by DISPLAY FILES
produced with the DISPLAY EDITOR.

LOGIC is the main operation program. The actions of
LOGIC are controlled by the logic array. Each node
of the logic array has a value and a function to gener-
ate this value. The large number of built-in functions
include reading from and writing to CAMAC and the
shared memory, and can range from simple mathemat-
ical functions to complex operations like PID-control
loops. The “user process” function allows activating
user written programs to handle nonstandard devices
and complicated operation sequences. The logic array is
generated manually with the LOGIC EDITCR, or from
INGRES database information, and is stored in the §YS-
TEM FILES.

LLAN (Local LAN) end SLAN (Supervisor LAN) han-
dles the communication on the local and supervisor net,
respectively.

19

The DISPLAY FILES and SYSTEM FILES .an be
created not only with the TACL editors, but also by special
programs using information from the INGRES database.

TACL AS A ENVIRONMENT
FOR CONTROLS AND SIMULATION

The unique capability of the TACL system to perform
controls and simulations within one system lies in the ar-
chitecture of the data flow. The LOGIC program acts as a
daia switchyard. Data can easily be redirecied by chang-
ing functions of the logic array. The structure of the logic
array remains unchanged for this purpose.

This feature allows an cesy substitution of the hard-
ware interface by a simulatiorn program as shown in Fig-
ure 2. Figure 2a shows the setup of a supervisor computer
in the operation of the real accelerator. The INGRES
database contains a detailed description of the accelera-
tor and is used for the assembly of the accelerator and
the generation of the logic array. For the operation of the
accelerator TACL writes the settings of the hardware to
CAMAC and receives the readings on the same path.

Figute 2b shows the system in the simulation mode.
The read and write CAMAC functions in the logic array
are substituted by operator input and output functions.
This automatically generates a new section in the shared
memory. The simulation program is implemented as a user
process and can access hardware settings via RESOLVER
calls. Together, with the description of the machine {from
INGRES), the simulation caleulates the behavior of the
beam and writes the simulated readings of the irstrumen-
tation back to the shared memory.

Except for a simple redefinition of the data flow in
LOGIC, no change is necessary to convert the control sys-
tem into a simulation system and vice versa. All operation
procedures can be used in the same way. Besides providing
theoretical support for the machine physicist, this system
offers two major advantages:

» New gperation procedures can be tested in a realistic
environment. .

» New operators can be trained without interrupting the
operation of the machine.

SIMULATION OF THE CEBAF MACHINE

A simulation system as deseribed ahove has been im-
plemented onr ocur simulation computer system, The sim-
ulation program is based on the optics code PETROSEL
PETROS calculates the central orbit of the beam including
second order nonlinear terms. A special routine is added
to handle the linac cavities and the energy dependance of
the beam motion exactly.

The simulated system describes the CEBAF acceler-
ator from the 5 MeV point to the end of the fifth pass
and inclydes 376 main dipoles, 1612 correction dipoles,
806 quadrupoles, 72 sextupoles, 806 beam position meni-
tors and 1690 cavities. Multiple passes through the same
element are counted as multiple elements.

The logie array for aur system allows the operatcr
to use deflection angies. focai length and zrergy zains as
inputs. Since the beam energy in a linear accelerator de-
pends not onrly on the settings of the cavities but also on
the path length of beam trajectory {which depends on the
beam energy), LOGIC has been set up which follows ihe
beam line element by element, calculating beam energy
and magnetic fields for each element.

The system is implemented on a single Hewlett-Packard
720 computer. The following computing times were ob-
served: ,
¢ Setting all magnets 0.3 sec
¢ Calculation of new orbit 1.5 sec
s Reading beam position and display 0.1 sec

Using a faster computer like an HP 730 for example
would reduce the simulation time to a total of one sec-
ond which is close to the expected response of the conirol
system with actual machine hardware. -

FUTURE EXPANSION

For use in the control room, expansion of the simula-
tion system is planned as shown in Figure 3. Parallel to the
real machine control, a simulated system will be available
on a separate computet. A modified version of the SLAN
program will allow initialization of the settings on the sim-
ulation sysiem. The operator can use this system to test
changes of the machine settings before they are applied to
the real machine.

Although the simulation will predict changes to the
machine correct in the first order, the absolute results will
be different becanse of unknown machine errors (tolerances
in fabrication and alignment). These errors caniot he mea-
sured directly; however, one can develop an approximate
description from the effect of the errors on measurable
beam parameters as beam position, beam size, ete.

This information will be collected during the commis-
sioning and operation of the machine, and stored in the
mensurement database. An analyzer program could then
be used to extiract the information about machine errors
from a large number of measurements.

This procedure can again be tested by substituting the
rea] machine with a sirmulation program: A set of machire
errors is generated for the real machine simulator asing a
random generator. The operation of the simulator pro-
duces a measurement database. The analyzer is then used
to reconstruct the machine errors, which can be compared
with the original random numbers.

CONCLUSION

The data low concept of TACL makes it for the first
timne possible to operate a simulation with the same oper-
ator interface and operation procedures that are used to
control the real accelerator.

REFERENCES

(1] R. Bork: CEBAF's control system, CEBAF-PR89-013.
(2] J. Kewisch: Diplomarbeit Universitit Hamburg (1978).

1444

20

EYRY T

iy

Cperator @
Sumouter 4

i

Shared memory

Logic Systam files INGRES
CAMAC I ;’:::'“V '

@ Shared Memory Fig 2a: TACL data flow for machine operation
_ /
VAX h maching oparaiion procedures

@ ‘
| i
System Local
cortor @““" o @
A

]

<=
Qo)
Crrinao)

Display Fiies /

N

Resoiver

I

Shared memory

Fig. 1. TACL system overview Fig 2b: TACL data fiow for simulation

Machine Control Computer I Simulation Computer

Mmeasuremant ey
Twiss parameiar data basa Tu'v'iu parameter
]
J

' |

Shared memory Shared memory

ﬂ”fla—-*é (oo)

Fietd Errors
Aignmant

Fig. 3. Parallel gperation and simulation with TACL

1445

21

gem

Submitted by:

~Johnson Yokogawa

Ga

SOLUTIONS

Reliability

v Architecture
- FDDI

- ASIC Technology Application Specific Integrated Circuits)
and Surface-mount technology

- Reducing the number of parts

----- L.ow Power Consumption (Heat dissipation)
- Eliminating fans at FCS

- ECC (Error Correcting Code)

v Redundancy
- 1/O Busses (RIO, Vnet, FDDI, Field Bus H2 & H1)
----- CPU (pair and spare)

- Four processors on FCS
performing the same mstructlon simultaneously

- Power Supplies
- Mirrored Disks

v Software Integrity

- Gonsistent/Intuitive Operation
- Reinforcing Help Messages

Data Checkmg JOHNSH AW A ’

ONCENTRAL YOKE

l‘uauiug the Power of Aulimation
. o thee custonur

COHCL L PRI i

9c

SOLUTIONS

S

Flexibility

v Hardware Modularity
- Workstation Technology

- Communication Buses
- Remote I/O

v Software Modularity

- Software Unbundling

- Ability to use third-party software

- Portability of application and system software
- System Enablers

- Standard Operating Systems

- Integration Tools

- Network Management Communications
- Application Enablers

- Development Tools

- Design Tools

~ Programming Tools JOHNS@N ’
NCENTRAL YOKSGAWA

l"aauh‘lh Pmuero]A ulomation
. om the cuatomer

COHCENN PEY

Openness

v Unified Architecture
- Unix System V R4 (ICS)
-~ X-Window
- Motif (Graphical User Interface - GUI)
- Field Bus (ISP)
~ ORKID (for the FCS)
- FDDI (communications)
- SQL Query Language

v File Access by Standard Protocol (TCP / IP, NFS)

v Compatibility with Other Computers by using X-Terminal
Emulation

v System Engineering by Work Station (HP / SUN), PC
v Use of C-Language for Application Software inICS / FCS

4G

(C NCENTRAL JO}J(N)E@(EAWA ’

Focusl uglhluuura] tomation

SOLUTIONS o hienst

CONCEHL 111

8¢

SOLUTIONS

3

Integration

v Horizaontal and Vertical
~ Integration of Subsystems
- PLC’s, Field Bus, etc.
- Integration of Business System
- Integration of Existing Installed Systems

v Application Enabling Platforms
- Concentral View Using X-Terminal Capabilities
-~ Multimedia Support

v Seamless Access of Information
(regardless of source or destination)
~ Quality Assurance Data
- Production Management Data
- Real-Time Operational Data
- Inventory Management Data

NCENTRAL OB @

th‘lk?ﬂaﬂafﬂ tomation
. ou tha customer

CONCERNIE '

Bo4gE RN ot

Unified System Architecture

ERODUCTION CENTER

Integrated Operation Opacetion Suppor Industrial Technique

Oplbnized Control {Analysis/Design/Simulation)

Tralning System ' Precuction Management
Equipmant Menegemen!
Salsly Managemunt

N

& _Other FDDI, 100 Mbps

Division {aboratory

Centar

' E\?;ﬁ:ni(stnllon

F -

ANALIHQALJNSIHL! MEHT&

(CONCENTRAL JO%%'(EA ..)

Focusing the Power of Aulomation i mroa A A v B e

S OLU’I‘IO <o+ DR ihe cuslomer

CrHTtac s 1t

IR ok
SRR YOO LTV T, 0 NPT 2. 5 1 M WLy

R VY R T

Ethenel

LIS AN IR Y I Y
R I O K L I ety 15

g 3

Total System™
Architecture

ws _
Ethemst e
- dn - a

X-Yerminal X-Terminal

FDDI, 100 Mbps

Baslc Syslem ‘

_- .

08

Publk Lina

Candiol Sisllon

FCS

SRR B R PR

(CONCENTRAL

Focusing the Power of Autvmation

SOLUTIONS - .. 06 the customer

L FODIN-Hat (EEE 802.4 Compllant)

EOPS MOFPS ICS

EFCS l—’

DCs ol
Othei Make

HF Bus AL Bus . FDDIVH
CENTUM-XL XL

& &
SETTN ¢

S NN NN Yo 5T AR i ki s & AT AN

H1 Fleld Bus

LIRS Tt
vt s b

L R RN X TR T |

18

Fiber Distributed D:

- ln&ercmmg@
(F DD E}

v’ Designed specifically as a
control and information
backbone

v’ Direct Connect to FCS and ICS

v/ Token passing

v 100 MB/sec

v/ Features
v’ Redundancy
v/Resilience o
v’ Noise Immunity & Security

JOHNSEN
(CONCENTRAL YOK AWA ’

SOLUTIONS

Focusing the Fuwer of Automation

(IR RN AR |

- .wgi:“;'.i{l-f:i'gsfg’-l;ﬁ;':. B

b B

FDD! /Vnet
>

A

JOHNSEN
- CONCENTRAL YOK@GAWA ’

‘ocusing the P'otwer uf Aulomaiion

SO LUTIONS)r d o on the customer

¥ .l

GO - L

| Pl WHTH LY

— Amzo;:,_ow
VMYDEMOA qﬁ.pz”_uzouv
NEISNHON

apis |o1uo) it apis Aupuels

v FCS without 1/O
v C-Language
v RAM Based

v’ Event Triggered
v/ Scheduled

v/ Used Primarily for Multivariable
Control or Neural Net Control or etc.

v/ Global Data Access

v/ Programmed through Engineering
Station

v’ Standard Operator Station Display
Interaction

Ve

(CONCENTRAL
SOLUTIONS acusing the Power of Autowation

oo 0N Lhe cuslomer

JOHNSEN

YOK

GAWA

CEHTURMC P

lfozrmatiom & Command S&atﬁan -
Workstation

v HP UX, SUN OS

v MOTIF-Graphical User Interface
v Engineering Capability

v Multi-Window Functionality

v X-Terminal Emulation

v Software Portability

v “C” Environment Support

v FDDI Direct Connect

qe

JOHNSAN
CONCENTRAL YOKEIGAWA

l‘m:uuqlu um' n{A nuw

&

SOLUTIONS

A L BR3P G R g e O e

Choice oﬁ ngmeming
Environments

1 2 ‘ .3 4
. Elhernet
ICs
Enginaaring Keyhoard [Oporation) Workstation
g i Workstalion
| -x::ﬁ‘:::'jm 0"::";::::’;:’;.
+ Vet V net
[Fcs 1
FCS H_
Single ICS for both General Purpose Concurrent Engineering Stand-Alone
Operation and Engineering for Engineering
, JOHNSN ’
(CONCENTRAL YOKEIGAWA
_ Focusing the l'::::f l_a{ Aulomation
SOLUTIONS

CEHITURC L) 1/

LR L &m T

F R A T x
. . RS \"

[. Deslgn

- Design based - Multbwindow - Substantial - Enhanced On-Line Malntenance
on model/parts Bullder Envi- Test Function Function
ronment
Ca3 - Wide variety of - Targetiess - Remote Malntenance
~] “languages - integrated Test Environ-
Bullder mont

< Open Enginsering =
< Easy Enginoarig T
<< Concurtemt Englnesring E,.v.mnm.i} < =
' =

g >

@etlus Englneeip <:
Q-Llne Engineering

JOHNSAN
(CONCENTRAL YOK@GAWA ’
SOLU,I.IONS Focusing the Pawsr of Automation

v . 0m Lhe cuslomer

CLHIUAC L) "

v Applicable to both batch and
continuous processes

« v Reusable engineering data
stored in libraries

v Generic models and parts can
be designed before actual tag
is specified.

ONCENTRAL

Facusing the Puwer of Autumation

SOLUTIONS.

Generic Name Aclual Tag
Vi V201
vZEd, vz V202
V3 V203
Vs a
M1 Mz

Masled
RMODE].

Ve
R,
i uparaiion

V’_@_ af Parls

- JOHNS
YOK AWA ’

CFHIDR L i)

PP

In&egrated Iuilder

Shquunss (LRl

v Can Handle Both DDC
and Sequence Control

v Easy Engineering
Corresponding to

6¢€

Process
v Supports Modular e S D
Engineering la R
v System Neutral 13-
D C=D
JOHNSEN
(CONCENTRAL YOKGAWA ’

SOLUTIONS ot sl

CEHTUR]

Fnctlon Block

Control Area

v Adheres to Emerging
IEC and SP50 Standards
on Function Blocks

v Each Block has its Own
Detail and Status Display

v/ Block Pasting to

= Create Control Strategy

v Mix and Match of Batch

and Continuous Functions
Task

(CONCENTRAL

Focuwing the Puwer uf Autvmation

. SOLU'I'IONS . 0 Ahe custormier

~ JOHNS

Bown @

a{!}’(.‘a I’t_'ﬂ-!_{' 1;;“._& ',

Peer-to-Peer Communications

Data Reference / Setting

Cascade Connection

Gﬁ)w-um

I[> < FDDIV-NET

FCS 1 FCS 2
Function Block
) | Rotorer
Reaefarence

187

Data Setting]—— ——

®_

(CONCE NTRAL
Focusing the Power of Aulomaition
SOLUTIONS

oo OM the cuslomer

FCS1 Data Link Block FCS 2
Area 1
Funclion Functian
Block Block r!1
~LiD 1 P 2
—> H il
Area 2
Function |
Block Y.
E CALCU]_>
JOHNSE@EN
- YOKEGAWA

CEHIty -,

Expon Al
_____ 3 Pl s ?'
Ama Monitor
Equipment Diagnosis
Signed Directed Graph
Real Time Data Analysls
Real Time Data Calcs -

Ethamat

A

FDDI/V-Net

Trainlng Simudator
PLANTUTOR
EXATIF

Advanoed
Conlirol Statlon

stc o DG
SAMA NEURAL CONTROL

sl JOHNSE
(C NCENTRAL YOKE AWA ’
S OLUTIONS }unuu., the Puwer uf Automation

. on the customer

CENTURY . bt ot

' ',l*‘ﬂ*i ‘Wﬂ&&a}%ié

Data Management Function (MIF)

v Effective Data Gathering __
i : unclion ac atus 1.2,
v Effective Presentation of spersac Function Trend Display Lotus 12.3

Bpreadsheel Type

Various Data to User AN e /

— Historical data stored and User's Data
retrieved Program Management [—————® | Streamei |
o . i) . C-Language (MIF)
¢ - Historical trend display] +

- “C” Language for historical Data Gathermg
data and interface support 7 o

- Logging data entry and
printing

— Qutput to Lotus 1-2-3
~ Satisfies EPA Requirements

Process Dala

Function Block

JOHNSEN
(C NCENTRAL YOKEIGAWA ’

Focusin 'lhl' urer uf Aulomatio

SOLUTIONS ot o

CEHIUM S Ied U

v’ Multi-Window Operation

— Effective use of monitor
— Unified operational method
— Call up of data without erasing current displays Graphics aceplates

v/ Floor Plans T B
— Customized Operational Presentation | -

W
= — Operator User Authorization Security =
v'Panels that can be displayed in Tiend
resizable Windows
— Alarm summary panel - Control group panel

— Message panels - Graphic panel

— Overview panel - Trend group panel

— Tuning panel - Trend point panel

JOHNS ‘
(ONCENTRAL YOK AWA

SOLUTIONS ol tomt

CENTUR .G i

R RINDRF S4B T e

Window pemton

v Multi-Window Operation
~ Effective use of monitor by half-size window

-~ Unified operational method
- Call up of data without erasing current displays

v Panels that can be displayed in “half-size” Windows:

— Alarm summary panel
- Message panels

Tic2001A . ,
roduct: A B 17
LI Lol o N TEETYLTTER

14

- Overview panel o B2C rauiog gy Mo e Ve

Jaclm Tamp

— Tuning panel
— Control group panel

Tremanl Wl

— Graphicpanel = [EESiTTRR A S |~
—~ Trend group panel
- Trend point panel L eR
FLOW T8
JOHNS
(CONCENTRAL YOK
Focusing the I'vaver of Automalion

. om tha cudlumer
CEHTURC 1 14

SOLUTIONS.

v Fully scalable graphics vMOTIF look and feel for all

v Zoom with declutter - operator actions

v Zoom Window vDirect access to third party
‘ application from Process

v Unlimited panning

v Pan Speed

v Full Animation

v Importation of object

Graphic Targets
vControl actions
vAlarm tagging
vOther recorded messages

av

v 64 Colors vOn-line video
-Over data highway
~Full motion/still frame
JOHNSEH
(CONCENTRAL YOKE AWA ’

SOLUTIONS

CEHIUME, [

Image Data

. uaw ' {TV Window Adapter

V Defln|tlon Of ITV * Pasition Control

Window from User / \
Graphic Panel e 880628 1053

GROVZ3 23200
BATCHREACTOR
PIS2001A

v Display by touch e [T
Y target operation

v Window Sizing

Stepe Tiee fmin)
Waking

A

Reaciosr Pressurs {Indemal)
Matssials wy/caz

[1ea2 Fosdt]| TotalL
TR T
FIS2002A 1234 ST420
risz003a | 123¢ | sreazo

\I“’“'““l 1t

JOHNS@QAN
(C NCENTRAL YOK@GAWA ’
SOLUTIONS P ~ome™

CENTURML . 111

raph Typ Trending

—3-D PEN PLOT

— SPC/SQC _
» xBar-R S E— e —— T
» xBar-S 1 T [T T e
» CASum ||
» Scatter
» Barchart
» Pie
— Interactions
» Scrolling
» Gard/cursor
— Note
» Alarms
o Events _ ' (VIEWTREN.WPG)
» Qperator Notation

JOHNSEN '
(CONCENTRAL YOK@GAWA
SOLUTIONS Fucusing the Posver of Autvmation

8V

«or 0N the cusl amer

CEHILIRACY, 0 au

iy

Number of Trend {Sampling] Trend | Trend T d Bl k
Points Data Type | Period Span Data ren Oc

1sec | 24 min

10 se¢ | 4 hours] 1440 Dati_l
128 Points 1min | 24 hrs | Data/ 128 points
Numerical | 2min | 48 hrs{ Point 4NN
Data 5min | 5 days
10min] 10 days Zixr?:
Data 384 pOintS Trend Block
(3 block)
o _
< | Time Axis
y 1Block A Group: 60 days
(sampling time 10 min)
B Group: 3 days
y 3 Block (sampling time 1 min)
C Group: 4 Hours
6 Block (sampling time 10 sec)
- ! JOUNSEN ¢
‘ \ ONCeNTRAL YOKEGAWA

me‘ the Ponwer of Autowation

OLU'I‘IONS bt

CEHTUM P kY]

TR A R Y T £ Tk T T N S T A N T R
PEMENE .J(Za‘&m«ﬁ_.) -‘hm‘:‘{ﬁ%' LR RN SOt i AT '*;l"’":l'q ki }_'1 L O N S) 3 i

Alarm Fun

08§

SOLUTIONS

v Alarm Profile (user-definable)
- Five levels of priority and action
- Assignable display colors
- Individually assigned per type
- Yellow : Minor on high alarm
- Red: . Critical on high- Ingh alarm

v Alarm Group Concept
- Grouping by plant, area, cell, unit, group, tag, and/or batch
- Representative alarm used for alarm reduction
- Control alarm notification
- Alarm triggers to perform actions based upon alarm

- Alarm Cluster Destination (macro for ggroupmg physical devices:
CRT, disk printer into a single destination

Focusing the Putver of Automation
+. . 0N lhe cusbimer

(CONCENTRAL JO;‘(N)EQEAWA ’

G MG,

]

4|

L [¥]

gem

Submitted by:
MOORE

BULLETIN 39-1

Mycro APACS

The Best of DCSs and PLCs
in One Controller

DT - [R R s d

Mycro™ APACS integrates the best of DCSs and
PLCs to make your automation project run more
smoothly. Its 4-mation™ software brings together
ladders, sequencing, and function biocks for eas-
ier configuration, start-up, and leng-term mainte-
nance. The PLC-like hardware design simplifies
installation. And its DCS-like architecture gives
you unparalieled flexibility.

ACM
{Advanced Control -
Module)

A PLC’s Ease of Installation

Features such as industrial piug-in modules and a variety of (
packaging options make APACS easy to install. APACS: i)

¢ Consists of industrial plug-in medules, each dedicated to a
particular function {control, communication, 1/O) for easy
and flexible installation

i ; : s Includes conformal coating and rugged packaging for each
MODULRAC module to pravide maximum protection in harsh environ-
ments ;

« Mounts in NEMA 12/1P 54, NEMA 1/1P 20, or custom enclo-
sures and supports wail-mounting, minimizing environmen-
tal constraints and making it easy to accommodate space
limitations

PR ——

» Offers optional pre-engineered marshailed terminations,
which simplity field wirtng and reduce wiring costs ;

» Incorporates a front access design tor easy installation of
modules and local terminations

» Supports easy module replacement without disrupting wir-
ing by using plug-in termination assemblies

MODULPAC

ADCS's Flexlble Arblliitecture

Architeciure

APACS incorparalas the architeclural flexibility ypically asso- » Offers several operalor interface options {FCs, consoles, -Gnnlrol Madules - Powe: Supply Mod E} Computer Moduk
ciated with DGSs. it mmﬁons) 50 the vym:wm nto on-line xtauons .
. . A mal 5 YOLU System’s size your plant's ne - 1O Modules - Communicahon Modules I Expansion i
* ﬁﬁ?ﬁaﬁ.’tﬂiﬂ . 'E'n";im; ";:‘l‘"“’“‘:" 1OPIOVIZ 1y pce and other leaiures make APAGS an affective solution !
u inistic o | for many applications. i can be a self-vontained sysiem with . i

* Uses a radundani, gelerministic control nétwork lor maxi- g PC-based operator nlerfaca, a system wilh several seli-

mum pertorMance and secure local operations conained unlis networked together, as well as a larger sys- . PLANTWIDE SYSTEMS l.
« Suppafts standard networks 8nd network protocols, such 1em wilh many Wweidependant ers and connections to i
as Ethernet and TCPAP, tor easy integration o packaged 4 P ide ink ion network. . : MIS |
systams or exisling products SYSTEMS !
UNIT CONTROLLERS LOCAL AREA SYSTEMS _ | PLANTWIDE ETHERNET :

- REMOTE
MYCROADYANTAGE™™
PC WORKSTATION
e WORKSTATIONS

@E

’Em PC LAN LOCAL ETHERNET TO MYCRO
HI-LEVEL LINK
MODULNET - MODULNET r

QS

- .
!)
LOCAL E P —
MYCROADVANTAGE | "
PC WORKSTATION | P
1]
i | | u
! MODULRAC | MODULRAC A" a—8 WMODULRAC |L i
] 1 .
1 M u
! o $.
1 D .
: v -
c , MODULRAC MODULRAC B H MODULRAAC !
1:1 REDUNDANCY U i
MODULRAC S :
: ® ® ® MYCRO XTC™s & o o i
OTHER HART™ =~ hovencad Modde WBL « MODULBUS Eupander Mocule
TRANSMITTERS E0n Ertand e i ot i o MODULRAC
HFM « HARYT Fimkdtns Moduls PEH o Powsr Supply Moduis:
00 o Dasen ot St e e N SELEGTIVE REDUNDANCY

} IES Functiore Blacks: with PEC Cadi

Software

APACS's Windows-based 4-mation software integrates DCS
function blocks, PLC ladders and sequencing, and structured
‘ 4ext, which is a high-level programming language. This com-
bination and other 4-mation tools simplify configuration, start-
up, and system maintaenance to reduce total project cost.

Simplified Configuration

[y D [P Ly
: » Includes the languages required in most applications, elimi-)
’ nating the need to purchase, configure, and maintain sever- Function Biocks
| g P
al devices

s Supports reusable user-defined algorithms, which de-
“ crease configuration time for common control strategies

-~ » Provides a consistent interface for ail languages to reduce
learning time

« Provides graphical, icon-based tools, making it intuitive,
easy to use

C : Reduced Start-Up Time

* Allows on-line confighration changes for instant feedback Ladder Logic
an the effect of those changes for simplified editing during
troubleshooting

LA bt e 18 et

+ Supports on-line viewing and forcing of values for easier al-
gorithm testing and control scheme troubieshooting

+ Speeds upconfiguration editing by allowing you to work with
the configuration directly in the controiler {no compilations)

« Simplifies and reduces the time for troubleshooting via the -
Windows environment o

FINACI0R 3 Rl A4 R 1

Ll win - oo
AR e

-~ = Easier Long-Term Maintenance

¢ Uses a tag-based addressing scheme that associates the Seguential Function Charts

hardware and your process equipment, making it easier to
trace variables for troubleshoating and maintenance

* Runs concurrently with operator interface software, provid-
ing access 10 4-mation’s configuration and troubleshooting
- : tools without interrupting operations

« Stores graphical configuration images in the controller,
which eliminates the need for off-line documentation and
minimizes relearning over time

S Sp——.

-

PRODUCT INFORMATION

P139-3
Issue: *
March. 1993

STTMYCAO -

— APACS™

4-mation=

4-mation is a software -package used to configure Mycro
APACS™ (Advanced Process Automation and Gontrol Se-
ries) for real-time process cantrol applications. It is a graphi-
cal, salf-documenting, Windows™-based tool (Figure 1}.

The graphical programming farmat is based on the interna-
tional standard IEC 1131 part 3. This specification has been
developed by users and vendors to define standard configu-
ration technigues for advanced control, including continuous
processes, batch applications, and discrete functions.

Foliowing the IEC specification. 4-mation recogmizes that no
ane programming technique car meet the neeas of all proc-
ess control applications and industrnies. Rather than support-
ing a single technique, 4-mation oravides an integrated set of
caonfiguration toois.

The configuration tools are tour programming languages:
function block, ladder logic, seguential function chart, and
structured text, These languages are implemented using a
graphical format that is easy to learn and provides intuitive
decumentation.

4-MATION Conliquration Manager

R pliens Window

tHerip

S CREACTUR D =S CSYSTEMY: REACTOR_I (VALVE_A] AREA_3C.SEQUENCE 3

(e

|
i
|
1
1
i
1
i

T

FIGURE 1

Screen from 4-mation Software

MOORE PF{_ODUCT%C?O., Spring House, Pa, 19477

PI38-3

This design makes APACS equally adaptable to continuous
and discrete functions. or any mix therein, without requiring
custom sottware or hardware extensions for unusual require-
ments. |t also provides an unprecedented level of consistency
and familiarity, which reduces training requirements and ac-
celerates the configuration process.

SOFTWARE AND HARDWARE PLATFORM

4-mation is written in an enhanced version of the “C” program-
ming language (C++). The wide acceptance of “C”, combined
with Moore Products Co. sottware programming techniques,
give 4-mation the potential to be ported to many hardware
platforms. 4-mation is currently available for MS-Windows,
with work in progress for other operating systems.

A basic hardware platform for 4-mation is an IBM® (or com-
patible) PC running the MS-Windows 3.1 operating system;
the typical minimum requirements are a 386/20 MHz proces-
sor and 8 MB of RAM. 4-mation runs on both desktop and lap-
top PCs.

A second hardware platform for 4-mation is an industrial
Computer Module (ICM). The ICM is an industrially packaged
IBM-compatible PC sized to fit into a MODULRAC, which is
the standard rack for mounting APACS modules. The ICM in-
cludes a 486/50 MHz processor, 16 MB of RAM, and a2 120
MB hard drive, it supports any standard keyboard and moni-
tor, as well as other peripherals, to form a compiste configura-
tion station.

WINDOWS ENVIRONMENT

4-mation operates within a Microsoft Windows environment.
This environment provides all the tools needed to streamline
configuration. Menus, dialog boxes, and funetion kays simpii-
fy the configuration process by providing quick access to
commands and facilitating logical responses.

Windows also provides a more flexible configuration platform,
Configuration windows can be resized, moved, or made into
icons, (lcons freeze a window of graphic configuration at the
current level of detail and free up the screen space used by
the configuration window by creating a symbol at the bottom
of the screen for quick recall.)

Like in other Windows applications, the user can open multi-
ple 4-mation windows from one or more configurations at the
same time. This flexibility allows complex tasks to be easily
performed. For instance, pieces of a configuration can be cut,
copied, and pasted from one window to others on the same
screan.

Similarly, 4-mation windows can be opened at the same time
as other applications’ windows. For example, a configuration
window can be open next to a window from a Windows-based
operator intertace, which can be helpful during testing and
troubleshooting.

GRAPHICAL CONFIGURATION

4-mation uses a cell-based. spreadsheet-like approach for
configuration of a database. A cell can contain a single piece
of information, such as a ladder logic coil or a function block
putput nub. A 32 by 32 network of cells forms a sheet, A sheet
1s a single window In the Windows environment.

A sheet is configured based on cne of 4-mation's four pro-
gramming languages. Configuring a sheet consists of placing
graphical symbols (using a point and click method with a
mouse and a menu bar or using function keys) and wiring the
symbols together. With this graphical method, intuitive docu-
mentation is the concurrent result of a completed configura-
tion,

CONFIGURATION HIERARCHY

A configuration is usually much larger than a singie sheet and
combines the four languages. Theretore, to simplify configu-
ration and maintenance, sheets can be configured and orga-
nized in a higrarchical relationship that is analogous to a DOS
directory structure.

A panticular sheet can be a parent to multiple child sheets one
laval lower in the configuration hierarchy. Thase sheets can
then be parents to other child sheets, and so on (Figure 2}.

CONFIGURATION DETALS

FIGURE 2 Concept of 4-mation’s
Contiguration Hierarchy

Within the hierarchy, variables can be passed from sheet to
sheet if needed. They can alse be declared global and used
anywhere in the configuration. These capabilities integrate
the overall configuration.

This flexible, user-defined hierarchy aliows the ocrganization
of a configuration 1o reflect the physical organization of proc-
ass equipment. Thus, specific control elements within a large
conliguration can be quickly identified during testing, trouble-
shooting. and maintenance.

Lt

An exampile ot this is shown in Figure 3, which represents the
configuration hierarchy for a plant area with three reactors. In
4d-mation, each reactor is labeled and represented as a single
block on the highast level sheet in the configuration hierarchy.

This segments the configuration into three separate portions
of functionality. Each reactor block is simply a representation
of an entire sheet iocated one level lower in the hierarchy.
These three sheets ¢an contain the control aigorithms asso-
ciated with each reactor as shown, or the hierarchy can con-
tinue downward for as many levels as needed.

DERIVED AND USER-DEFINED BLOCKS

A derived block is a symbol on a configuration sheet that rep-
resents a sheet of configuration details located one level iow-
er in the configuration hierarchy. Inputs and outputs can be
assigned to the block for communication with other elements
on a sheet. Thus, a derived block simplifies the appearance of
a sheet and provides an organization tool.

An example of how a derived block can be used for these pur-
poses comas from the reactor example in the previous sec-
tion. In Figure 3, each reactor biock is a derived block, and
each PID and pump block is & derived block.

PI139.3

To review this In more detail, the pump on/off circutt would
probably be configured in ladder logic. As a derived biock, the
circuit's comacts and coils can be represented as a single
block called PUMP that provides the inputs and outputs need-
ed tc exchange data with other components of the sheet,
Thus, on the current sheet, the user is not distracted by the
iadder logic elements but can review them at the lower level
detail sheet when necessary,

A derived block also ailows control schemes to be easily du-
piicated. Using a Windows dialog box, a derived biock can be
copied, and all details of its contents are duplicated.

if all copies of the block need to remain identical even if one is
edited, the derived block can be converted to a user-defined
biock. A user-defined block has the same characteristics as a
derived block axcept for the connectivity between each block.

When one instance of a user-defined block is edited, all in-
stances of the block take on the changes that have been
made. This eliminates the tedious process of making the
same changes to multiple blocks and ensures that all in-
stances stay currant.

[Reactor1 | |ReacTorz| FEACTO%]

IEEIREEIREED

TO OTHER <__J
SHEETS . S

I__,__*ro OTHER
- . SHEETS

FUNCTION
BLOCKS

FUNCTION
BLOCKS

CONFIGURATION DETAILS

FIGURE 3 Example Configuration Hierarchy

59

PI39 3

OFF-LINE AND ON-LINE MODES

4-mationruns 10 an oft-line or on-ine rmede. The off-line mcoe
pravides a conventional configuration environment. The
on-hine mode presents a runming configuration and provides
teols for troubleshecting and testing, This means one pack-
age can be used for configuration, testing, start-up, and mamn-
tenance, eliminating the relearning of software.

Qff-Line Mode

In the off-line mode, initial creaticn of a configuration data-
base takes place at a configuration station. The database re-
sides on the station's hard disk, which allows the database to
he created independent of the APACS system.

The configured databases is transfarred 10 an APACS control
module from an ICM or a networked configuration station,
which uses APACS’s Network Interface Module (NIM) for an
Ethernet connection to the contrcller,

On-Line Mcde

Once a database is transferred to a control module, 4-mation
can be run in its on-line mode to view the running configura-
tion, The database appears in the same graphical format as in
the off-line moda.

The iools available in the on-line mode include updating
real-time values, ways to force thase values, a real-time trend
window, and tha same editing toois available in the off-line
mode. These capabilities make testing and troubleshooting a
quick, simple task.

Updating Real-Time Valuss

4-mation’ s on-line mode provides updating real-time values
for all variables in a configuration. A control module can be
idled to freeze thasa values, or each scan of the variables can
be manuaily controlled. These functions reveal interactive de-
tails of a configuration not available while off-line.

Forcing of Values

Each real-tima value can be forced to a new, user-defined val-
ue. The effect of the change within the control module can be
analyzed to help troubleshoot the configuration.

This function is particularly valuable because it provides
cause/effect infarmation befare start-up, Thus, changes can
be made to the configuration ahead of time, reducing trouble-
shooting time during start-up.

Real-Time Trend Window

A real-time trend window plots user-salected variables from
the configuration. This window has adjustable paramstars
such as sample rate, scale, grid lines, and colors. It is particu-
larly helpful for reviewing the configuration during testing and
tuning of the configuration’s control loops. :

On-Line Editing

The on-line editing capabilities are identical to those provided
in the ofi-line mode. On-line changes can range from a simple
tag name edit, 10 adding a few tunction blocks, to creating new
sections in a configuration.

During on-line editing. 4-mation does not require a compila-
tion step, which allows changes 1o take effect immediately.

This means the resulls of conflg-...-rancn agpsiments are avati-
able immediately for instant veniication Since mast contigu-
ratiens undergo multiple iteraticns, (s feature saves a signihi-
cant amount of ime.

TAG-BASED CONFIGURATION

All varrables in a database are identified by user-defined tags.
The tags start with assignment ¢ the screw terminals of an
O module and are carried through the configuration. This en-
hances the intuitive nature of the software. It also makes trac-
ing vaiues from software to hardware during troubleshooting
a simple task.

LANGUAGES

4-mation supports four of the languages described in the IEC
specification for programmable controllers (IEC 1131-3).
They are function block, ladder logic. sequential function
chart, and structured text. A configuration, which runs in an
APACS control module, can be created using any combina-
tion of these languages.

For example, a continuous apptication might consist mainly of
function blocks with a few rungs of ladder logic for interlocks
or discrate devices and a sequential function chart for start-up
or shutdown. A batch application, on the other hand, would
make mare uss of the sequential function chart language with
others used as needed.

Function Block

The function block language is used to configure function
block networks. A function block network consists of a series
of function blocks connected to perform a regulatory controi
application. Each function block within the network processes
input variables and provides one or mere outputs.

A function block network is graphically analogous to signal
flow. Signal flow is from the output (right-hand) side of a func-
tion block to the input (left-hand) side of anather function
block. :

Figure 4 shows a function block network created for PID con-
trel. In this cascade loop, the PID blocks were created as
derived blocks. The standard blocks making up the contents
of PID_ESP and PID_ST are part of the lower-level shaet.

.The example shows the configuration in the on-line mode.

The vaiue of each variable is baing displayed above it. Each
valua can be changed or forcad to verify and test the configu-
ration. '

The [CON bar on the bottom of the screen is the menu of stan-
dard {i.e. factory-supplied) function blocks from which to
choose. The standard function blocks are listed in the sec-
tions below.

In the lists of standard function biocks, an asterisk nextto a
block indicates that it is extansible. This means the standard
number of inputs accepted by the block can be extended. Ex-
tensible blocks minimize drawing clutter, save drawing space,
and conserve controller memory when cnly a few inputs are
needed.

T MATTON - st par e Moteuaper

VLM PROPILE] ABLA i Nt

Ry
g

Mgl

TIC_1108

S Sy S p——

il
| ewo_sT
i '

41 42932

TT_1108

42 85283

T TR Tl

FIC_1108

PIO_ESP
40 9245

VLV_ 1108

34 67434

FT_1108

IHNMVI‘VI‘I'H VIS 5 Db

FIGURE 4 Function Block Network for PID Control (Cascade Loop)

Dynamic Function Blocks

Listed below are the dynamic function blocks provided with
4-mation. They are called "dynamic" because they execute,
or ara associated with executing, time-dependent equations.
This group of function blocks includes varations of PID con-
trol and the supporting setpoint and auto/manual tasks.

Setpoint

PID Controller
Auto/Manual

PD Controller

ID Controler
Gain

Integral
Derivative
increment to Position
PID Error

On/Off Controller
Programmer
Lead/lag

Rate Limiter
Ramp Generator

61

Scaler

Filter

Track & Hold
Impulse
Dead Time
Delay Error
Batch Switch
Totaiizer
Accumulator
PID Status

Selection and Comparison Function Blocks

The selection tunctian blocks, which are listed below, sach
pass one of muitiple inputs through to a single output accord-
ing to the selection criteria of the block.

Select

Minimum”

Maximum®

Middle of Three Selector
Limiter

Multiplexer Swich®

P139-3

The comparison function biocks generate a boolean {true or
false) value according 1o the inputs’ adherence to the func-
tion, such as greater than or iess than.

Equal

Not Equal

Greater Than”

Greater Than or Equal®
Less Than or Equal”
Less Than®

Boolean Logic Function Blocks

These function blocks include basic logic operations, bit string
shift and rotate operations, rising and falling edge functions,
and flip-tlop operations. The basic logic operations are listed
below. They act on boolean inputs and generate a single bool-
8an output.

AND"
OR"
XOR"
NOT

The toliowing are the bit string shift and rotate operations.
Each block acts on a single input to generate the result and a
carry as outputs.

Shift Left
Shift Right
Rotate Left
Rotate Right

The rising and falling edge trigger function blocks, which are
listed below, produce a single pulse cutput upon detection of
a boolean edge signal at the input.

Rising Edge Detect Trigger
Falling Edge Detect Trigger

The tollowing flip-flop function blocks provide additional bool-
ean logic operations.

SR Flip-Flop
RS Flip-Flop

Arithmetic Function Blocks

The arithmetic function biocks are listed below. Each block
pertorms an arithmetic operation on inputs 1o produce a single
output.

Add*

Subtract

Multipiy*

Divide

Square Reot

Absolute Valve

Linear Characterizer
Weighted Average®
Moving Average
Logarithm Base 10
Anti-Logarithm Base 10
Naturai Exponentiation
MNatural Logarithm

Data Movement Function Blocks

The data movemant function blocks write data from one loca-
tion toc ansther within a program. The types included with

J.mation are.

62

Move”
Set Value

Communication Function Blocks

The communication function blocks allow the user to define
the communication naeded from one control module to anoth-
er. These blocks facilitate interiocked exchange of data with
error checking. Each block provides a status cutput and an er-
ror cogde.

Send”

Recaive”

Unidirectional Seng*
Unidirectional Receive*
Read®

Write”

Broadcast in*
Broadcast Out
Connect Resources

Timing Function Blocks

Each of the following function blocks performs a timing func-
tion based on a boolean input signal and a preset time input to
generate a boolean output. The elapsed time is also made
available as an output.

On-Delay Timer
Off-Delay Timer
Retentive On Timer
Timed Puise
Real-Time Clock

Counting Function Blocks

A counting function biock performs cne of three counting vari-
ations: up, down, or up/down, It counts toward a preset inte-
ger value, incrementing whenever a positive edge trigger is
detected on the input.

Up Counter

Down Counter
Up/Down Counter

Alarm Function Blocks

The function blocks listed below are dedicated to alarming
tasks.

Hi-Level Link Analog Alarm Block
Hi-Level Link Discrete Alarm Block

Data Quality Function Blocks

The following function blocks are used to extract data quality
information from data elements, stripping away data type and
vaiue information. '

Quality Check .

Basic Quality

Extended Quality
Conversion Function Block

Since 4-mation uses typed data, some data may require con-
version. The conversion function block converts an input to
the desired data type while preserving the data value.

))

Ladder Logic

Ladder logic programming provides lragiona ladce: 1091
network technigues for nigh performance ciscrete control anc
interlocks. The iadder iogic elements provias connections pe-
tween the power rails 1o sottware coils.

A ladder logic network 1s graphically anaiogous 1o eiectric
power flow i an electromechanical relay system where pow-
or flow is from left to right. Figure 5 demonstrates how a por-
tion of a ladder logic network appears in 4-mation.

The example network contains ladder icgic contacts and
coils, as well as two time pulse function biacks. The tunction
blocks exemplily the ability to incorporate standard function
blocks (from the function block programming language) in a
ladder network.

The example is shown in the on-line made, whare the ele-
ments are coior-coded to indicate their siate. The colors can
be changed by the user or, as in the example, the defauits can
be used.

In Figure 5, a conducting contact and an energized coil are in-
dicated by green. Contacts can aiso be in an officonducting
state, which is indicated by yellow; this means the left side of
the element is not on, but the reference vanable is in a state
that would cause the element to conduct # the left side turns
on, The states of all elements can be forced 1o 2 desired state
using the variable control feature.

P{39-3

Tne stanCarg (e ‘actory-supphed) agaer logic elements are
ocutimed In 1ne seclions beiow. Adaimsnal custom ladder logic
funclions can be created as user-defined Diocks.

Coniacts (Static and Transition-Sensing)

The foliowmng are the static and transitioring contacts avail-
able as ladder logic inputs.

Normally Open
Normally Closed

Positive Transititon-Sensing Contact
Negative Transition-Sensing Contac!

Coils (Momentary. Retentive. Latched. ‘Transition-Sensing)
Listed below are the coiis available as ladder logic outputs.
Coil

Negated Coil

Retentive (memory) Coil
Set Ratentive Coii
Reset Retentive Coil

Set Coil
Reset Coil

Posttive Transition-Sensing Coil
Negative Transition-Sensing Coil

4-MATION Configuration Manager

On-line Oplions

Winddow Help

e bt tree View
. =

<{SYSTEM>: REACTOR_1{PMP_1108)- AREA_JC.SEGUENCE 5

1P1IME

!p‘-ﬂ'

VARIABLE CONTROL

NAML:

FYPE: M VALUE T29000m

ENABLE | O

WRITE

DISABLE |

PI38-3

Sequential Function Chart

The sequential function chart (SFC} language aflows the user
to graphically define a sequence. An SFC consists of steps,
actions, transitions, and branches within a flow chart-like dia-
gram.

Steps

The step is the basic buiiding black of an SFC. it is available
in two types: an initial step and 2 step.

An initial step definas the starting point of a chart and assigns
a name to it. An example of an initiai step is shown in Figure
6.

PRODUCT_1

FIGURE § Example of an SFC Initial Step

A step defines a situation in a sequence after the initial step.
It is typically associated with an action, but ¢an also be used
as a waiting period. A step is active or inactive, indicating the
current status of the sequeance. Figure 7 is an example of a
step.

CHARGE_A

FRGURE 7 Example of an SFC Step

Actions

When the associated step is active, an action manipuiates a
discrete variable or executes an algorithm, which is a new
sheet created in one of the four languages. Multiple actions
can be associated with a single step, allowing simultanecus
execution of those actions.

Discrate Variable Action

Figure 8 shows a discrete variable action. The symbol for this
type of action has two fields. The first is for the action qualifier,
and the second is for the boolean variable itself. The boclean
variable can be used elsewhere in the configuration or can di-
rectly reference an output channel. The action qualifier deter-

mines what will happen to the boolean vartable when the step
becomes active.

The action qualifiers availabie are lisied in Table 1. In the ex-
ample shown in Figure 8, the qualifier “N” has the effect of
turning on SV1109 while the step is active and turning it off
when the step becomaes inactive.

CHARGE_A N SV1109

FIGURE 8 Example of an SFC Discrete
Variable Action

TABLE 1
QUALIFIER FUNCTION

N Set when the step is activated. Resat atthe
end of the step.

Action Qualifiers

Set when the step is activated.
Reset when the step is activated.

p Puise. Set when the step is activated.
Reset on next the execution of the step.

L Set when the step is activated. Reset atthe
end of the step or when the user-defined
time limit is exceedad.

SL Set when the step is activated. Reset by a
reset (R} in a subsequent step or when the
user-defined time limit is exceeded.

D Set is delayed from the time the step is
activated. Reset at the end of the step.

sD Set is delayed from the time the step is
activated regardiess of whether the step is
still active. Reset by a reset (R} in a
subsequent step.

DS Delay from the time the step is activated.
Set only if the step is still active. Reset by a
reset (R) in a subsequent step.

NQTE. Setmeans turn on for a discrete variable action or activate for
an algorithm action. Reset means turn off for a discrete var-
able action or deactivate for an algorithm action.

The "S” and "R~ action qualifiers can be used to activate an
action early in the sequence and then deactivate the same ac-
tion later in the sequence. The pair of steps with the asso-
ciated actions shown in Figure 0 illustrate this.

AGITATE_ON S MOTOR 1120
R l
| BODY OF SFC |
e e e e |
AGITATE_OFF R MOTOR_1120

FIGURE 9 Discrete Variable Actions
Using the S and R Qualitiers

Algorithm Action

When mare complexity is required in a stap, an algorithm ac-
tion is used. As illustrated in Figure 10, an action has three
tiglids.

The first field is the action qualifier, which can be any one of
those listed in Table 1. The second field is the name of an ai-
gorithm {a new sheet in the configuration) that is active for the
time defined by the action qualitier. The third fisld can contain
a feedback variabla that comes from the aigorithm.

in the example shown in Figure 10, the sheet named
TEMP_PROFILE will be active when the step is active
because of the N qualifier. The feedback variable is
CYCLE_DONE, which, in this example, signals the conclu-
sion of the heat cycle.

Transitions

A transition passes control from the currently active step to
the next step in the chart. Each transition has an associated
condition that is the logicai result of a boolean expression (in
structurad text format) or an algorithm (a new configuration
shaet).

#1385

Three cxampi2¢ of wransitions are shown wn Figures 11
through 3. Each s spown with an 2ccompanying previous
siep or siep And acucn,

PRODUCT_t

: =START_BUTTON

FIGURE 11 SFC Transition Example 1

The first two examples (Figuras 11 and 12) are structured text
expressions that must evaluate to a boolean true for the se-
quence to progress from the step preceding the transition to
the step following the transition. Figure 11 is simply a variable,
in this case a command from an operatar station,

Figure 12 shows an expression that evaluates to a boolean.
This example uses the feedback variable from the previous
action to determine the transition.

Figure 13 is an algerithm name. The algorithm (configuration
sheaet) must resolve to a single boolean that, when it becomes
true, will allow the transition 1o take place. For exampile, the
CHARGE_COMPLETE sheet may be configured in function
blocks and rasolve to the boolean variable CHARGE_COM-
PLETE, whose state will detarmine the transition.

CHARGE_A N SV1109

CHARGE_COMPLETE

FIGURE 13 SFC Transition Example 3

HEAT_CYCLE N

TEMP_PROFILE | CYCLE_DONE

FIGURE 10 Exampie of an SFC Algorithm Action

HEAT_CYCLE N

TEMP_PROFILE | CYCLE_DONE

:=CYCLE_DONE & CONTINUE_BUTTON

FIGURE 12 SFC Transition Example 2

65

P138-3

Branches

A branch splits a sequence into muitiple paths. Branches al-
low for either simultaneous execution or selactive execution.
Figures 14 and 15 provide an example of each.

Notice that in simultanaous branching, both branches begin at
the same transition, in selactive branching, howevar, each
branch starts with a separate transition and only one branch
can be executed.

PRODUCT_1

Example SFC

All of these SFC building blocks fit together to form an intu-
itive, flexible jormat for sequence contral. Figure 16 shows an
example that uses each element. This chart combines and
heats two chemicals (chemical A and chemical B) in a reactor
to produce PRODUCT_1,

——t—— : =START_A

——— «START_B

CHARGE_A — N SV1109

CHARGE_B |— N SV1108

—1— CHARGE_COMP_A

———— CHARGE_COMP_B

FIGURE 14 Selective Branching in an SFC

PRODUCT _1

— | ..START_BUTTON

CHARGE_A t— N SV1109

CHARGE_B — N sSv11o8

-t =CHARGE_COMPLETE

FIGURE 15 Simultaneous Branching in an SFC

160

PI38-3

On-Line Ogeration * Hold -~ Freezes the cnar a3 its current state.

Inthe on-line mode, an SFC 15 coler-coaed 10 indicate the cur-

» Manruai - Allows tne user to torce the chart to a particular
rent state of the chart. The active step or action 1s outhned In

_ A step

green until it becomes tnactive. A controi box (Figure 16) al-)
lows the chart status te be set to one of five medes: off. auto, * Trace - Ailows the user to view the sequence of staps with-
hoid, manual, and trace. out executling them.

These on-line capabilities are useful for database trouble-
7 shocting. They also enable intervention during on-line opera-
s Autc - Allows the SFC to run as configured. tion, which is often required in batch applications.

s Ofif — Temporarily disables the SFC.

4-MATION Configuration Manacger

il bt dree View ORcline Ophions Window | Help

¢SYSTEM>: REACTOR_1 - AREA_JC.SEQUENCE_S
IPROMICT 3

viian

- CHARGE _DONE

-ITO®_ 1320

=-CYCLE_DONE & CONT_auTton

woTom_shas

FIGURE 16 SFC for a Biending Operation

67

Structured Text

The structured 1ext (ST) language supplements the three
graphicat languages with a text-based programming tcol. Itis
typically used for functions thar are mere easily implemented
in a programming style than in a graphical format, such as ini-
tialization procedures or procass calculations involving com-
plex math operations.

A structured text file is detined using standard {i.e. facto-
ry-suppliad) ST operations and statements, as well as custom
elements. The standard gperations are cutlined in Table 2,
and the statements provided are listad below. Custom struc-
tured text functions are created as user-defined or derivad
function blocks,

Assignment

Function Block CALL

RETURN

IF, ENDIF

IF, ELSE. ENDIF

CASE, ENDCASE

FOR. DO, ENDFOR

EXIT

WHILE, DO, ENDWHILE
REPEAT UNTIL, ENDREPEAT

In agaition, many of 4-mation's graphical functions can be im-
plemented in the ST format. For instanca. standard function
biocks or derived blocks can be configured textually by simply
naming the block and defining its inputs and outputs. Thus,
structured text maintains thae flexibility of a programming lan-
guage but also allows the use of predefined, factory-supplied
functions as needed.

A structured text file is a standard text file. It is created in
4-mation or using an external, third-party program editor.

In 4-mation, atext editor is available in a sheet for which struc-
turad text is the selected language. The editor supports the
creation and editing of structured taxt eiements. Once the
sheet is configurad, the editor checks for syntax errors, pro-
viding a text description of any errors and the line numbers at
which they occurred for easier troubleshooting.

As an alternative to 4-matior stools, a user-spacified text edi-
tor can be used. The editor runs independent of 4-mation,
with the text file created brought into the configuration data-
base using 4-mation’s import/export function.

TABLE 2 Structured Text Operations

OPERATION SYMBOL PRECEDENCE
Parenthesation (expression) Highest
Function Evaiuation identifier(argumant list)
Exponentiation i

Negation -

Complemaent NOTE

Muitipiy -

Divide /

Modulo MOD

Add +

Subtract -

Comparison >, €, >=, <=

Equality =

Inequaliity <>

Boolean AND AND, &

Boolsan Exclusive OR, XOR

Booiean OR OR Loweast

68

12

-—

Figure 17 is an exampie o! a structured text file. This fle
shows the use of siructured text to oerform a process calcula-
tion origmating froem 4 siandard mathematica equation. whick
gliminates the intermediate convarsion step associated withk
graphicai function blocks.

This fiie calcuiates pressure and temperature compensation
for a flow. The first six lines illustrate the use of comments
within structured text. The following three lines show variable
declaration. The next four lines convert the variables to the
corract units. Tha last line is the equation far the flow calcula-
tion.

Another application for structured text is in sequences. In

these applications, detailed steps often take shape as aserias
of commands or control instructions with no immediate feed-

A-MATION Configuration Manager

bace recuired between the commanas. Shruciuiec tax! state-
ments configured as an SFC actier car accemplis™ ™8 n a3
condersed ang easy to understand manner

OTHER APPLICATIONS

The exampies of 4-mation's four {anguages :n the above dis-
cussions reflect typical applications and techniques. Howev-
er. the key benefit of 4-mation is s flexibility in meeting
unique application needs and accommodating user prefer-
ences. Contact a Moora Products Co. salespersan to discuss
4-matiort s potantial in your plant.

tycra APACS. 4-emation. ang Mycro afe trademarks of Meare Progucts Co
Windows 5 a tragemark of Microsoft Comp.
18M 15 a registeren iracemark of Intermanonal Busmness Machines Com.

.EIG g;m Tree Yiew Omline Optisns Window Help e

<SYSTEM>: PTCFLOW - AREA 1.PRODUCT APTCFLOW

THE FOLLOWING CALCULATES THE PRESSURE TEMPERATURE COMPENSATED
FROM THE HEAD IM INCHES OF WATER, THE PRESS IN PSIG, AND

"THE TEMP N DEG FAHRENHEIT

"YHE CAUBRATION FLOW, HEAD. PRESSURE_AND TEMPERATURE FOR THE

ORIACE MUST ALSD 8E ENTCRED

[Fc N UNITS DESIAED. Tc iN DEG F_ Pc 1N PSIG, Ho IN INCHES OF WATER

VAR
T.TTPPo : REAL:
EMD_VAR

t--m-:upwsasv;
“'-!I'

ﬁulwl:-(&nunmmucmpmm 110

("CONVERT TEMPERATURES TO RANKINE"}
["CONVERT PRESSURES T0 PSIAY)

{"ORIFICE CALCULATION"]

] lzszl 23Z - HE10:53 - Online

FIGURE 17 Structured Text Example

63

gem

Submitted by:
National Instruments

LabWindows/CVI

a software devel-
» Opment environment
for building instru-
mentation systems
with GPIB, VXI, and
R5-232 devices along with plug-in
data acquisition (DAQ) boards.
LabWindows/CVI combines the
power and flexibility of the C pro-
gramming language with software
tools for acquiring, analyzing, and
presenting data. The interactive
C development tools in
LabWindows/CV1 are designed for
developers of test and measurement
systems, ATE, DAQ systems, and pro-
cess monitoring and control systems.

abWindows/CVI is
. L

Multiplatform
Solution

With LabWindows/CVI,
you can take advan-
tage of simplified data
acquisition and instru-
ment control programming on the
computing platforms and operating

74

systerns that you prefer - Microsoft
Windows on the PC and Solaris on
the Sun SPARCstation. Because the
applications you develop with
LabWindows/CV} are portuble
across either platform, vou are
assured of a flexible development
solution to meet your needs of today
and tomorrow.

Industry-Standard
&%%& Foundation

?@0 LabWindows/CV1 is
based upon the proven
§un development tools and
methodolegy intro-
duced in LabWindows for DOS, so
you will benefit from the extensive
customer feedback and continuous
improvement that have gone
into these tools. If you are
currently using LabWindows,
LabWindows/CVI provides a
seamless migration path for porting
your application from DOS to the
modern Windows and Sun Solaris
computing platforms.

A Unified Solution for Instrumentation

ith LabWindows/CVI, you

have a wide array of devel-
opment tools and libraries for
building instrumentation
applications using the ANSI C
programming language. Whether
you're a professional software
engineer or a casual programmer,
you will find that LabWindows/CVI
greatly simplifies the development
of data acquisition or instrument
control applications.

Interactive
Programming Tools

LabWindows/CVI bridges the gap
between the performance of
compiled C object code and the
simplicity of an interpreted
environment. All of the develop-
ment tools you expect from a
traditional ANSI C programming
environment are at your fingertips
in LabWindows/CVI - a source code
editor, 32-bit ANSI C-compatible
compiler, linker, debugger, variable
display, and the standard ANSI C
libraries. However, these program-
ming tools are packaged within an
interactive development environ-
ment, 50 you can experiment with
code segments and quickly build up
your applications without sacrific-
ing performance or execution
speed. LabWindows/CVI is focused
on simplifying and accelerating
the process for creating, running,
and troubleshooting your C
instrumentation programs under
Windows or Sun Solaris.

Instrumentation-Specific
Tools and Libraries

Integrated within the
LabWindows/CVI programming
environment are the instrumenta-
tion-specific tools and libraries for
your data acquisition, analysis,
and presentation needs. These
inciude libraries for GPIB, RS-232,
VXIbus, data acquisition. and
analysis. Also available are over
300 instrument drivers for control-
ling devices from a wide variety of
instrument vendors. Each function
in the LabWindows CV1 librartes
has built-in code-generation tools

called function panels, which
automatically generate the source
code in your program. And finally,
with the LabWindows/CV] User
Interface Editor, you can choose
from knobs, meters, gauges, push-

‘buttons, graphs, strip charts, and

many other instrumentation-
specific controls to interactively
design customn graphical user
interfaces (GUIs).

Open System Architecture

LabWindows/CVI is built upon an
open software architecture, so you
can easily incorporate your own
ANSI C-compatible libraries,
existing C source code, or object
code into your projects. You can also
use dynamic data exchange (DDE),
dynamic link libraries (DLLs), and
the TCP/IP networking protocol to
extend the functionality of your
applications. LabWindows/CVI
delivers a flexible development
framework for building instrumen-
tation applications that can consist
of many software components.

Maaiacmnng Test System
s

Iastisjixmtyeion (.

SelDuisultilaras {1

kandin = LoedPuse (3 ‘tenpwys uir’. FANKL):
DambiayPanel (Mhsdit] .

whale (lauae) {
GurUeerEven (0, hgml. Gixl)
writch g@iril {
cany I il

Tyt By gk Laim ()
-P_..liﬂ'. ALLNE 1OW
canm
okt vkl ar (3,
Brwak
cama FANEL_(OIT
quit =1

t
atwDita (voltepw):
ScaieTémp {201vMpe}

LATRS () .
FletSiripChare (hamdie. PANEL GRART, valiaym 3. C 3 &)
1

- " - F——————— |

-3

Building a Project in g;,:;;~

Ha Flemm File Cri+A ke m

LabWindows/CVI e T o T

xx - Ep obj)
wurk?5. tp =TT n:‘.:ﬂr.m:'
1115 tp . . - — LN

: ewovilscreons\fregresp uir
File Edit JWITIY View Options Window Debug

Panel
lm g;er:leu Bars...

Design your
GUI in the ;
User Interface
Editor.

Designing a
Graphical

Numeric

Siring User Interface

Jext Message : . .

Text Box The User Interface Editor is an

Command Buhan

Iggﬂgle Bunon . i B interactive environment for
i T — ¥ designing custom GUIs for your

Binary Swilch
List Box = . § projects. Select from a wide vari-
| Gecgration I A ¥ ety of controls to design the GUI

for your project. Or, you can
import your own graphic images
onto the GUI You can also con-
figure the size, color, and format
of each control in many different
ways to customize the user inter-
face for your project. With the
User Interface Editor, you design
your entire user interface interac-
tively without writing a single
line of code.

Customize each = =
s--c-c-——.—.__
control to meet Covebent Mo W . Wi 5

After completing the GUI, you s
elect functions from the User
Interface Library to control the
objects on the panels and menus.
Simple, intuitive functions hide and
display panels, get user events, and
set and retrieve values of controls
on the GUL. You can display several
windows, menus, and controls
from a single project to give your

‘ application a dynamic look and
e S feel. The User Interface Library
makes programming your GUIs
easy - you no longer have to be a

your needs. ?

s LR ke L

abWindows/CVI is a - . .
multifile, project-oriented Windows or Sun Solaris operating
development system - meaning system expert to ca?t‘tll(re arll(d
each project vou create may con- respond fo mouse Clicks or key-
sist of multiple source files or strokes. The LabWindows/CVI User
Interface Library does it for you.

components. These components
can include C source files. GUIs
developed in the User Intertace
Editor. instrument drivers.
Windows DLLs, or oxtema! ¢
object maodules or fdbraries.

76

BiA]

L S i nen SRR

'£145_contig prim_disp(i, 9. 1, 1, 1. 8}:

Program Development
in LabWindows/CVI

Function panels insert lines of code
into your program automatically. A
function panel is a graphical rep-
resentation of a LabWindows/CVI
function and its parameters. Every
function in the LabWindows/CVI
libraries has a corresponding
function panel. Simply set the vaiues
of each parameter to build the func-
tion call interactively. You can then
execute the function by itself to test
its operation, and automatically
paste the function call into your pro-
gram. You save time bypassing the
tedious process of typing and editing
function calls in your program.

LabWindows/CVI has integrated
into its programming environment
a full array of standard C devel-
opment tools, such as a compiler,
linker, and debugger. The built-in
LabWindows/CVI C compiler
automatically catches any syntax
errors in your code when you run
your project. LabWindows/CVI takes
care of compiling your source files
and links the different components
of your project together

when you run it.

At any time during project execu-
tion. vou can display source files,
place breakpoints, single-step
through code sections, and view
changing variable values in the vari-
able displav. The LabWindows/CV]

Interactively build and
test LabWindows/CVI
function calls with
function panels.

Windew gpﬁn Help.

Ry

-

A5 _Init (137 Tl iilind
T f145_config prim disp(l. 9. 1, 1. 1. &)

handle = LoadPanel {0. “freqresp.uir®. PANEL):
DisplavPanel {(handle).

vhile (lquit) {
GetliserEvent (0. &pnl. &ctrl);
swatch (etrl) {
case PANEL_RUKRTEST -
RunTestSequences ()
break ;
case PANEL LOG_RESULTS
LogDataFunc ()
break

case PANEL_IDB_FT :
JdBinalysis ().
break:
cage PANEL_POLYFIT ;| *
"' 12,75 . 1] 1.

siecll [B | o

String Display: cmd
File Edit Window Optiona Formst Help

lIchar cm.dEéng]

0 § 10 15 26 25 30 35 40 45
OWUIC 7, START_FREQ. 1000 STOP_FREQ. L0000 AHP 2 &

lﬂh Ein Windiw Opliant View Fermat Help

rc? LodwdE
ekl ¢ Starice
it

int
L

Track variable values
during program
execution for easy
troubleshooting.

LTIOGTERD. & SCdFICT
it

4

L CQDODOE+]
L CO00O0E-t
T T2poog

debugger even protects against
memory violations during execution
of your compiled project. Using the
integrated tools available in
LabWindows/CVI, you can acceler-
ate and streamline the entire devel-
opment and troubleshooting

process for your instrumentation
applications under Windaws

and Sun Solans.

77

The Acquisition and Control Libraries

he real power of

LabWindows/CVI is found
in the hundreds of functions that
make up the instrumentation
libraries. Integrated among the
language tools and development
utilities in LabWindows/CVI are
instrumentation libraries that sim-
plify communication with your
GPIB, RS-232. VXIbus, and plug-in
DAQ hardware.

The GPIB Library

The GPIB 488.2 Library links
LabWindows/CVI with the National
Instruments industry-standard
NI-488.2" driver software for com-
plete programmatic control of GPIB
instruments. You can use any
National Instruments PC-based
[EEE 488.2 controller boards with
the GPIB 488.2 Library in
LabWindows/CVI.

The Data Acquisition Library

The DAQ Library controls all
National Instruments PC-based
plug-in DAQ hardware and signal
conditioning products with the
industry-standard NI-DAQ* driver
software. You can control any of
the Naticnal Instruments analog,
digital, or timing /O boards for

PC XT/AT EISA and Micro Channel
computers. In addition, the NI-DAQ
Librarv for LabWindows/CVI1 con-
trods the compiete ine of SCXI sig-
Ml onediti e moeduies and
¢haassis rom National Instruments.

78

The VXI Libraries

The VXI Library links the industry-
standard NI-VXI driver software
into LabWindows/CVI to control
VXI instruments from embedded
VXI controllers or external comput-
ers equipped with a MXI interface.
The library has functions for pro-
gramming both message-based
and register-based instruments.

The R$-232 Library

The RS-232 Library has functions
for performing serial communica-
tion using muiltiple RS-232 ports
under interrupt control.

The Instrument Libraries

The LabWindows Instrument
Library contains over 300 instru-
ment drivers for GPIB, RS-232, and
VXIbus devices. The drivers consist
of intuitive, high-level functions
that make it easy for you to control
your instruments. You can interac-
tively operate your instruments
with the LabWindows/CVI function
panels and automatically generate
instrument control code for your
application program, With an
instrument driver, you no longer
have to learn the low-level
command syntax for your instru-
ment - the driver does that for you!

The Networking Libraries

With the LabWindows/CVI DDE
and TCP/IP Libraries, you can
pass data and control processes
across a network.

The Analysis Libraries

he LabWindows Analysts

Libraries offer a powerful, com-
prehensive set of over 150 analysis
functions for data acquisition and
instrument control. The analysis
functions give you complete flexibili-
ty to develop applications in areas
ranging from statistical process con-

trol to digital signal processing (DSP).

Analysis Library

The Analysis Library gives you a
complete set of array manipulation,
complex arithmetic, and basic sta-
tistical functions. The standard
Analysis Library includes such
functions as:

+ One-dimensional (1D) and 2D
array addition, subtraction,
muitiplication, and division

¢ Linear evaluation, max/min,
and array extraction

+ Complex array addition,
subtraction, multiplication,
and division

Polar-to-rectangular conversion

+ Mean value, standard deviation,
histogram, and sort :

4+ Dot and cross product, matrix
inversion, transpose, and
determinant

Advanced Analysis Library

The Advanced Analysis Library
delivers the latest technology in
high-performance analytical and
computational algorithms. These
algorithms are packaged in stan-
dard C functions, providing maxi-
mum flexibility for integration into
your instrumentation applications.
And, because each anaiysis
function has a corresponding
LabWindows/CVI function panel,
you can experiment with each
analysis function interactively and
view the results before incorporating
the function call into your program.

Built around the analysis functions
are the measurement-based func-
tions - a layer of high-level
routines that simplify the integra-
tion of advanced signal processing
algorithms into vour instrumenta-
tion applications. These functions
muaintain engineering units and

signal information throughout the
computation process — so you get
the information you need from your
acquired data quickly and easily.

Applications for the Advanced
Analysis Library are unlimited.
The library is rich in DSP, signal
generation, statistics and curve-fit-
ting functions. The Advanced
Analysis Library contains all of the
functions in the standard Analysis
Library plus many others:

Fast Fourier Transform (FFT) and
Fast Hartley Transform (FHT)
Integration, differentiation,
convolution, and correlation
Power spectrum and pulse
parameters
+ Digital filters
- Finite Impulse Response-
windowing and Parks-
McClellan equi-ripple
- Infinite Impulse Response
- Butterworth, Chebyshev,
and elliptic
¢ Windowing functions
- Hamming, Hanning,
Blackman, triangle, and Kaiser
Signal Generation
- Pulse, ramp, sine, impulse,
and triangle waveforms
Uniform, white, and
Gaussian noise
< Linear, exponential, and
polynomial curve fit
+ Variance, rms, moments,
and median
+ Complex log, exponential,
power, and square root
¢ Advanced matrix operations

PID Control Toolkit

The opticnal PID Control Toolkit
adds PID control algorithms to
LabWindows/CV]. With the PID
Control Toolkit, you can develop
sophisticated control applications
quickly and easily in
LabWindows/CVI. The toolkit
includes sample programs to get
you started, and the source code for
the PID control algorithms - so you
can adjust and tune the algerithms
te meet your specific needs.

. 79

Laqual PYRCE nRMg b

Applications Assistance

National Instruments provides
comprehensive customer assistance
by telephone. The phone lines are
staffed by applications engineers
who will promptly and courteously
answer your questions. Through the
LabWindows/CVI Maintenance
and Support Program (MSP), you
receive free upgrades, discounts on
customer training, and first-priority

technical support.
Ff Customer Education
i ,’f: LabWindows/CVI users can
“=.7 enroll in customer educa-
tion courses at our head-
quarters in Austin, Texas, at regional
locations around the world, and at
customer sites. The LabWindows/CV]
course shortens your learning curve
so you can develop your projects
more quickly. You will learn time-
saving and optimization techniques
$0 you can develop your system 1o its
full potential. You can schedule a
three-day LabWindows/CVI course in
conjunction with one of our two-day
GPIB, DAQ, or VXI courses to get up
to speed on the hardware and
software aspects of your systermn.

o User Group

» The LabWindows User
Group is a forum for you
to exchange ideas, tech-
niques, and opinions with National
Instruments and other LabWindows
users in your area. User Group meet-
ings are held throughout the year at
trade shows, company sites, and
regional sites. The primary functions
of the user group are to provide you

NATIONAL
‘ INSTRUMENTS®

The suflu-uu- 2 the Instrumuent '

Corporate Headquarters
6504 Bridge Point Parkway
Austin, TX 78730-5039

Tet: (512} 794-0100 Hambridge Road Ringwood, VIC, 3134
(800) 433-3488 Newbury, Berkshire Tel: (03)879 9422
{U.5. and Canada) RGC14 55} Fax: (03) 879 9179

95 (B00) 010 0793
{Mexico)
Fax: [51.2)794-8411

Lot 19T Natinng

RN

National Instruments
U.K. Corporation
21 Kingfisher Court

ssirnwnls Corporatioee Al adnts resen en Mo,

with information about new prod-
ucts, new features, and technical
issues, and to provide National
Instruments with information about
your applications and needs.

The Instrument

Vv/ Library Developer

Program (ILDP)

The ILDP, which was
formed to satisfy the high demand
for instrument drivers, offers instru-
ment manufacturers speciai training
and other benefits for writing instru-
ment drivers. Through the ILDP part-
nership with instrument vendors,
the LabWindows Instrument Library
continues to grow while maintaining
a high standard of quality.

P Alliance Program

* X The Alliance Program joins
AlTiswee system integrators, consul-

- tants, and hardware ven-

dors to provide comprehensive ser-
vice and expertise to our customers.
By combining the general-purpose
instrumentation tools and flexible
hardware control in
LabWindows/CVI with the expertise
of Alliance members, National
Instruments can provide focused
solutions in specific application
areas to our end-users. For the -
LabWindows consultant, the pro-
gram includes product and training
discounts, additional technical assis-
tance, new product information, as
well as referrals and comarketing
opportunities. For the LabWindows
user, the program ensures qualified,
specialized assistance for application
and system development.

Australia
P.O. Box 466

Tel: 0635 523545
Freephone: 0800 289877
Fax: 0635523154

RT3 RERAATR WAL N LA RIALS IANCETS IV T TR LTS [HURCRNNH

80

National Instruments

Branch Offices
Australia 03 879 9422
Austria 0662 435986
Belgium 02 757 00 20
Canada 519 622 9310
Denmark 45 76 26 00
Finland 90 527 2321
France 1 48 65 33 70
Germany 089 714 50 93
italy 02 48301892

Japan 03 3788 1821
Netheriands 01720 45761
Norway 32 848400

Spain 91 640 0085
Sweden 08 73049 70
Switzerland 056 27 00 20
UK. 0635 523545

e nAMes o Ther respecins: compane,

LR

gem

Submitted by:
HP VEE

"Visual Engineering Environment"

ﬂf HEWLETT -

PACKARD

gy g = 4y

.

Why take this road to
test development?...

~
3 8 J‘,r
F
—
_—
A—_—
[
P B
waraf i -
-
"“f“--'*f-‘l'r-r:-p-,“
@j HEWLETT
B cacKaARD
- s s
- : T ; - Pubie) .
cikloat sgretnenls
kewlet: Paoxarg Comesny
S ke Camphel Koad
Tewge TR
Y

When you can take this one.

HP VEE
E2110B
E2111B
E2115B
E2116B

Reduce Your Test Development Time

Companies report a 25%
to 80% reduction in test
development time with

HP VEE.

HP VEE is a graphical programming
language. You create programs by
connecting icons with a mouse, a
process that is faster and more
intuitive than coding with a textual
language like C. By simplifying tasks
such as test sequencing, controlling
instruments, and creating operator
interfaces, HP VEE delivers the
impressive productivity gains
reported.

Leverage Your

Software Investment

HP VEE offers you a variety of
ways to integrate your current test
software. To achieve high through-
put, you can put your test programs
in C, C++, Fortran and Pascal into a
shared library that can be accessed
like internal HP VEE functions.

Or you can use the HP-UX* escape
in HP VEE to run HP BASIC/UX
programs as well as commercial
applications such as relational
databases. If you want to exploit
the full capabilities of HP-UX, you
can use “Named Pipes” to pass
data between HP VEE and other
pro-grams at yun-time. Whatever
method you choose, HP VEE will
meet your need to leverage your
existing test programs, while you
speed up your development process.

*HP-UX is fully comphiant with AT&T's UNIX
systern. UNIX is a regi trademark of
AT&T in the US.A and other countries.

fim Bt Fow Device IO Dma Mumh Adviich Displuy Help

|
Impecn: =

B coucic: - E3 sE3
{ Atto: nm Em

. Poake Ma. Mir

Lev w:

v oo}

r————

oo
ce

HP VEE in Manufacturing Test and R&D

HP VEE 2.0
Visual Engineering

Environment

I, JPRae ST

Technical Data

HALELTS
Trigee”

HP VEE-Test
HP E2110B, HP E2111B

HP VEE-Test/Run Only
HP E2115B, HP E2116B

HP VEE-Engine
HP E2100B, HP E2101B

The VEE-Test
Menu Map

Flow:
Start
Confirm (QK)
Do
Repeat
Junction
Gate
IffThen
Conditional
Exit Thread
Exit User(bject
Stop
Escape

Data:
Epum
Toggle
Integer Slidar
Reai Slider
Constant
Globals
Build Data
UnBuild Data
Allocate Array
Accass Array
Access Racord
Concatenator
Sliding Coilector
Collector

File: Edit:
New Cut
Open Copy
Merge Paste
Import Clone
Save Deleta Line
Sava As Clean Up Lines
Save Objects Lina Probe
Prafarances Select Objects
Show Description Move Objects
Print Screen Add to Panel
Print All Creata UserObject
Print Qbjscts Edit UserFunction
Secure View Globais
Exit Breakpoints

Show Data Flow
Show Exec Flow

Device: 1/0:
UserObjact Instrument
User Function Advanced /O
Sequencer Bus I/0 Menitor
Delay Configura I/Q
Timer Ta
Tima Stamp From
Random Number To/From Named Pipe
Random Seed HP BASIC/UX
Virtual Source HP-UX Escape
Counter Dynamic Link
Accumulator Print Screen
Sample & Hold
Shift Register
DeMuitiplexer
Comparator

Math: Advanced Math:
Formula Array
Generata Matrix
-/ Calculus
Relational Regression
Logical Data Filtering
Bitwise Probability
Real Parts Statistics
Complex Parts Freq Distribution
String Bassel
Power Hyper Bessai
Polynomial Signal Processing
Trig
Hyper Trig
Time & Date

2 89

Display:
AlphaNumaric
Logging AlphaNum
VU Mater
XY Trace
Strip Chart
Complex Plane
XvsY Plot
Polar Plot
Waveform (Time)
Spactrum (Freq)
Beep
Note Pad

Heip:
On Features
0n Instruments
How To
Glossary
Short Cuts
On Help
On Version
Release Notes

Introduction

HP VEE's block
diagram approach
improves
development times
and ease-of-use.,

Hewlett-Packard’s visual engineering environment is a tool that allows you
to create complete graphical programming solutions by linking visual
objects or icons, rather than using more laborious traditional programming
languages. By simplifying tasks such as test sequencing, instrument control,
and user interfaces, HP VEE delivers impressive productivity gains.
Additionally, you can integrate VEE with programs in C, HP BASIC, and
Pascal as well as commercial applications.

CuBeslar

HP VEE is functionally complete — it provides you a wealth of objects which
aid in the collection, analysis, and presentation of data. In addition, there
are objects and features for data storage, flow, modularity, and the debugging
and documenting of sotutions.

HP VEE 2.0 is the next evolution of HP VEE. This newer version adds
capabilities for test sequencing, user-defined functions, custom drivers,
direct links to C programs, and many more robust features.

The HP visual engineering environment consists of two products:

HP VEE-Engine and HP VEE-Test. HP VEE-Engine allows engineers and
scientists to create broad, general-purpose solutions. HP VEE-Test adds
specific capabilities for test and measurement applications. Throughout
this document, HP VEE will be used to refer to both products collectively.

Both HP VEE-Engine and HP VEE-Test are fully supported on HP 9000
Series 300, 400, and 700 systems.

The following sections cover the types of objects and functions available

in HP VEE. Ordering information, system requirements. support services,
and training appear at the end of the document.

’ 30

Data Collection
and Generation

With HP VEE, data can be collected from several sources. Both HP VEE-
Eogine and TP VET Test suppori data collection from BP-UX files and
programs.They also pravide objects to generate data internally — within
the environment. HP VEE-Test adds the capability to collect data from

instrumentation and from HP BASIC/UX programs.

HP VEE-Engine allows you to

iles i fon:

]a)x?éaPFrgglaEls collect data from HP-UX files, nh}.::,: fordata collection

standard in, and programs. HP Fila

VEE-Test can also collect data from Data Set

HF BASIC/UX programs. Both String

products allow you to use existing Stdin

11 as givi ou the Named Pipe

prog.'rfnzns as w;:: S gving ¥ . HP-UX Escape

flexibility of using tools outside *HP BASIC/UX Escape

HP VEE. *Availabia in HP VEE-Test anly.
Data Generated Because external data or mstl_'u- Objects for dats generation:
Inte 11y ments may not always be avmlab?e, Ganacate:

the simulation of a setup or solution Ramp

is often valuable. HP VEE has data LagRamp

generators to simulate the data Random Nurmber

which normally would be gathered Random Seed

externally. These generators also Toggle

help you compare real data :‘":S,hs‘::;er

to ideal data. Virtual Source:

Function Generator
Noise Generator

{ Funetion

g Frequency

| Amplinsde
CeCffset
Phase E}M i
| Time Span

| 2 Mum Peints

Select Function

sine
[Cosine
Square
ri
+Ramp
~HAamp

L Pralse Ganaratos

Data can be
generated
internally with
objects such as
this function
generator.

Data fro_m Instruments

Instrument driver
panel simplifies
instrument control.

Dialog boxes on 'O
objects help specify
transactions easily
and interactively.

Acquiring data from instruments and /O devices is both easy and powerful
with HP VEE-Test. This product supports HP-IB (IEEE-488), VXI, RS-232,
and GPILO interfaces.

VXI modules can alsoc be accessed with HP VEE-Test. If you are using an
external controller, access to VXI modules requires the Series B mainframe
or the HP E1405A Command Module. If you are using an HP V/382
embedded VXI controller, you can achieve direct backplane access.

HP VEE-Test lets you use any of the over 250 HP instrument drivers,
or you can communicate directly with any instrument using Direct I/0.
The instrument drivers are easy-to-use soft front panels through which
you set up and control specific HP instruments. Direct /O objects add
flexibility and throughput by allowing you to define F/O transactions
interactively.

Also, HP VEE-Test includes a tool to allow you to create your own
instrument drivers for any vendor's instrumentation.

-;,w{,‘"‘ﬁaé‘ <31 L TR -l
i
Main Pane!

Tinebase NERCENTSN
E—)

Tex BN

Advanced HP-IB /O objects are
available to send bus commands,

- perform a serial poll, and wait for
SRQ. A bus IO monitor object is
also available for debugging /0
solutions. It logs every data byte
and low-level cormmand to the
screen or to a file, making problems
easy to spot.

Objects for 1/0:
Instrumants
Advanced I/0:
Interface Operations
Device Event
Interface Event
Bus I/0 Monitor
Canfigure 1/Q

Data storage objects are also
available. For a full list, refer
to the section: on Data Storage.

-

Data Analysis
and Handling

HP VEE gives you a comprehensive set of functions for analyzing and
handling data. From elementary math functions to digital signal processing
and filtering, easy-to-use objects are available to help you create both simple
and complex solutions.

Data Analysis Objects are available for commonly used math operations, as well as for
caleulus, regression analysis, data filtering, probability, statistics, and much
more. For solutions which require long mathematical formulas, a formula
object is also provided. With this object, you can specify the number of
inputs and type in the formula {(using any of the available HP VEE
functions), rather than constructing it from individual math objects.
Libraries of objects that perform dB and trig conversions are also available
with the produets.

- Real Parts: Trig: Caleulus: Statistics:
ghlelﬂs' for abs(xl)({ ' sin[;d} giteeiralbld min(‘x)'
nalysis: signofix casix arivix,1 max{x
¥ ordinal{x} tanix} derivix,2) median{x)
round{x} cot{x} deriv{x,order} mode{x)
Formula floorix asinix) defintegralix.a,b} mean{x)
ceilix) acosix) derivAtix,1,pt) sdev{x)
Elementary Math: intPartix) atanix) derivAt{x,2,0t) varix)
+ fracPartix} acot{x) derivAtix,order,pt) rmsix)
. Complex Parts: atan2ly.x) Regrassion; Freg. Distribution:
/ jtx Hyper Trig: lingar linMagDist{x,from,
A ra(x) sinh{x) lagarithmic thru.linStep)
mod im(x) cosh(x) exponential logMagDist{x,from,
div magix) tanhix) pOWEr Curve thru.ingStep)
. phase{x} cothix} polynomial Bassal:
Relational: conj(x) asinhix) Data Filtering: j0lx)
== . acash(x) g :
I= String: tanhix} polySmooth(x) jix)
< strip (str) a ";m"l meanSmoothix,numPts) inx.n)
N sn'guw(n ls}trb acataix n:pvtijngmrf‘g(x,rum?ts) “x:

- striRlev (str] . clipUpper{x,a ylx
N steTrim {str} Tilte & fatw: clipLower(xa) ya(x,n)

. strlen {str) avidats) minindexix) Aifx)

Lagical: strFromThru (str, from, wdayl maxindex(x) Bilx)
and thru) eyl minXix) Hyner Bosset:
:;r stIrFr?mLen {str, from, - ;P:m date) maxX(x) i0(x}
en ili itix}
nat strPasChar {str, char) dmyToDate(d,m.y) Probability: i
. ' hmsToSac(h,m,s) random{low,high} kO{x)
B'm"‘x':‘] strPosStr {strl, str2) hmsToHour{h,m,s) randnmisze(xi(¢ g Kl{x)

Lix, Power: randomSaed(sae '’ i
bits {str) sqix) Array: | permin.r} s'%;:', Processing:
setBit{x,nl sqrtix} init(x,value) combin,r) ifftl)
EhoAndbcs) cuberin i gammalx) aomolab)

ANGIXy, recip(x) 4 bata{x,y) i fa(B)
bitOrix,v) sumix) ; xgorrelate{a,
bitXarix,y) :gg%’ix' prodix) L?:tnmaall(tg{hl garﬂeqxb('
bitCmpl{x) exp(x) sortix) erfeix) hamnjm? :'(
bitShiftix,y} exp10(x) M:u;x:} arfix) blaar::Trnngar’:{x)

F enx,
Polymomial il inversef) recttx)
2Zpoly(x,[a0 al a2]) %:m(i?(x’
3:poly(x,[a0 ai a2 a3) llninor(x.row,coli
N:polyix a0 al ... aNI) cofactorix row,cal)
matMuitiply{x,y}
matDivide(x,y)

93

\.J

Data Types HP VEE has many data types available to help you create both simpie
and sophisticated solutions. Yet all data types are easy to define and use,
and most are automatically interchangeable, shielding you from the
difficult, non-intuitive syntax rules that normally accompany data types in
traditional programming languages.

All HP VEE objects, including data Available Data Types:
collection, analysis, and S'";'.: ':tTwes'
presentation, accept a wide variety Integer {32-bit)
of these data types without user Real
intervention. Objects can even Structured Types:
automatically convert between data Complex
types when necessary. For example, Polar Complex
an object which normally accepts Coordinate

. : Enumerated
spectrum data will automatically Waveform
convert waveform data by Spectrum
performing a Fast Fourier Record
Transform on it.

Data Handling HP VEE supports scalars and also Objects for Data Handling:

and Processing arrays from 1 to 10 dimensions. In Build/Unbuild:
addition, structured data types may Caord
be constructed from simpler ones, Compiex
such as when building a complex PComplex
type from its real and imaginary Wavelorm
components. Arb Wavaform

Spectrum
To allocate arrays and construct A";e;:r:my:
structured types, HP VEE provides Text
a variety of easy-to-use objects. Intager
Real
Coord
Complex
PComplex
Access Arrzy
Set Vailues
Get Vaiyes
Get Attributes
Set Mappings
Get Mappings
Access Record
Merge Recard
Sub Record
Set Feld
Get Feid
Concatenator
Sliding Collector
Collactor
Other objects have been designed Additional Analysis Objects:
to simulate common engineering Accumulator
devices to aid in the handling and Counter
analysis of data. Shift Register
N DeMultiplexer
Comparator
Delay
Timer
Time Stamp
Sample & Hold
7

94

Data Presentation

and Storage

Data Presentation
- * .
, . |

Data Storage

~

Presenting and storing data is an integral part of scientific and engineering
solutions. This is why HP VEE provides a comprehensive set of
customizable objects for displays and storage.

The graphical objects are highly
customizable, allowing you to define
the number of traces, trace colors,
grids, axes, scaling, and markers for
eagy analysis. Automatic scaling is
available, sections of a plot may be
zoomed in or out, and the display
sized small or large as needed.

These capabilities are also useful
for developing reports. You can
print out a full HP VEE screen

or send bit maps of this screen to
report generation packages within
the HP-UX environment.

Additionally, HP VEE allows you to
load standard GIF or xwd drawing
files. This lets VEE screens show
user pictures or schematics during
execution.

With HP VEE, the data gathered
or generated through analysis may
be printed, stored, or sent to other
programs or packages for further
processing.

A large number of
customizable objects is
available for data
display and
presentation.

Objects for Textuai Prasentation:
Alphanumeric
Logging Alphanumeric

Objects for Graphical Presentation:
VU Meter
XY Trace
Strip Chart
Complex Plane
XvsYPlot
Polar Plot
Wavefarm (Time}
Spectrum {Freq):
Magnitude spectrum
Phase spactrum
Magnitude vs phase {Polar}
Magnitude vs phase (Smith)

Objects for Data Sterage:
T0:
File
Oata Set
Printer
String
StdQut
StdErr
Named pipe
Print Screen
*HP BASIC/UX Escape
HP-UX Escage

*Availabie m HP VEE-Test only.

)

L./

r
“

Flow and User
Interfaces

Flow

User
Interfaces

While you can construct many
solutions with the objects described
so far, more complex solutions
require repetitions, conditionals,
and flow control objects. HP VEE
provides several objects to

help control the flow of data.

Qbjects for Flow:
Start
Confirm
Do
Repeat:
For Count
For Range
For LogRange
Until Break
Gn Cycle
Next
Break
Junction
Gate
IffThen
Conditionals:
If A==B -
Iif A~=B
it Al=8
If A<B
If A>B
If A<=B
If A>=8
Exit Thread
Exit UserObject
Stop
Escaps

Once an HP VEE solution is
created, it can be seen in two
different views. The default view
includes all objects which make up
the solution — this is called the
Detail view, HP VEE also lets you
select only those objects which may

The optional
Panel view
typically includes
only input and
output objects.

be of interest — for example, those
requiring input and providing
output such as display
- and control objects. With this
feature, you can create a separate
view called a Panel view. The Panel
view is cleaner and easier to lock at,
and allows you to focus only on
those objects that are of interest.
The Panel view removes much of the detail from the screen. Hence, it is also
useful in cases where the user of the solution is not necessarily the developer
(for example, when an operator is simply running a test with HP VEE-Test).

The Detail view
includes all ohjects
in a solution.

To prevent accidental changes to the Detail view, a secure mechanism can be
activated. A secured Pane] view does not allow access to the Detail view.

96

Modularity and
Code Re-use

Modularity You may define and create custom objects for use within HP VEE. These
objects are called UserObjects, and are similar to subprograms in traditional
programming languages.

A UserObject is created by grouping a specified set of HP VEE objects.

You simply select those linked objects that are to make up the UserObject.
The Create UserObject function will then automatically create an individual
custom object, with as many inputs or cutputs as needed.

Complex solutions can be made up of these UserObjects to aid in modularity
and to simplify the task of debugging. In addition, you can archive
UserObjects and create libraries that can be used with any other HP VEE
solution. :

Code Re-use You may take the UserObjects described above and "register” them into VEE
memory. These then become UserFunctions. A UserFunction lets you create
a master object that you can access from many places throughout your
program. This allows you to cut down on program memory. Also,
UserFunction lets you keep a single copy of that source, so that when you
edit one source ohject, it is modified throughout your program.

To keep program loading as efficient as possible, you may want to Import a
UserFunction. This allows dynamic loading of UserFunctions while the
program is running. You can programmatically select which functions or
tests you want to have in memory.

Anocther convenient feature to keep large applications manageable is the
Global Variable capability. This allows you to have single values, arrays,
waveforms, etc. in a single place to be accessed or modified from many

different places in your program.
Other User
Features
Test Sequencing HP VEE-Test includes a sequencer object to allow you to specify the order of

test execution and to branch based on test results. This object lets you define
execution sequence (continue, retest, stop, goto, etc.) depending ont whether
the test passed a limit, range, or tolerance,

Additionally, each test
that is cailed can
access other
sequencers for
hierarchical test
S g control, can log
|[+om oo™ ot e e B sequencer actions for
L test results analysis,
or can be set to
selectively choose
whether to skip
specific tests
conditionally.

o

0o gy

L

N

Personal Data
Management

E2115B HP VEE-

Test/ RunOnly

HP VEE includes capabilities for users to manage their own data systems.
HP VEE allows you to combine dissimilar data types on a single line or
record. When you save these records to file, you create a DataSet.

Once you have defined a DataSet, the -
data can be sorted by fields or searched | Obiects for Personal Data
by special criteria. Additionally, you
can subset the records to see only Record
specific fields for display or printing.
You can also edit complete datasets

interactively through the use of the Subrecord
Record Constant object.

Management:
Build/Unbuild Data:

Access Record:
Merge Record

Set Field
Get Field
Constant
Aecord
To/From:
DataSet

HP VEE-Test/RunOnly is designed to allow you to execute models created
with HP VEE-Test. It provides you with an execution platform that is more
secure and costs less than half of the full HP VEE-Test development system.

HP VEE-Test/RunOnly is a subset of HP VEE-Test that lIoads and executes
models. There are no capabilities to modify or create programs.

Invoking HP VEE-Test/RunOnly will bring up HP VEE with one pull-down

menu:

File:

Open

Show Description
Version

Exit

11

Upon opening a specified model, you will see
only the Panel view of the model. There will not
be a choice to access the Detail view. An
unsecured model will allow you to edit the
Panel view of the objects shown. (This affects
only the location and size of the objects, and
changes cannot be saved). If you have secured
a model using the HP VEE-Test development
product, then the panel view will not allow any
editing. This provides greater security for your
test programs on the manufacturing floor.

All current HP VEE command line options are
still available, Particularly useful is the "-r"
option to load and run a specific HP VEE
model. This ailows you to execute an HP VEE
model automatically without having to open-
the model when HP VEE comes up with a
blank screen.

Debugging and
Documentation

Debugging

Solution
Documentation

Documentation
and On-Line Help

Because HP VEE solutions leok like block diagrams, they are self-
documenting and easy to debug. To provide additional help to both
developer and user, objects and features are provided for debugging and
documenting.

The Line Probe feature shows Features for Debugging:

which objects are connected by Lina Probe
a specific line, in addition to the 3f98k%°l"tSF
type and value of data flowing Show Data Flaw

hrough the line. Show Execution Flow

When you're not sure where a problem lies, you can set Breakpoints
throughout the solution to halt execution and allow further examination
at the specified points.

Show Data Flow and Show Execution Flow help you verify the correctness
of your solution by allowing you to see the data flow or the sequence in
which objects are executed. When either of these features is enabled, lines
and objects are highlighted and the flow is shown.

A Note Pad is available for writing
descriptions, instructions, or Note Pad
comments about the s'olut'mn. Show Description
The Note Pad can be iconized to Print Screen
save space and expanded when
needed, Solutions can use as
many Note Pads as needed.

Features for Documenting:

You can also document individual abjects by using the Show Description
menu item. This item is available for all objects, including UserObjects,
When invoked, Show Description allows you to edit or view a description,
comment, or whatever else might be appropriate. This feature, along with
Note Pad, is very helpful when someone other than the developer is using
or changing the solution.

All HP VEE programs are saved as as ASCII files that can be read by

others. Additionaily, HP VEE inciudes a utility (VEE DOC) to create a clear

text file with UserObjects and Show Descriptions.

Solutions and resuits can be shared among users by using a printout of
the screen. HP VEE provides a mechanism for printing both the Detail
and the Panel views onto system printers.

With HP VEE, documentation is accessible and comprehensive. In addition
to a complete manual set, on-line help is available as a menu item for fast
and easy access to features and operation.

The documentation set includes:
Help Menu ltems:

Installing HP VEE On Features
Getting Started with HP VEE On Insrumants
Using HP VEE How T
HP VEE Reference Glossary
Short Cuts
Qn Heip
On Version

2 99

.

HP VEE-Test

Ordering Information*

HP E2110B HP VEE-Test for $5300
Series 300 and 400 DIO-II
License to Use
Opt. AAO Media on 1/4-in. (16 track) tape $50
Opt.AAF Media on CD- ROM $50
Opt. AAH Media on DAT tape $50
Opt. ABA English Documentation $50
Opt.ABD German Documentation $50
Opt.ABF French Documentation $50
Opt. ABJ Japanese Documentation $50
HP E2111BHP VEE-Test for $5900
Series 700
License to Use
Opt.AAF Media on CD- ROM $50
Opt.AAH Media on DAT tape $50
Opt.ABA English Documentation $50
Opt.ABD German Documentation $50
* Opt.ABF French Documentation $50
Opt.ABJ Japanese Documentation $50
Opt.AL5 HP-IB interface card $750

Note: For IYO on Series 700s, you must order the
E2070A HP-IB interface card.

HP E2115B HP VEE-Test/RunOnly $1750
Series 300 and 400
License to Use
Opt AAO V4-inch tape - $50
Opt.AAH DDS (DAT) $50
HP E2116B HP VEE-Test/RunOnly $1750
Series 700
License to Use
Opt.AAH DDS(DAT) $50

* Quantity discounts are available for all HP-VEE-Test
products.

Note: Only one media and one documentation option
can be ordered for each HP E2110B, E2111B, E2115B
or E2116B product.

N

13

100

System Requirements

Computers:

HP E2110B supports all models of HP 9000 Series 300
workstations and Series 400 workstations with DIO
backplanes.

E2111B supports Series 700 HP-UX workstations that
include an EISA port.

Graphics:

HP VEE-Test runs on color or gray-scale display systems.
Six-plane systems or greater are recommended. A variety
of these systems is available, with VGA, 1024 x 768 and
1280 x 1024 resolution. Both 16-inch and 19-inch
monitors are available,

Operating System:

HP-UX version 8.0 or greater. X Windows version 11.4
must be installed and running. (Note: X Windows is
included in the HP-UX product).

Memory:

Minimum required RAM is 8 Mbytes. Recommended is
16 Mbytes, especially if other HP-UX applications will be
running. For large or complex system requirements,
please consuit your HP Sales Representative,

Hard Disks:

HP VEE-Test will take up 14 Mbytes on the disk. For a
full HP-UX system, 200 Mbyte or larger hard disk is
recommended.

Diskless:

HP VEE-Engine can run on diskless nodes. Diskless
nodes and servers can be any of those computers
supported by HP VEE-Engine.

Terminals:
HP VEE-Test can be used with HP 700/X Terminals.

Recommended Peripherals:
HP LaserJet with minimum 2 Mbytes RAM or HP
PaintJet printers are recommended for screen printouts.

Recommended System:

Series 300 Model 382

1024 x 768 Color Graphics

16 Mbytes RAM

200 Mbyte or larger hard disk (or as diskiess node)
HP LaserJet with minimum 2 Mbytes RAM

HP VEE-Engine

Ordering Information*

Note: HP VEE-Engine is not a run-only environment
to HP VEE-Test. HP VEE-Test solutions which use
I/O objects will not run on HP VEE-Engine.

HP E2100B HP VEE-Engine for $895
Series 300 and 400 workstations
License to Use
Opt.AA0 Media on 1/4-in. (16 track) tape $50
Opt.AAF Media on CD- ROM $50
Opt.AAH Media on DAT tape $50
Opt.ABA English Documentation $50
Opt ABD German Documentation $50
Opt.ABF French Documentation $50
Opt.ABJ Japanese Documentation $50
HP E2101B HP VEE-Engine for $895
Series 700 workstations
License to Use
Opt.AAF Media on CD- ROM $50
Opt.AAH Media on DAT tape $50
Opt.ABA English Documentation $50
Opt.ABD German Documentation $50
Opt.ABF French Documentation $50
Opt.ABJ Japanese Documentation $50

* Quantity discounts are available for all HP VEE-Engine
products.

Note: Only one media and one documentation
option can be ordered for each HP E2100B or E2101B
product.

14 10.1

System Requirements

Computers:
HP E2100B supports all HP 9000 Series 300 or 400
workstations.

E2101B supports all Series 700 HP-UX workstations.

Graphics:

HP VEE-Engine runs on color or gray-scale display
systems. Six-plane systems or greater are recommended.
A variety of these systems is available, with VGA,
1024 x 768 and 1280 x 1024 resolution. Both 16-inch
and 19-inch monitors are available.

Operating System:

HP-UX version 8.0 or greater. X Windows

version 11.4 must be installed and running.

(Note: X Windows is included in the HP-UX product).

Memory:

Minimum required RAM is 8 Mbytes.
Recommended is 16 Mbytes, especially if other
HP-UX applications will be running. For large
or complex system requirements, please consult
your HP Sales Representative.

Hard Disks:

HP VEE-Engine will take up 6 Mbytes on the disk.
For a full HP-UX system, 200 Mbyte or larger
hard disk is recommended.

Diskless:

HP VEE-Engine can run on diskless nodes. Diskless
nodes and servers can be any of those computers
supported by HP VEE-Engine.

Terminals:
HP VEE-Engine can be used with HP 700/X Terminals.

Recommended Peripherals:

HP Laserjet with minimum 2 Mbytes RAM or HP
PaintJet printers are recommended for screen
printouts.

Recommended System:
Series 300 Model 382

- 1024 x 768 Color Graphics

16 Mbytes RAM
200 Mbyte or larger hard disk (or as diskless node)
HP LaserdJet with minimum 2 Mbytes RAM

Support
Services

ResponseLine:

HP VEE Response Center Support is available by calling the Response
Center with questions. Also, HP-UX ResponseLine Support {s recommended
and must be purchased separately.

BasicLine: Product and manual updates are also available. Please contact
your Hewlett-Packard Sales Representative to sign up for these services.

Product training is available for both HP VEE-Engine and HP VEE-Test.
The HP VEE-Test class covers all topics relating to the HP VEE-Engine
product plus the instrument control capabilities which HP VEE-Test adds.

In addition, HP-UX training for new users and system
administrators is available from HP Education Centers.

For more information or to register for any classes,
please contact your Hewlett-Packard Sales Representative.

5 102

(bﬂ HEWLETT

PACKARD

For more information, call your local
HP sales office listed in your telephone
directory or an HP regional office
listed below for the location of your
nearest sales office.

United States of America:
Rockville, MD
(301) 670 4300

Rolling Meadows, IL
(708) 255 9800

Fullerton, CA
(714) 999 6700

Atlanta, GA
(404) 980 7351

Canada:
(416) 678 9430

Japan:
{8113) 3335 8192

Latin America:
Mexico

(525) 202 0155
Brazil

(11} 709 1444
Australia/New Zealand
{03) 895 2895

Far East
Hong Kong
{852) 848 7070
Korea

(2) 769 0800
Taiwan
(2)T17 9524
Singapore
{65) 291 8554

India
(11) 680 355

PRC
(1) 505-3888

16 103

In Europe, Africa and Middle East,
please call your local HP sales office or
representative:

Austria/South East Area: 0222) 2500-0

Belgium and Luxembourg:
(027613111

Denmark:
45 99 10 00

Finland:
(90) 88 721

France:
(1) 69.82.65.00

Germany:
(06172)16 0

Greece:
(01) 68 28 811

Ireland:
(01) 2844633

Israei:
(03) 5380 333

Italy:
(02) 95 300 930

Netherlands:
(020) 547 6669

Norway:
(02) 87 9700

Portugal:
(11) 30173 30

South Africa:
(011) 806 1000

Spain:

900 123 123
Sweden:

(08) 750 20 00

Switzerland:
(057312111

Turkey:
{90-1)4 12583 13

UK :

(0344) 362 867

For countries not listed,
contact Hewlett-Packard,
International Sales Branch,
Geneva, Switzerland

Tel: +41-22-7T80-7111

Fax: +41-22.780-7535

Copyright © 1992
Hewlett-Packard Company
Data subject to change
Printed in USA 892

5091-4784EUS
JRA AR

HEWLETT
PACKARD

A

E2115A HP VEE-Test/RunOnly

Technical Data Sheet

HP VEE-Test/RunOnly is designed
to allow you to execute models
created with HP VEE-Test.*

It provides you with an execution
platform that is more secure and
costs less than half of the full HP
VEE-Test development system.

Features

HP VEE-Test/RunOnly is a subset
of HP VEE-Test that loads and
executes models. There are no
capabilities to modify or create
programs.

Invoking HP VEE-Test/RunOnly
will bring up HP VEE with one
pull-down menu:

FILE

OPEN

SHOW DESCRIPTION
VERSION

EXIT

On opening a specified model,
you will see only the Panel view
of the model. There will not be a
choice to access the Detail view.
An unsecured model will allow
vou to edit the Panel view of the
objects shown. (This affects only
the location and size of the
objects and the changes cannot
be saved). If you have secured a
model using the HP VEE-Test
development product, then the
Panel view will not allow any
editing. This provides greater
security for your test programs
on the manufacturing floor.

All current HP VEE command
line optiens are still availabie.
Particularly useful is the “-r”
option to load and run a specific
HP VEE model. This allows you
to execute an HP VEE model
automatically without having to
open the model when HP VEE
comes up with a blank screen,

* If you are not vet familiar with HP VEE. please refer to the HP VEE Brochure
{50091-0826E} and the HP VEE Technical Data Sheet (5091-1142EN),

104

Supported Platforms

HP VEE-Test/RunOnly is
supported on the same systems
as HP VEE-Test (E2110A).
This is any HP 9000 Series 300
or Series 400 system that
supports HP-UX, including:

* Models 345, 350, 360, 370, 375,
380, 382, 400, 425

* This product will no# operate on
HP 9000 Series 700 systems

* HP-UX 7.x or HP-UX 8.x and
X Windows are required
HP VEE-Test/RunOnly will load
and run any model created with:

* E2100A (HP VEE-Engine,
Series 300/400)

* E2101A (HP VEE-Engine,
Series 700)

*E2110A (HP VEE-Test,
Series 300/400)

*E2111A (HP VEE-Test,
Series 700,

Ordering Information

HEWLETT
PACKARD

()

Recommended Controller

grdez Descrioti USLise Lherecommended controtler is based on the
umoer escriprion 2 assumption that its sole purpose is to run HP VEE-
E21154 HP VEE-Test/RunOnly $ 1750 Test/RunOnly. Diskless nodes are the recom-
License to Use (1-19) mended configuration for the manufacturing floor.
. They are easy to configure and, most importantly,
License to Use (20-49) $1488 the operator can hit the power switch and not
License to Use $ 1225 affect HP-UX.
{50 or greater) Order
Note: The price listed is the single copy price Number Description US List
for the quantity in parentheses. A2250A Model 382 $ 6400
. Controller Bundle
Opt. AAQ 1/4-inch tape $ 50 Sertes 300 Model 382
Opt. AAH DDS (DAT) $ 50 640x480 VGA Color Graphics
4 Mbytes RAM ,
HP-UX Run-Time Environment
S t Servi Standard speed HP-IB
Ofdl’l” ervices (IEEE-488) Interface
bl o . RS-232C Serial Interface
Number Description US List HP Parallel Printer Interface
E2115A+U00 Software license updates $ 12 per Built-in speaker and audio intexface
month 1 available DIO slot
' 14-inch VGA color monitor
E2115A#ABA+UAC $ 25 per T
Media updates, month Opt. ANJ Configure with 8 Mb $ 1000
1/4-inch Tape total RAM
E2115A#ABA+UAH $25per Opt. ALJ LAN interface $ 700
Media updates, month
DDS (DAT) Tape Al099A Keyboard, mouse $ 100
E2110A+HO00 Response Center $ 42 per $8200
Support month Total system price
{including HP VEE-Test/RunOnly)
ffﬁ;?ﬁ;cl:";?; %%%it support) is approximately $10,000 US List
Other options
Order
Number Description US List
Opt. ADJ Substitute 1280x1024 $ 4500
graphics
Opt. ADX Substitute 1024x768 $ 2500
graphics
Opt. ANB 16 Mb RAM $ 3000
Opt. AMO Add integrated 200Mb $ 2000
SCSI disk
Opt. AMK Add integrated 400Mb $ 3500

AR MR

105

SCSI disk

Copyright €© 1992
Hewlett-Packard Company
Printed in USA 3/92
5091-3855E

E2112B HP VEE-Test
for Sun Workstations

Technical Data

Click Run them sctol the lower
X¥ Trase to see detalied viewof
datz. Click InfoAbout far details

Aanphitude
fime Span

Mum Paoints

Introduction

Hewlett-Packard’s HP VEE
{Visual Engineering Environ-
ment} is a tool that allows you to
create complete graphical pro-

. futo Dgale

N Flame
0z

S

frage |

108 1.408m:!

./ ormed A fds) I

visual objects or icons, rather

than using more laborious tradi-

tional programming languages.

By simplifying tasks such as test

HEWLETT
PACKARD

Visual Engineering
Environment

and user interfaces, HP VEE
delivers impressive productivity
gains.

HP VEE-Test for Sun makes the
existing HP VEE-Test 2.0 fea-
ture set available to Sun SPARC
station™ users. For most pur-
poses, the HP VEE 2.0 Technical
Data booklet (Publication num-
ber 5091-4784) describes
features and configuration infor-
mation commen to both the Sun
and HP-UX products. Sun spe-
cific ordering and configuration
information is described here, as
is the small list of differences

gramming solutions by linking sequencing, instrument control, between the two products.
Configuration Information
Workstations Sun SPARCstations ™ meeting the following requirements:

Operating Systems

SunOS™ Versions 4.1.2 or 4.1.3

Windowing System

Open Windows™ Versions 2.0 or 3.0

Video Any display supported by Open Windows™ 2.0 or 3.0 - Color recommended
RAM 16 MBvtes minimum - 24 MBytes recommended
Disk Space 15 MBytes for installing HP VEE.
At least 5 MBytes of swap space available for HP VEE.
5 MBytes of space recommended for user programs.
I/O Interfaces IEEE-488.2 [HP-IB/GPIB]

IOtech. Inc. 3B488™ SBus to IEEE 488.2 controller-Driver Rev. 1.5*
I0Otech. Inc. SCSI488/8™ SCSI to [EEE 488.2 controller-Driver Rev. 1.4
National Instruments NI-488.2M™ SBus to IEEE 488.2 controller-Driver Rev. 2.2*

Serial
Internal RS-232 serial ports A and B

* Sume newer SPARCstarions may not he comparihle with some SBus ID O interfaces. Please consult I1 O vender
+ [OTech or National Inxtruments: por the “atest detended information.

106

Compatibility with
HP VEE 2.0 for HP-UX

Software developed using

HP VEE-Test for Sun will load
and execute under HP VEE-Test
2.0 for HP-UX and vice versa,
with few exceptions. The only
exceptions are if your program
accesses unsupported interfaces,
or if your program contains calls
to routines outside HP VEE.

In most cases, calls to external
routines will not cause compati-
bility problems, but due to minor
operating system differences
some external routines may need
to be modified.

Differences between the HP.-UX
and Sun implementation are lim-
ited to the following:

¢ The HP VEE-Engine and

HP VEE-Test/RunOnly products
are not offered for Sun SPARC-
stations ™, .

* Calls to routines outside of
HP VEE may need to be modi-

fied in some cases due to operat-
ing system differences.

¢ GPIO is not supported for Sun
SPARCstations™ since no GPIO
card is available.

¢ MXI and VXI direct backplane
support is not provided for Sun
SPARCstations™.

Sun08 ., Sun SPARCstations and Open
Windows are registered trademarks of Sun
Computers, Inc.

SCSI488/ S and SB488 are registered trade-

marks of IOTech. NNI-488.2M is a regis-
tered trademark of National Instruments

HEWLETT
PACKARD

3

Ordering
Information
Product US List
Number Description Price
E2112B HP VEE-Test for Sun $5900

Opt. AAD Media on 1/4-in Sun $ 50

format cartridge tape

Opt. ABA Documentation (US-English) $ 50
Support Services Training
HP VEE Response Center Product training is available for
Support is available, allowing HP VEE-Test for Sun. The
you to call the HP Response HP VEE-Test class covers all

Center with questions. Order
E2112B +H00, and E2112B +P00
for additional users.

Product and manual updates
are also available. Order
E2112B +UAC.

Please contact your Hewlett-
Packard Sales Representative to
sign up for these services.

107

topics relating to HP VEE-Test
and VEE-Engine for HP-UX
Workstations, as well as

HP VEE.Test for Sun.

For more information or to regis-
ter for any classes, please contact
your Hewlett-Packard Sales
Representative.

For additional information,
call the local HP sales office
listed in your telephone
directory.

Copyright € 1993
Hewlett-Packard Company
Printed in USA 3/93
5091-7301EUS

A

ﬁﬁ HEWLETT

PACKARD

Complete Data Acquisition Solutions
with HP VEE-Test

Application Note 1206-01 .

108

Data Acquisition Needs

Product research, development,
and manufacturing, as well as
scientific research, all rely on
data acquisition solutions for
characterization, menitoring,
and control. A complete data
acquisition solution usually
consists of three areas:

*Insirument control

*Data gathering

sData processing and report
generation

While some sophisticated card
cage devices can handle all three
areas, most data acquisition
solutions require a controller,
usually a computer, to
accomplish all of the tasks.

Data gathering and control with
a computer is generally done by
software that sends command
strings or programs to the
instrument through an /O path.
When data is gathered, data
processing and report generation
can begin, again through
software programmed to handle
things like data conversion,
signal processing, curve fitting,
and graphical display of data as
appropriate,

The most widely-used computer
environments today perform
these tasks at a fairly low level.
These environments require
explicit knowledge of program-
ming languages, instrument
commands, and [/O interface
drivers, all involving a lot of
syntax. Providing a full, correct
solution to a data acquisition
problem in these environments
requires a great deal of learning,
programming, and debugging
software, so solutions are time-
consuming, costly, and difficult
to optimize. Furthermore,

current trends in data
acquisition towards higher
sample rates and user-friendly
interfaces increase the
investment in time, money, and
knowledge even more.

Since creating sclutions is so
laborious, data processing and
report generation are often left
out, delegated after the fact to
separate software tools, While
this may cut development time,
it often increases overall time
spent getting results. Creating
and testing solutions is an
iterative process — if analysis of
data and results is done later,
problems that could be solved by
optimizing placement of
transducers, for example, will
not be spotted until later. The
developer will be forced to fix the
problem and start the process
all over again. A product that
addresses ail aspectsofa
solution concurrently reduces
the time spent fixing problems
and improves the quality,
efficiency, and cost of the overall
process.

Creating Complete Solutions

To create complete, optimum
data acquisition solutions with a
minimum of time, a software
tool is needed that not only
reduces development time but
provides functionality for
carrying out all data acquisition
tasks concurrently. HP VEE-
Test, HP’s visual engineering
environment for test and
measurement applications, is
such a tool. It allows you to

109

build. test. and run complete
solutions in a unigue, time-
saving way.

HP VEE-Test lets you create
complete solutions simply by
linking visual objects or icons,
rather than using traditional
programming languages. The
direct manipulation of these
objects is a highly efficient
method for solving problems.
The process is similar to
creating block diagrams — an
intuitive approach that saves
considerable time and effort.
Complex designs can be built
quickly and in a modular
fashion.

HP VEE-Test provides a wealth
of objects to aid in the collection,
analysis, and presentation of -
data, in addition to features for (
data storage, flow, modularity,
and debugging. There is no
syntax to remember; all you need
is in the form of modular,
functional objects within a
powerful user interface.
Solutions can be constructed
quickly — and meodifications can
be made quickly. Because it is so
visual, any solution created with
HP VEE-Test has an implicit
user interface — and it can be
implemented with custom user
interfaces as well. These
attributes, combined with in-
depth /O support, make HP
VEE-Test a powerful tool for
data acquisition.

-y

Data Acquisition
Examples

Solutions to data acquisition
depend on the physical
constraints of the problem.
Factors such as sample rate,
number of channels, and types
and placement of transducers
are basic concerns in designing
solutions. The number, type and
sophistication of the instruments
required contribute to the
complexity of the solution. The
following are three data acqui-
sition problems of increasing
complexity solved with

HP VEE-Test.

Simple Data Acquisition
Using Instrument Drivers
Figure 1 shows a simple data
acquisition problem using a
digital multimeter. Three ther-
mistors are sampled every three
seconds, the data is logged to a
file, and then it is displayed.

HP VEE-Test gives you several
choices for controlling

instruments and getting data
from them. Instrument drivers
are objects in the form of soft
front panels, available for over
170 HP instruments. Direct /O
objects are also available to
define I/O transactions
interactively and send
instrument commands.

In this example, the multimeter
is controlled by an instrument
driver. The solution (also
referred to as a model) consists
of the instrument panel through
which the multimeter is
controlled, as well as data
manipulation, storage, and
display objects. This solution
was constructed in a few
minutes simply by pulling down
the objects, configuring their
options, and connecting them
together.

Figure 1 represents a simple
data acquisition problem. The
number of transducers is small
and the sample rate is not
demanding. The instrument is

relatively simple to use and
control. Using an instrument
pane! within HP VEE-Test is a
good match of instrument and
software. The panel is configured
for the type of measurement and
the number of channels. During
data acquisition, the multimeter
is triggered by the panel’s driver
to take readings and place them
on the interface bus. Through
the panel, the data is retrieved
as an array of floating-point
numbers. Between the time the
measurement is taken and when
it is read from the interface bus,
the multimeter cannot be
triggered for another reading.
The instrument operates in lock-
step fashion with HP VEE-Test.

Multiple readings are taken by
using one of HP VEE-Test’s
control objects, the On Cycle
iterator. This object, shown as
an icon in Figure 1,executes the
instrument panetl at specified
intervals, causing the
multimeter to trigger. Each
iteration causes three tempera-
ture readings to be gathered,
time-stamped, logged to a file,
and plotted on the Strip Chart
display object. The next cycle of
the iterator starts when the
specified period is over. The time
it takes to execute each iteration
sets the sample rate. If the
period specified in the

On Cycle object is less than the
execution time of each iteration,
the multimeter is triggered to
take readings immediately after
each completion of the thread.
This is not usually desirable,
since the sample rate may not be
consistent from one iteration to
another. Thus, simple
instruments that must operate
in lock-step fashion will have a -
limited sample rate when used
in an HP VEE-Test solution.

As the complexity of data
acquisition problems increases,
simple instruments give way to
more sophisticated ones. To
improve performance or in the
case where instrument drivers
are unavailabile, the direct I/O
objects in HP VEE-Test are the
best choice.

Data Acquisition Using
Direct I/0 and 1/O
Transactions

If a driver for a particular
instrument does not exist, or if
throughput must be increased,
direct /O objects can be used
instead of drivers. These objects
send and receive commands and

data for anyv device. using HP-IB,

R8-232. and GPIQ interfaces.

Figure 2 shows a shghtly more
complicated solution that uses a
high-apeed HP 3458A
multimeter to digitize & signal.
inthi- example, o direcs 17O
oblert wits tsed DBoecitise it
=upborts the muinimeter’s scaled

Figure 2. Flexible and powerful insirument control through direct I/O.

16-bit data type, a smaller type
than the 8-byte real supported
by the instrument driver. Since
the scaled integer is smaller, less
data must pass through the bus
and overall efficiency is
improved.,

In this example, we configured a
direct I/O object for the multi-
meter. Once configured, the
object was used to send and
receive data from the multimeter.

Specifying what data to send or
receive from the multimeter is
done with the direct /O object by
using I/O transactions. /O
transactions — HP VEE-Test’s
basic units for 1O control — are
statements that specify how and
what commands and data should
be sent and received. These /O
transactions support a wealth of
data formats and encodings. To
configure them, the user has &
series of dialog boxes by which to
choose actions, encodings,
formats, and notation. A direct
I/O object with its dialog box is
shown in Figure 3.

b i

an

111"

Figure 3. Configuring I/0) transactions via dialog boxes.

Bvtort Tt Fapmt

e o e

J

In this example, the configured
direct I/O object for the
multimeter was used twice in
the solution. In one object,
shown again in Figure 4, nine
transactions write commands
that set up the voltmeter, while
one reads back a scaling factor.
The transaction in the other
object, shown again in Figure 5,
reads large blocks of data from
the instrument in 16-bit scaled
integer format. Since high
sample rates were needed, this
object was configured to receive
large blocks of data rather than
single readings, thus improving
throughput. '

Direct /O objects in HP VEE-
Test are also highly customiz-

L —

able. allowing you to define
inputs and outputs as needed.
The object shown in Figure 5,
for exampie, allows you to enter
parameters which are then sent
to the instrument.

Figure 4. Direct /O used for
instrument configuration.

m—

Figure 5. Direct VO receiving
blocks of data.

(M Bmems VO Oeie M ek SRy

Figure 6. Countinuous, high-speed acquisition.

112

Data Acquisition
at High Rates

When continuous data
acquisition at high sample rates
is needed, HP VEE-Test’s direct
I/O objects, combined with its
data processing and analysis
capabilities, can be used to
create complete, optimized
solutions.

Generally, only sophisticated
instruments that allow
distributed processing will
support high rates continuously.
After commands are sent to the
instrument — usually in the
form of downloadable
subroutines — the instrument
acquires data continuously and
asynchronously without further
direction. Usually the
instrument contains internal
memory which acts as a first-
inv/first-out buffer for the data
transfer path. To keep up with
the instrument, the computer
must maintain a high rate of
transfer from the interface bus.

Figure 6 shows an HP VEE-
Test solution for a continuous,
high-rate data acquisition
problem. In this example, an HP
3852 data acquisition and
control unit is used to continu-
ously read 6 channels measuring
the strain of 2 mechanical
structure undergoing vibrational
stress. The effective rate of
acquisition is 30,000 samples per
second. The high-speed digital
voltmeter in the HP 3852 is set
up and triggered by the HP-IB
bus, while the data is gathered
through its GPIO interface for
faster throughput.

In Figure 6, two direct I/O
obiects are used to set up and
trigger the voltmeter. Two other
objects handle the initialization

and transfer of large blocks of
measurements via GPIO. For
HP-IB and GPIO, HP VEE-Test
can read the bus, allocate
memory, and continue with the
processing and display at
190,000 and 420,000 bytes per
second, on a HP 370 workstation
respectively. Since most high-
speed data acquisition uses
compact data formats (16-bit
scaled or packed) for transfer on
a bus, and HP VEE-Test
supports these formats, data can
be logged to a file at 100,000
readings per second — the rate
supported by many instruments.

A more complete solution may
require data processing and
display. In Figure 6, data
processing consists of unpacking
the readings. HP VEE-Test does
this with analysis objects. In this
example, however, we have
chosen to use to use a separate
process — executing in parallel
— to obtain maximum through-
put. In Figure 6, packed
readings are sent to a separate
process via the HP-UX Escape
object. This object initiates and
communicates with a program
written in C, using the same I/O
transactions as the direct I/O
objects.

The throughput rates for
complete processing and display
in HP VEE-Test depend on the
time it takes the acquisition
segment to execute and the size
of the blocks of data read by the
/O transactions. In Figure 6,
this is seen as the total time it

113

takes for a block of readings to
be unpacked and displayed. The
acquisition time and the block
size determine the virtual
sample rate in the example.

If this virtual sample rate is
equal to the sample rate of the
instrument, the instrument's
memory will not fill up and
block. If the virtual sample rate
is larger than the instrument’s
memory, however, some readings
could end up waiting to be
uploaded. In this case, gathering,
processing, and display of data
would lag by a time proportional
to the number of readings in the
instrument’s output buffer. The
solution in Figure 6 shortens
this time by displaying only part
of the readings as multiple
curves. In this case, every tenth
block of 1,000 readings is
displayed; after 10 curves are
displayed, the plot is cleared. In
this way, the overhead of
maintaining the solution is kept
to a minimum, Using these
techniques, complete solutions
can be designed that maintain
30,000-35,000 readings per
second.

Although previous discussions
have emphasized the I/O
capabilities of HP VEE-Test, its
display and data processing
strengths have also been used to
devise complete solutions.

Data Processing

In Figure 7 the data acquired
by the digital voltmeter is
received as a block (or array) of
readings in a scaled format. The
data must be multiplied by the
scaling factor. This is done by
using the multiply object to scale
each reading in the array. HP
VEE allows all mathematical
operations to function indepen-
dent of the type and structure of
the operands. In this case, the
multiply object’s operands are an
array of 10,000 scaled readings
in a 16-bit format, plus a single
scaling factor in an ASCII
format. The user does not have
to consider the different data
types or structures — the array
is correctly multiplied by the
scaling factor. This is done with
one ohtect rather than several
lines of code needed in
traditional data acquisition
environments. All HP VEE
ohjects automaticalhyv adapt to
the tvpe and =structure of the
operands

Figure 7. Converting scaled readings with one object.

Data Display

Presenting data, whether during
or after acquisition, is the last
and most important aspect of a
solution. Most data processing is
done to ready the data for
display. HP VEE-Test supports
a myriad of display objects, each
configurable for full flexibility.
The three displays in the
solutions shown in Figures 1, 2,
and 6 are the same object,
which has been reconfigured to
meet the needs of each solution.

The display shown in Figure 8,
is from the solution in Figure 1.
This display was configured to
accept three traces, while the
other solutions accept only one.
Each dispiay object was sized to
better present the data.

Data display within HP VEE is a
flexible, easily modifiable way to
provide the visual support
needed in a complete solution.

The display of data is done
automatically with absolutely no
coding. Providing this degree of
sophistication, concurrent with
acquisition, is difficult in a
normal data acquisition
environment. With HP VEE, it
is easy and transparent.

Ay Ty
i‘ ‘l-u——'nv—‘ﬂn. -

Figure 8. Multiple traces are one of the many display options available.

114~

Figure 9. The user interface is implicit in the solution.

Creating User Interfaces

The solution in Figure 9 shows
a direct I/O object which takes

user inputs through data objects.

This means that an implicit user
interface is available. HP VEE-
Test also lets you build explicit
user interfaces by choosing
alternate views of the model,
views wherein details of
implementation are hidden.
Designers of data acquisition

solutions can build their own
dialog boxes and other user
interface objects. This ability is
important for data acquisition in
production testing, or when
someone other than the
developer is using the models.
Providing this functionality in
normal data acquisition
environments is time-
consuming, to say the least.
With HP VEE-Test, it takes only
a few minutes.

113

HP VEE-Test: The Next
Generation

HP VEE-Test represents the
next step in the human/
computer interface. High-level
support for I/O, the use of
instrument drivers, direct I/O,
and [/O transactions, all mean
that less time is spent on I/0
implementation and more time
on getting results. Direct
manipulation of visual objects
allows you to build solutions
quickly and intuitively.
Programming skills and long
development times will no longer
be necessary. Hence, the time
and cost of developing complete,
integrated data acquisition
solutions will decrease
dramatically.

Now, This is
Engineering!

For more information, call your local
HP sales office listed in your
telephone directory or an HP
regional office

Data Subject ta Change
Printed in U.S.A. 4/81
Copyright @ 1991
Hewlett-Packard Company
5091-1139E

Design Characterization
Using HP VEE-Test

Application Note 1206-02

(D

HEWLETT
PACKARD

116

Introduction

Engineers often need to
characterize a design. After a
working madel is built, various
characteristics of the prototype
must be measured to verify that
it meets the design goal. The
designer understands the
characteristics to be measured
and the instruments used to
make the measurements.

Computers can be valuable tools
in performing design
characterization. Instruments
are available which can be
directly controlled by the
computer, eliminating the
tedium of setting up instruments
for large numbers of data points.
The computer’s computational
power makes analiysis of the
collected data easy.
Unfortunately, many
programming environments _
demand more attention to the
mechanics of writing a program
than to the measurements and
analysis themselves. A good
environment allows the designer
to focus on the problem, not the
program.

HP’s visual engineering
environment for test (HP VEE-
Test}1s a software tool which
allows you to create complete
solutions by linking visual
objects or icons, rather than by
using traditional programming
languages. Since the process of
creating solutions is similar to
creating a block diagram,

HP VEE-Test offers users an
intuitive approach to using a
computer, thus saving
considerable time and effort.

HP VEE-Test provides a wealth
of objects which aid in the
collection, analysis, and
presentation of data, in addition
to objects and features for data

storage, flow, modularity,
debugging, and documenting.
This power, combined with its
ease-of-use, makes HP VEE-Test
an effective tool for solving
design characterization
problems.

This application note outlines a
design characterization problem
and demonstrates how it can be
solved using HP VEE-Test. It
covers instrument control,
analysis, and displaying and
storing results.

The Problem

Consider the system shown in
Figure 1, in which digital
signals are applied to a device
and the response is detected.
The characteristics of all compo-
nents in the system contribute to
the overall time which is required
between the application of new
signals. The remainder of this
application note focuses on the
receiver and its characteristics.

...... .
1
€ 1
W 1
s '
2 Circuit |
c 9 Under !
‘""“E T 1
20 est !
S =
o
£ 8 ;
[77 VY]]
1
| .

Receivers

Figure 1. Block diagram of a system
that uses a receiver.

In this example, the receiver is
actually a comparator whose
inputs are a signal from the
circuit under test and a
programmable threshold. To
properly set the threshold,
important characteristics of a
comparator must be understood.
Setting the threshold far from
the logic levels makes the

117

receiver respond rapidly. Setting
the threshold close to the logic
levels avoids false triggering. A
trade-off must be made between
speed and reliability of the
sampled signal. Making the
proper trade-off requires
knowledge of the receiver’s
characteristics.

Figure 2. Timing diagram for
receiver signals.

Figure 2 illustrates the signals
involved. The top waveform is
the signal from the circuit under
test. The bottom waveform is the
output of the receiver. VT is the
threshold. VDH is the overdrive
voltage for positive edge signals;
VDL is the overdrive for negative
edge signals; and tLH and tHL
are the corresponding delays.

3

Instruments that might be used
to measure how delay varies -
with overdrive voltage are
illustrated in Figure 3. The HP
6621 is a power supply used to
power the receiver. The HP 3314
and HP 3325 are function
generators. The HP 3325
supplies a DC voltage which
simulates the programmable
threshold. The HP 3314
generates a square wave
simulating the signal from the
circuit under test. Finally, the
HP 5334 is a universal counter
used to measure the time
interval from the input edge to
the output edge. All the
instruments have an HP-IB
interface.

The Solution

HP 5334]
HP 5334

HP 6621 |

configuration.

Configuring the
Instruments

Before the actual solution is
written, HP VEE-Test must have
information about which
instruments are connected, what
their addresses are, and what
parameters are needed to control
them. HP VEE-Test then
provides objects which
correspond to those instruments.
The objects can be specified as
either instrument panels or
direct I/O objects. Instrument
panels are objects in the form of
soft front panels, and drivers for
these panels are available for
over 170 HP instruments. Direct
I/O objects allow you to
interactively define your own I/O
transactions and send
instrument commands. Both
methods will be shown later.

A dialog box is used to set all the

parameters needed by HP VEE- -

Test to configure and control the
instruments. Included in this
dialog box is the capability to
name the instrument panels,
instead of having to refer to
them by their physical
addresses. Additional
information can also be given to
HP VEE-Test about conformance
to various standards, data
separators and terminators,
appropriate timeout valies. and
more. Once an instrument is

~ configured, HP VEE-Test

remembers the information so
the user is freed from
remembering minute details.

118

Initializing the
Instruments

Once the instruments are
configured, the creation of the
actual solution can begin. The
first portion of the solution
involves setting the instruments
to good starting states. In this
example, we must set the power
supply’s voltage and current.
The universal counter must be
made to measure timer interval
and its trigger level and input
conditioning must be set. The
HP 3314 must be programmed
to a square wave, a reasonable
frequency, and voltage levels of
0 to 4 into 50 ohms. The function
of the HP 3325 must be set to
DC only with a DC offset of

1 volt, With these settings, the
output of the receiver will toggle
and the counter will measure a
delay.

Instrument drivers are the
perfect tool for this initial setup.
You don't need to have any
knowledge of the bus
programming codes; they are all
contained within the instrument
driver. The graphic interface
(instrument panel) for setting
values is friendly and
straightforward.

To initialize the power supply,
the configured instrument panel
for the power supply is placed in
the work area. The values for the
voltage and current are set by
clicking on the data field and
typing in an appropriate value.
We'll set the voltage to 5 volts
and the current to .11 amps. The
instrument is now “programmed.”
The other instruments are
initialized in a similar manner.

Figure 4. Model for instrument
initialization.

Figure 4 shows the panels of all
the instruments connected
together. When the Start object
is clicked, each object — in this
case each instrument panel — is
executed in order. Execution
flows from top to bottom through
the panels and along the lines
connecting them. When an
instrument panel executes, the
associated instrument is set to
the state shown in the front
panel. When execution of one
panel is complete, a signal is
sent to the next panel. Thus,
each panel executes sequentially
as determined by the lines '
connecting it

Figure 5 shows a finished HP
VEE-Test model which performs
the set of measurements. The
instrument panels from Figure 4
have been minimized so they
consume less space in the work
area. An iterator, labeled For
Range, appears below the line
of instruments. We'll use it to
generate values for the overdrive
voltage. From, Through, and
Step values are entered by
clicking on the field and typing a
number. The iterator generates a
sequence of evenly spaced
numbers starting at the From
value and ending with the
Through value. The spacing is
determined by the Step.

The overdrive values from the
iterator are processed through a
formula box for two reasons.
From Figure 2, we see that
VT=VH-VDH. VT is the voltage
we want from the HP 3325. VH
is programmed to 4 volts and
VDH is the value from the
iterator, VI=4-VDH. Because

the HP 3325’s output impedance
1s 50 ohms and is not termi-
nated, we must program its DC
offset to half of what we actually
want, or VI/2. Thus, the formula
object contains (4-VDH)/2.

A second panel of the HP 3325
was created by cloning the first.
Thus, all the parameters set
earlier are preserved, including
the configuration data. Both
panels control the same
instrument.

HP VEE-Test lets you add inputs
and outputs to instrument paneis.
For the HP 3325 panel, OFFSET
has been added as an input. Every
time data is received on that data
input pin, the panel sends a mes-
sage over HP-IB which programs
the DC offset to that value.
Additionally, the panel guarantees
that any static settings in the
panel match the actual state of
the instrument. The second HP
5334 and its output were created
in a similar manner.

Figure 5. Model for positive edge delayv and tabular resutlts.

119

We want the DC offset of the HP
3325 programmed before the HP
5334 performs a time interval
measurement. This sequencing is
enforced by connecting the bottom
pin of the HP 3325 panel te the
top pin of the HP 5334 panel.

The Logging Alphanumeric
display provides a convenient way
of viewing all the measurements
from the counter. With each new
number, the display is scrolled up
and the new number placed at
the bottom.

Measuring Both Edges

While Figure 5 is a complete and
useful model, we can make it
better. The delay of a comparator
can be different for positive and
negative edges, so the test should
handle both cases. Presenting the
measurements graphically would
also be beneficial. Both of these

Figure 6. Model for both edges and graphical results,

enhancements are easy to add.

The model in Figure 6 shows the
few changes that are needed.

To do the negative edges, the
HP 3325 and HP 5334 panels
are cloned. The new HP 3325 is
left unchanged. The new HP
5334, however, is set up to
trigger on negative edges in both
channels. Remember, the cloned
panels control the same physical
instrument at different times in
the model. We need the new
panels to control the state of the
instrument at a specific time.

The overdrive voltage for
negative edges, VDL, is VI-VL,
Since VL is zero, VDL=VT. The
formula object is VDL/2. The
division by two is still needed for
the mismatch in impedances.

A sequencing line is connected
from the first HP 5334 panel

R

120

to the second HP 3325 panel so
that the positive edge
measurement is made for a
specific overdrive and then the
negative edge measurement is
made with the same amount
of overdrive.

When each panel for an
instrument panel is executed,
HP VEE-Test sends commands
which set up the instrument in
the state represented by the
panel. Because the current state
of the instrument is known by
HP VEE-Test, 2 minimum
number of commands are sent.
Only the DC offset is specified
in the panels for the HP 3325.
The slope is changed when each
panel of the HP 5334 is executed.

Plotting the Data

Plotting data is very easy with
HP VEE-Test. The graph in
Figure 6 is an X vs. Y Plot. The
overdrive voltage is an
independent variable, so it is
connected to the X input, top pin.
The positive edge delay and
negative edge delay are
dependent variables and are
connected to separate Y inputs.
As each iteration of the loop is
executed, a point for each trace
is generated and autematically
plotted. By clicking on the
Autoscale button on the display,
both axes are scaled so the
traces fit and fill the display. The
labels on the graph have been
edited to reflect the data being
captured.

Figure 7. Model using Direct I/Q.

Instrument Control
Using Direct I/O

While instrument drivers provide
much functionality and ease of
use, sometimes they are imprac-
tical. Because instrument drivers
guarantee the reliability of the
instrument’s state, performance
is not maximal. Some instru-
ments in the system may not
have an instrument driver. If
either maximum performance is
essential or the instrument
driver is non-existent, another
technique may be used to pro-
gram the instrument. A Direct
/O object lets you explicitly
control what is sent to and
received from the instrument. To
use Direct [/O, however, you
must know the effects of all
messages sent to the instrument.

In Figure 7, the instrument
panels in the loop have been re-
placed with Direct I’O objects.
The transactions used to set the
DC offwet of the HP 3325 and the
slopes of the HP 5334 contain the
actual codes sent over the inter-

Table 1

0.10 1.591E-08 1.000E-01

0.30 4.900E-07 3.000E-01

0.50 3.600E-07 5,000E-01

0.70 2.780E-07 7.000E-01

0.90 2.260E-07 9,000E-01

1.10 1.960E-07 1.100E+00
1.30 1.850E-07 1.300E+00
1.50 1.790E-07 1.500E+00
1.70 1.740E-07 1.700E+00
1.90 1.690E-07 1.900E+00
2.10 1.660E-07 2.100E+00
2.30 1.620E-07 2.300E+00
2.50 1.600E-07 2.500E+00
2.70 1.570E-07 2.700E+00
2.90 1.550E-07 2.900E+00
3.10 1.520E-07 3.100E+00
3.30 1,500E-07 3.300E+00
3.50 1.480E-07 3.500E+00
3.70 1.450E-07 3.700E+00
3.90 1.390E-07 3.900E+00

Using Direct YO meant we had
to know that the mnemonic

face. The second object for “AS1” programs the slope of
Counter contains a transaction channel A for negative edges.
which sends "AS1BS1" to pro- When we used instrument

gram negative slopes. The

drivers, this arcane knowledge

measured results, as shown in was not needed. Using Direct
the display, are the same as 1/0, however, did gain us some
when using instrument drivers. performance advantages.

- . et
R — m——;i

J
—_—— —— e

e . § R

Figure 8. Maodel storing results to a file.

121

o] |

J

Storing the Data

Graphic presentation is impor-
tant and useful. Sometimes,
however, the data must be stored
in a file either for archival
purposes or later analysis. An
object, labeled To File in Figure
8, shows how HP VEE-Test can
write data to a file. After both
measurements for a given
overdrive are made, overdrive,
positive edge delay, and negative
edge delay are written to the file
called “results” as a single line.
The name of the file can be
changed after each run or the
results can be appended to the
same file. Many formats are
available, so the data can be
presented in any form needed.
The file recorded when Figure 8
was run is shown in Table 1.
Once the file is writien, it can be
accessed by other tools to further
analyze or present the data,
including by another HP VEE-
Test model.

Testing Multiple Parts

So far, all the models written
have been oriented toward an
engineer testing a single part.
For better characterization, a
significant number of units
should be tested and the resuits
analyzed using some statistical
functions. Figure 9 is 2 model
which performs measurements
and stores the results for any
number of parts. It also demon-
strates the use of UserObjects
{(similar to subroutines) and
operator interaction

Like subroutines in traditional
programming languages,
UserObjects in HP VEE-Test are
a means to encapsulate parts of
a solution. Underlying complex-
ity can be hidden from the
higher level user. The object
labeled Initialize Instruments
is a UserObject containing the
solution shown in Figure 4. The
UserObject labeled Perform
Measurements encapsulates
the objects which perform and
store the measurements.

Figure 9. Model for testing multiple parts.

~1

122

Figure 10. Model illustrating
operator interaction.

UserObjects can be configured to
display a panel upon execution
and the operator can interact
with the panel. When the
UserObject completes its
execution, the Panel disappears.
Selected objects are chosen to
appear in the panel, typically
controls and displays. The
underlying connections,
iterators, flow control, ete. are
usually not included.

The Until Break object
continues to re-execute the
objects attached to its output
until a Break object is executed.

- The UserObject labeled Next

Part is configured to show a
Panel when it executes. Figure
10 shows what the operator sees
when Next Part executes. The
operator installs a new part and
presses OK when ready. Next,
the Perform Measurements
UserObject, in Figure 9, loops
through the overdrive values
and records the results in a file,
as was done in Figure 8. The
Continue or Stop User object
contains another panel which
asks the operator if more parts
remain to be tested. Depending
on the answer, either the loop is
executed again or the Break
object is executed, thus
terminating the iterator.

Conclusion

Figure 11. Model for analysis.

Post-Acquisition Analysis
Collecting data is an important
aspect of design characterization.
Just as important, however, is
being able to easily analyze that
same data. HP VEE-Test is as
useful for analyzing the collected
data as it is for collecting the
data. Figure 11 shows how data
collected from 10 tested parts can
be processed. The From File
object in Figure 11 reads the file
used to store the data collected in
Figure 9. The READ transaction
reads the entire file into a three-
dimensional array.

The For Count ohject cycles
through the 20 values of over-
drive. The VDH formula object
retrieves an actual overdrive
voltage given an index. The
object labeled Mean computes
the mean across all parts for an
overdrive index. Likewise, the
Min and Max formula objects
compute the minimum and maxi-
mum values at everv overdrive.

The power of HP VEE-Test lies
in its balance between ease-of-
use and functionality. While this
example may have taken days to
write in a traditional program-
ming language, it took only a few
hours using HP VEE-Test. HP
VEE-Test saves time by letting
you focus on results rather than
on the programming routines to
get at the results.

Now, This is Engineering!

The display is similar to the one
used in Figure 6. The three
traces are the result of
processing the positive

delay data.

You can now decide on the
specifications for the system
based on zll the acquired data.
The graph can also be used to
report the data to those
concerned about the decision.

For more information, cail your local
HP sales office listed in your telephone
directory or an HP regional office.

Data Subject to Change
Printed in U.S.A. 591
Copyright @ 1991
Hewlett-Packard Company
5091-140E

123

‘gem

Submitted by:
Hewlett Packard
RTAP/Plus

o~

4 HEWLETT
[”ﬁ PACKARD

RTAP

User

Intertace
Platform

Super\}iggj
~Control

in today’s increasingly competitive
world it is important to be able to
easily obtain, analyze and display
realtime data to control your oper-
ation and improve its efficiency.
HP’s User Interface Platform (UIP)
allows you to create a wide variety
of graphic user interfaces for
many different industries —faster
and with lower development costs.
Based on X Windows, the UIP is an
extension to HP’s RTAP (Real-Time
Applications Platform) software
toolkit. Together, RTAP and UIP
provide an effective solution to
many superviscry control problems.

Low cost engineering workstations
with high-resolution color displays
and high speed networking have
created new opportunities for easy
to use operator interfaces. Windows
have proven to be an effective
means of viewing information in
many different formats as both
overviews and details can be seen
at the same time.

Developing a user interface which
takes advantage of these new
capabilities can be very time con-
suming yet is critical to the accep-
tance and usability of supervisory
systems. HP’s UIP captures the
power of modern workstations by
providing software to greatly re-
duce the time and effort required to
construct sophisticated user inter-
faces. It allows symbol libraries,
animated schematics and control
panels to be laid out interactively
without writing programs. It also
provides an object-oriented library
to increase the efficiency of your
programmers and provide them
with additional power to meet
specialized requirements.

Powerful
Display Builders

UIP provides interactive builders
specially designed to create process

diagrams and control panels. Their |

CAD:-like drawing tools are easy
to use by both programmers and
non-programmers. Some of the
major benefits are;

* reduced programming effort
required to develop schematics
and control paneis

= rapid development of prototypes,
which helps to obtain end user
acceptance earlier in the develop-
ment cycle

* operational and technical staff
can create their own displays

128

Smart Symbols

Symbols are graphic representations
of equipment used in your process.
UIP smart symbols also contain
links to the RTAP database as well
as instructions for ammating the
graphics in response to database
changes. Symbols can be built up
from other symbols, and custom
symbols for any industry can be
created with the UIP toolkit.
Symbols simplify the construction
of complex schematics and hoost
productivity by maximizing reuse
of previous work —from the small-
est symbol to the largest process
diagram.

Operator
Control Panels

Control panels provide a mecha-
aism for the operator to interact
with a SCADA system. Control
panels are activated by operator
selection; they can be designed to
pop up from a schematic or menu.
Hiding information until it is needed
keeps displays uncluttered and
allows the operator to focus on

the task at hand. Additional detail
or data entry panels can be sum-
moned by a click of a mouse button.

Control panels are created inter-
actively by either programmers
O TION-Programmers.

Schematics that
Model Your
Operations

Schematics built with the U1P

are graphic models of the physical
systems and processes monitored
by RTAP. They are built from sym-
bols representing actual objects
such as valves, switches, tanks
and meters. The schematics are
continually updated from the
RTAP database (or an application
program) as changes occur in the
process. Values, colors, and fill levels
can all be controlled dynamically.

You can create a single schematic
which can display information for
all similar points in the database.
This schernatic can be then reused
many times by “connecting” it to
different parts of the database.

UIP inciudes a fully documented
object-oriented 'C' library which
faclitates rapid development of win-
dow-based apptications. [t provides
a single programmatic interface to
windows, menus, controls, symbols,
graphics, schematics and dynamics.
It simplifies development of so-
phisticated user interfaces and
reduces training time, resuiting

in increased productivity.

The UIP is based on industry
standards and operates in the dis-
tributed computing environment
demanded by today’s users. It
runs on HP’s 9000 family of techni-
cal systems and engineering work-
stations providing reliability, scal-
ability and low cost of ownership.

e —

130

L7 cidiamo

For more information, contact vour local
Hewlett-Packard sales office listed in
your telephone directory or one of the HP
regional offices listed helow:

United States:
Hewlett-Packard Company
4 Choke Cherry Road
Rockville. MD 20850
(3011 670-4300

Hewlett-Packard Company
5201 Tollview Drive
Rolling Meadows, IL 60008
(312) 255-9800

Hewlett-Packard Company
5101 Lankershim Blvd.
No. Hollywood, CA 91601
(818) 505-3600

Hewlett-Packard Company
2015 South Park Place
Atlanta, GA 30339

(404 955-1500

Canada:

Hewlett-Packard Ltd.

6877 Goreway Drive
Mississauga, Ontario L4V IM8
{416) 678-9430

Australia/New Zeaiand:
Hewlett - Packard Australia Ltd.
31-41 Joseph Street

Blackburn, Victoria 3130
Melbourne, Australia

{03) 895-2895

Europe/Africa/Middle East
Hewlett-Packard S.A.

Central Mailing Department
P.O. Box 529

1180 AM Amstelveen

The Netherlands

(31) 20/547-9999

Far East:
Hewlett-Packard Asia Ltd.
22/F Bond Centre

West Tower

89 Queensway

Central, Hong Kong

(5) 8487777

Japan:
Yokogawa-Hewlett-Packard Lid,
29-21, Takaido-Higashi 3-chome
Suginami-ky, Tokyo 168

{03) 331-6111

Latin America:

Hewlett-Packard

Latin American Region Headquarters
Monte Pelvoux Nbr 111

Lomas de Chapuitepec, D.F. Mexico
(905) 596-79-33

Technicai information in this document is
subject to change without notice. RTAP

is a registered trademark of Hewlett-Packard
in Canada.

Printed in Canada 06/89
3952-7019

DR

— Software Taals for SCADA = -
RTAP"' Supervisory Controf and’
Data Acquisitiarr
~ Real-Time '
Applications
Platform

Hewlett-Packard™s RTAP is an integrated set
of software tools designed to help appiication
developers create real-time data acquisition
and conirol systems.

By combining the unigue features of RTAP

with the performance range ot the HP9000 family
of 32 bit computers. Hewlett-Packard provides you
with a flexible and extensibte platform for your
real-time applications.

Built upon industry standards, including the HP-UX
operating system. RTAP can be networked with existing
systems or can be instailed as a stand alone package.
Muitiple nodes can be integrated into a distributed network.

RTAP is designed to be fully user-configurable. Because of this

RTAP integrates six real-time configurable modules
flaxibility, RTAP can be adapted to a wide variety of applications.

A mutti-level security system protects the integrity of your system. = Database _
The software is written in C and includes C access routines 1o ! = Calculation Engine
its host of resources. . .

Event Manager
* Scan System

] l = Time Keeper
Database, the heart of the toolkit,
provides powerful data siorage ® Scheduier
mecharisins thai are capable of
handling tables, vectors and

scalar data element types. The
database structure is completely
user-definable and can be
organised hierarchically to mimic
any physical system. Setup is
completed quickly and efficiently
because repetitive data structures
arc casily duplicated. Less time
is spent configuring the database
ieaving mere time for application
software development.

ctl

Symbolic access simplifies
application software development
and reduces maintenance costs.
Application software can be
writien more quickly and easily
because you only need to know
the data point name - not iss
location within the database.
When the database is modified or
cxpanded, existing applications
do not have to change unless they
need 10 access the new information.

Calculation Engine enables
calculations and logic funclions
10 be defined within the dalabase
and 10 be automatically updaied.
This reduces the need 1o write
separate programs for simple
applications. The module is
configurable to atlow developers
10 incorporaie their own industry
specific functions into database
EXpressions.

Event Manager detects changes
in the Database and automati-
cally notifies user-designated
processes in the sysiem.
Combining this capability with
the features of the Caleulation
Engine provides a powerful
means of triggering your
applications.

A Platiorm for
Real-Time Data Acquisition

Time Keeper aliows you 10
incorporate time-specific events,
such as daily reports, easily and
efficiently. It wransparently
handles LeapYears and changes
to and from Daylight Savings
Time. You can specify time-
related evenis by absolute date
and time, or on & cyclic basis.
Wild cards can be used o
efficiently specify regular or
repetitive events,

Scan System consists of a single
Scan Manager which handles
initialization and coordination of
& number.of scan tasks, This
module supports muitiple end
devices simultaneously,
inciuding any PLC or RTU.
Multiple poll types can be
incorporated with user-specified
poll periods.

Scheduler esiablishes an RTAP
enviconment from the blue prints
you provide. H handles all the
problems associated with starup
and shuldown. communication,
prioritization and neiworking.

i Providing these {acilities centrally

simplifies the developmeni of
application programs.

RTAFis supplied with standard HP
warranties and maintenance agreements
to ensure your specific support
requirements are satisfied.

The distinctive RTAP toolkit capitalizes on
Hewlett-Packard’s AdvanceNer communications
software to provide you with the features and
flexibility you need to communicate in a
multi-vendor environment. These networking
capabilities allow flexibility in mnitial system
design as well as in future system expansion
and upgrades.

By offering a wide variety of SCADA
components. including RTUs manufactured by
HP's PANACOM Duivision, Hewlett-Packard
makes it possible for you to purchase the
products neceded tor a data acquisition svstem
trom a single supplier.

Both RTAP and the HPS0O00 family of
computers have been designed to provide
a full range of price performance options.
An RTAP svstem can grow and expand
to meet your evolving data acquisition,
control system and associated applicatton
software requirements.

RTAP allows you to concentrate

on your specitic system needs
without worrying about how the data
1S going to be handled.

RTAP is a registered trademark of
Hewlett-Packard in Canada.

[ﬁ] HEWLETT
P PACKARD
Data subject to change.

Printed in Canada 1/88
5952-0229

For more mformation, contact vour local
Hewlett-Packurd ottice or contact the
Hewictt-Packard Calpary Product
Development Centre directly:

Hewlett-Packard (Canada) Lid.
3030 - 3rd Avenue NE

Calgary, Alberta

Canada T2A 6T7

(403) 235-3100

Hewlen-Packard (Canada) Lid. is a
whaolly-owned subsidiary of the
Hewlett-Packard Company,

S major designer and manufacturer

of precision electronic equipment fur
measurement, analvsis and computation.

[oadkaro

Alarm Tools for RTAP/Plus

: Software Tools for
Technical Data Supervisory Control

F S rma:] Hewlett-Packard's Alarm Tools
is a collection of programs and
programmatic routines designed
Gas Well to help develop, configure, and
operate a SCADA alarm system.
_ Each of these routines is based
{closed) ‘: on RTAP, Hewlett-Packard’s

' Real-Time Applications
Platform.
Gas Well
Alarm Tools supports the setup,
detection, and annunciation of
alarms in an RTAP database.
Alarms can be triggered by
calculation engine functions, the
scanning of process values, and
applications or users writing
l data.
|
{
|

HASW Flald |

Using the supplied processes,
you can set up alarm events and

. wall t temperature nigh | | (D€SSages, receive alarms,

27T aelbtstale presswe lyp execute alarm actions, and send

=% alarm messages to current and
historical alarm summary

AP . windows, history files, or

T printers within your SCADA

system.

(22 wel 1ESD vaive closed
¥ weil 11emp high critical
well 1 flow rate high crit} !

Figure 1. Informing Operators of Process Changes

134

Alarm Tools Features

Interactive Configuration of
Alarms

Alarm Tools includes a
configurator program, based on
the industry-standard X
Window System, which works
cn an existing RTAP database.
This graphical user interface
(GUI) provides a powerful, easy-
to-use way to configure and
medify alarms interactively.

Creation of Custom Alarm
Messages

The contents and layout of
global alarm message templates
are specified through the
configurator. Several different
items, including user-defined
text and alarm event values
(time of alarm, attribute names,
among several others associated
with the alarm} can be placed in
the templates. Because alarm-
specific event values are filled in
when an alarm message is
generated, the templates can be
reused with several different
alarms to allow each message to
be unique.

Specification of Alarm-
Dependent Actions

You can associate specific
actions with each alarm state.
These include sending messages
to other processes, issuing HP-
UX commands, and writing
values to the local RTAP
database—all subject to user-
specified conditions. Through
these actions, a flexible interface
to outside processes and
applications is achieved.

Operator Control of
Reporting Facilities

Alarm messages can be routed
to multiple destinations—
history files, printers, and
current and historical alarm
summaries (interactive GUls
based on X). Both device
messages (those destined for
printers and history files) and
window messages (destined for
the summaries} can be specified
for each alarm. All reporting
processes can be configured
through either command line
parameters or run-time
manipulation, which allows
customizing the facilities to
specific needs.

; Reporting
-—— Facilities

Alarm

1. Alarm manager interfaces
to database to aet up
praconfigured avants and
handle online configuration.

2. Alarm managar interfacas to

Manager

i2 Alarm

(R

-]~ Configurator
)

alarm configurator to aliow
anline configuration.

3. Reporting facilities handle
messages generated
by triggerad alarms.

1 ¥
Database

4, Configurator adds/modifies/
deletes alarms on database
attributes.

Figure 2, How the Alarm Tools Components Interact

135

Acknowledgement of Alarm
Messages

The alarm summaries allow
acknowledgement, updating and
filtering of alarm messages,
either separately or in groups.
This helps operators handle
large amounts of alarm
information quickly and
efficiently. Functions to
acknowledge and update alarms
are also available for inclusion
in C-language application
programs.

Development of Application
Programs

The Alarm Tools application
program interface (API)is a
collection of routines which
allows users to write their own
alarm reporting applications.
With these routines and the
various Alarm Tools processes,
user applications can be
integrated with an alarm
system. This flexibility also lets
users extend the existing Alarm
Tools functionality in new
directions.

Product Description

Alarm Tools consists of a number
of HP-UX processes running in
an RTAP environment. These
processes use several RTAP
components, including the
database, event manager, time
keeper, process scheduler and
RTAP’s message-based
interprocess communication.

The alarm configurator is an
interactive tool used to configure
alarms in an RTAP database.
Through it you can create,
modify, and delete alarms on any
scalar database attribute, as well

as maintain system variables
and defaults. No special
programming is needed.

The alarm manageris a
background process which
oversees an alarm system’s
functionality and its interface
with a SCADA system. This
includes setting up
preconfigured alarm events,
receiving {riggered alarms,
generating alarm messages from
user-defined templates (and
sending them to various
destinations in the SCADA
system), and executing alarm
actions,

Summary

Windows

/
alarm

information

Device
Reporter

History File |

The reporting facilities are
processes which handle the
messages generated by alarm
events, They include the alarm
summaries and the device
reporter. With these two
components, alarm messages
can be directed to any HP-UX
file or device, or displayed
interactively in a window on an
operator’s console.

The application program
interface is a collection of
routines to support custom
application programs. These
programs can either interact
with existing Alarm Tools
processes or run standalone.

. Reporting
| Facibies

i

T Printer(s) |

alarm

RTAP
Database

Figure 3. Alarm Tools Data Fiow

Manager

alarm
information

alarm
informaton
-

136

Appilication

Program

The Alarm Configurator

Table 1. Synopsis of Alarm
Configurator Features

Alarm Types

Alarm Tools provides two alarm
types: value change alarms and
state alarms. State alarms can
have up to 5 discrete states. (A
state is a specific condition, or
set of conditions, that can be
grouped together so that
transitions between individual
states are significant events.) 2-
state, 3-state, 4-state and 5-state
alarms are all supported. Each
alarm can behave differently,
depending on how it is
configured.

An alarm is added to a scalar
attribute within a database
point called the alarm atiribute.

This is normally a process value.

{Vector or table attributes
cannot have alarms attached to
them.) For value change
alarms, this attribute is all that
is required. For state alarms,
two additional attributes, the
trigger value and the
conditioned alarm state are
needed (these are explained in
"The Alarm Manager").

Value change alarms monitor
changes in database values due
to operator entry, application
programs, calculation engine
functions or new readings
reported from front end devices
(RTUs and PLCs). This type of
alarm triggers on any change in
the alarm attribute’s vaiue,
alerting an operator to its new
status. ‘

A value change alarm can also
be used to monitor a steady
analog value. Small changes
can be filtered out by using a
time-averaged value calculated
outside the alarm system.

State alarms monitor digital,
analog, or derived state changes
in database attribute

values. States are determined
through calculation engine
functions, custom state
funetions, RTUs, or application
programs. Data such as alarm
limits and hysteresis ‘
(deadbands} can be incorporated
into these alarms.

137

State alarms possess the
following functionality:

eYou can optionally assign the

values for each state.

»To compensate for state changes

which happen too fast for
monitoring equipment to catch,
state alarms can be configured
to handle “missed” states.

eDirectional alarm states support

different messages and actions,
depending on whether an alarm
state is entered from a lower or
higher alarm state.

Default Configuration
Panels

Each configuration panel—the
panel filled out to configure an
alarm (see figure 4)—can be
assigned default values for such
things as enabled states, alarm
class, or message values (these
are discussed in later sections).
This is a great time saver when
configuring several alarms with
the same options. Modifications
on these default panels only
affect alarms configured after
the change is made.

Enabling/Disabling
Alarm States

Alarms or alarm states can be
enabled/disabled to “fine-tune”
new alarms before activating
them, or take nusance alarms
offline.

)

Y oo 1 = o s ~ Al

1 Edit Yiew

Optisad

I---A-n..nuq
| f-m-mm-u—

}.-......._...,...‘..f.

werrieal mrvie

I <]
i, |

|
{
[
! Enmvireament Edit View Optiens
: f 3
—_— ; Alarm Attribute Selectien | 1
Point Tree :
. \ Envirenamant: AlrmSys j
Diagram ,]
} ‘g metar watbm Paint Allss: DPTI-3%0 i
i ‘ Thres State Alarm
‘ Name Eavirenment: AlrmSys
! I ! Peint Alias: DFY-200
| Alarm Attribute: Process value
: [ng ctitgar T Trigger Value Process siate
g amr iy Cenditionsd Alarm State: alarm state
‘ Ow BHr L em
‘ c',;y:': " Alarm Summary Windews - Leg Devices ————

CioCess state

Current Alarm Summary

Algn Ack

i
| —
warm I Primteris) T
i oroces I ol =
i Jams ave’ bge : Histerical Alarm Summary | Histery Flle T
T montry 3umage : | — v
= ::::: ::'T-:::f Alarm Class Miscallanseus E—
engingerng U3 . Infermatienal . E User Actsasible Ackmewlsige Status i
: i Maintenance i
: n H] D Directionz] Alarm States
Attribute List ‘:_ Precess Centrel | -
- . Clams % [11| Execuws actiens for tntormsdisty
T Class 4 I states on multi-stste jumps
= |
! State Table :
State Enable Normal Severity Ack Execue Windew Devicw :
Vaiue States State Required Actiens Meg Muag
o -
T— @ T @ .0 D T
—_ m 7 O e JE
— m o © I T T3EC
Alarm Configuration Panel

Figure 4. The Alarm Tools Configurator

Alarm Acknowledgements

Each alarm or alarm state can
be configured so that the
operator can acknowledge
receiving it if desired.

When a configured alarm is
acknowledged, the alarm system
sends an alarm
acknowledgement message to all
processes which are registered
with thiz tvpe of alarm and have
the appropriate security match.

. Ne Nermal State

G Ca=D

This message contains the
current acknowledgement
status, and an alarm
acknowledgement string.
Acknowledgement-specific
values also included in the
message are the time of the
acknowledgement and the user
ID of the process that requested
1L,

The acknowledgement state of a

particular alarm can be written
into a database attribute ealled

138

the user accessible
acknowledgement status. This
can be used to drive a process
schematic or application
program. This attribute is
specified when you configure the
alarm.

The alarm summaries (discussed
in "The Alarm Reporting
Facilities”) have the ability to
interactively disptay and change
the acknowledgement status of
an alarm.

Alarm Message Templates

Configurable alarm message
templates are available on a
system wide basis. You are
allowed to preconfigure as many
as required, through a special
message editor. These
templates, used to generate the
alarm messages employed in the
alarm system, can include
several pieces of information:

eData produced when an alarm is
triggered, such as the time of the
alarm.

sPreconfigured alarm labels.

oUser-defined text.

o Specifics about the attribute
which changed to trigger the
alarm and its point, including
attribute values and attribute or
point names.

eDatabase information from up to
three user-defined addresses.

This information is formatted
into the message template to
produce an alarm message. By
changing the existing message
templates, or creating new ones,
it is possible to have an alarm
message for most alarm
conditions. Different messages
can be specified for both the
alarm summaries and printer/
history file destinations.

Alarm Labels

When an alarm is configured, it
is assigned a severity to indicate
the urgency of the alarm and a
class which describes its type.
This user-configurable labeling
allows the alarm to be filtered at
certain destinations to hide it
from unauthorized personnel or

operators who do not care about
it. These labels can also be
printed in the alarm message
itself.

Up to eight severity names and
five class names can be defined
for a particular alarm system.
These are set globally, which is
useful if the user wishes to
change all instances of a certain
name-—changing the global
value changes them all.

Actions
Three different alarm-triggered
actions can be configured for

each alarm or alarm state.

Alarm actions can be used to:

eExecute HP-UX commands

(such as initiating a script for an
automatic shutdown of related
processes).

o Send information about an

alarm to local or remote RTAP
application processes.

e Write a value to the local

database.

If an action is configured but not
enabled, it does not execute.
This allows shutting off actions
when the alarm is being worked
on.

Each of the actions can have
contro] information specified for
them. This includes:

eExecution delayed by a specified

time period (up to 24 hours).

sExecution conditional on the

evaluation of a logical
expression {(comparing a
database value with a constant
or another database value).

139

Security

The Alarm Tools configurator is
the main route for changing the
user’s alarm system
configuration values.” The
configurator can be set up to
prevent unauthorized
configuration changes, by
running it in read-only rather
than edit mode.

Alarm Configuration
Maximums

You can have more than one
alarm per database point. In
fact, a point can contain as many
alarm attributes as it has
attributes (subtracting the
extras used by each n-state
alarm), up to a maximum of 255.
Other configuration limits
(including those discussed in the
preceding sections) are
summarized in Table 2.

Table 2. Alarm Tools Maximums

The Alarm Manager On startup, the alarm manager
attaches events to the
conditioned alarm state
attribute of each configured
alarm. Any change in the
conditioned alarm state
generates a database event,
which in turn sends a message

to the alarm manager.

Table 3. Alarm Ma Feat

The alarm manager is a
background process which
automatically handles the
setting up and detection of
alarm events and the processing
of alarm-generated data.

Behavior at the conditioned
alarm state is controlled
through your specification of

enabled states, state values and
the "normal” state. For state
alarms, you define the function
used to determine new alarm
states. This function, stored in
trigger value attribute, can be
built using existing calculation
engine functions.

The alarm is then processed, the
appropriate alarm messages
sent out and, any configured
actions executed.

Alarm
Manager

Event
Manager

B

hd R4

Conditioned
Alarm State
Attribute

Alarm
Configuration

Information

e e ——— e

Figure 5. How an Alarm is Managed

140

()

1. Change in alarm attribute
value occurs.

2. Change in value triggers
database event.

3. Message sent to event
manager.

4, Alarm event sent to
alarm manager.

§. Alarm manager reads
database for configuration
data.

6. Alarm message is sent
out after processing alarm.

The Alarm Reporting
Facilities

Table 4. Components of the Alarm
Reporting Facilities

The Alarm Summary
Windows

Current and historical alarm
summartes can be used to
display and manipulate a subset
of alarm messages in an X
window at the operator’s
console. These summaries
support interactive filtering and
acknowledgement.

Messages appear in reverse-
chronological order, each new
message entering the display
window at the top of the existing
list. This continues and the list
builds towards the top of the
window. When the summary is
filled, the list is redisplayed
starting halfway down the
display area. Older alarms are
available through scrolling.

A current alarm summary
maintains a list of all current
alarms within the alarm
environment, showing only one
mnstance of a particular
alarm-—its latest state.
Subsequent messages for the
same alarm blank the one

Current envirenment

Window number and type

{ Environment

already displayed and the new
message is added to the top of
the display list. The rest of the
list does not change.

A historical alarm summary
keeps a list of the last n alarms
since startup, wheren is a
number defined by the operator
(up to 10,000). The window may
contain multiple state changes
of the same alarm. (The
historical alarm summary
window does not blank past
alarms.} New alarm messages
are added to the display window
as they occur. Once the limit of
n alarms has been reached, the
old alarms are discarded in a
first-in first-out fashion.

—_
s [[1 CASW AlrmSys |

Edit View

CASW legend

[

Option meny bar

#* ack required
. has been acked

Explanation of status flags

~ old ack required

= updated message

Scroll bars for back-paging
and viewing long messages

1=90-03~06 10:46:35 well 2 static pressure low critical = 10 kPa

Alarm messages

Status flags

! 90-03-05 14:45:25 steam to generator static pressure low critical = ¢ kPa

" 1 90-02-05 14:45:25 steam to generator flow temperature low critical = ¢ Deg C |

"% 90-02—-05 14:45:25 well 3 static pressure low critical = 0 kPa

i_ ! 90-02-05 14:45:25 well 3 flow temperature low critical = 0 Deg C

‘% 90-02-05 14:45:25 well 3 flow rate low critfical = 0 E3m3/d
90-02-05 14:45:25 well 2 flow temperature low critical = 0 Deg C

‘% 90=-02~05 14:45:25 well 1 static pressure low critical = 0 kPa

! 90-02-03 14:45:25 well 1 temperature low critical = ¢ Deg C

- R —— =

Figure 6. An Alarm Summary Window

141

|
|

! old/new ack required .

)

Table 5. Summary Window Specifications

Logging Alarm Messages

The Device Reporter:

The basic function of the device
reporter is to act as a message
router for messages sent out by
the alarm system. Messages
destined for a history file are
sent directly to the file, while
messages routed to a printer are
sent via a print device spooler.
Acknowledgement messages can
be sent to these log devices as
well.

Logging to a File:

Alarm messages can be logged to
a history file. When they are,
all alarm information, such as
the acknowledgement status,
time of the alarm, alarm class
name, alarm severity name, is
prepended to the original alarm
message. The message that is
sent to the history file is
specified when vou configure the
alarm,

The information in a history file
can be filtered for use in other
applications. HP-UX processes
such as grep and cut enable the
generation of reports from the
history file.

Logging to a Printer or
Device File:

You c¢an produce hard-copy or
device-file historical records

of all alarm system messages.
By specifying a print device
spooler when the device reporter
is started up, you can direct all
alarm messages to hard-copy
output as they cccur. The alarm
message sent to the printer is
prefixed with a character
identical to the alarm
summaries to indicate current
acknowledgement status.
Messages to be sent to the
printer are specified when you
configure the alarm.

142

The Print Device Spooler:

The spooler provides the alarm
system with an uninterruptible
destination for alarm system
messages. It spools (stores, and
prints when the destination is
ready) messages going to a
specified device (as does the
HP-UX Ip command). The
spooler also handles failover or
routing to another device should
the first fail {functionality not
supported by Ip).

If an alarm environment fails
for any reason, the spooler has
the capability to recover and
continue the print job when the
environment recovers. Also, if a
failure occurs when the spooler
is partway through printing a
message, it is capable of starting
the job over again (printing out
the whole message) on the next
device in the failover list.

Each spooler process has an
associated environment, and can
be named according to the
functionality of the device it is
“talking” to. Up to four failover
printers can be handled by each
spooler process.

Table 6. Print Device Spooler
Features

Alarm Tools Appliéation Program Interface (API)

The Alarm Tools Functions

Several calls can be made to an
alarm system to request actions
or ask for information. These
calls can be included in any C-
language program to help
interface with an alarm system
and its associated RTAP
database. The six programmatic
functions included with the
Alarm Tocls are described in
table 8.

Table 8. Alarm Tools API

Alarm Tools uses the RTAP messaging system to pass information
between the alarm manager and other applications.

Alarm messages are handled by cither Alarm Tools processes or
custom C-language applications written with Alarm Tools function
calls.

143

18

)

Alarm Tools is only one
component of Hewlett-Packard's
comprehensive RTAP/Plus
SCADA software platform.
Other components of the RTAP/
Plus platform include:

eReal Time Applications
Platform (RTAP)—the basis of
RTAP/Plus—for building
databases and related
functionality

o User Interface Platform (UIP)
for building intelligent user-
Interfaces

eTrend Tools for real-time
collection and visualization of
data trends and

sReport Tools for retrieving,
summarizing and presenting
database information in a report
format.

For more information on RTAP/
Plus, contact:

Dean Kagawa, Steve LaCourse
or Todd Wunderly

Calgary Product
Development Center

100, 3030 - 3rd Avenue N.E.
Calgary, Alberta, Canada
T2A 6T7

Telephone: (403)235-2400
Fax: (403)272-2299

Specifications

144

i

n HEWLETT
PACHARD

For more information, contact your local Hewlett-Packard sales
office listed in your telephone directory or one of the HP

regional offices listed below:

United States
Hewlett-Packard Company
4 Choke Cherry Road
Rockville, MD 20850

(301) 670-4300

Hewlett-Packard Company
5201 Tollview Drive
Rolling Meadows, IL 60008
(312) 255-9800

Hewlett-Packard Company
5161 Lankershim Blvd.
No. Hallywood, CA 81601
(818) 505-5600

Hewlett-Packard Company
2015 South Park Place
Atlanta, GA 30339

(404) 955-1500

Canada

Hewlett-Packard Ltd.

6877 Goreway Drive
Mississauga, Ontario L4VIM8
(416) 678-9430

Japan
Yokogawa-Hewlett-Packard Ltd.
29.21, Takaido-Higashi 3-chome
Suginami-ku, Tokyo 168

(03) 331-6111

Latin America

Latin American Region Headguarters
Monte Pelvoux Nbr. 111

Lomas de Chapultapec

11000 Mexico, D.F. Mexico

{905) 596-79-33

Australia/New Zealand
Hewlett-Packard Australia Ltd.
31-41 Joseph Street

Blackburn, Victoria 3130
Melbourne, Australia

(03} 895-2895

Far East
Hewlett-Packard Asia Ltd.
22/F Bond Centre

West Tower

89 Queensway

Central, Hong Kong

{5) 8487777

Germany

Hewlett-Packard GmbH
Vertriebzentrale Deutschland
Hewlett-Packard-Strasse
Postfach 1841

6380 Bad Homburg v.d.H.
Federal Republic of Germany
06172/400-0

France

Hewlett-Packard France
Pare d'activite du Bios Briard
2, avenue du Lac

81040 EVRY Cedex

01/60 77 83 83

United Kingdom
Hewlett-Packard Ltd.
Customer Information Centre
King Street Lane

Winnersh

Wokingham

Berkshire

RG11 5AR

0734 777828

Italy

Hewiett-Packard Italiana S.p.A
Via G. di Vittorio, 9

20063 Cernusco Suj Naviglio (MI)
Milanc

02/923691

European Headquarters
European Multi Couniry Region:
Hewlett-Packard S.A,

Route du Nant d’Avril 150

1217 Meyrin 2 - Geneva

Switzerland

(41)22/83 8111

Africa/Middle East
Hewlett-Packard S.A.
Central Mailing Department
P.0. Box 529

1180 AM Amstelveen

The Netherlands
(31120/547-9999

Technical information in this document is
subject to change without notice.

RTAP is a registered trademark of
Hewlett-Packard in Canada.

Printed in Canada 05/90

5952-2339

145

U rilicanc

User Interface Platform
(UIP) for RTAP

Technical Data ‘ Software Tools for
Supervisory Control

l‘.i"_ Hewlett-Packard’s User Inter-
- — — — il L face Platform (UIP) is a flexible

toolkit for creating graphic user
interfaces. Based on the indus-
try standard X Window System,
the UTP provides windows,
menus, controls, and graphics.
It also provides access to data-
base values from SCADA sys-
tems based on HP’s Real-Time
Applications Platform (RTAP).
UIP runs on the HF 9000 series
300 and 800 computers.

Key UIP Features

RtapScBuilder: an interactive
program for creating symbols
and process schematics.

- IR

o . < .21

RtapCpBuilder: an interac-
tive program for creating control

F TN W e B

Lige Styjes Svmkals Primitives Dveamics FiMl Styes IGLOO libral'y: an Ob._jeCt'Ori'
ented C library for creating

—- n / M N.NN graphic user interfaces.
— I ICIH (V2|2

- DO
----- =% -

Frgure |- Rap=cBuilderand ies Pallettes

146

Product Description
RtapScBuilder

Designed specifically for build-
ing symbols and schematics,
RtapScBuilder is an interactive
application for drawing ani-
mated process diagrams. Its
CAD-like drawing tools help you
create the visual portions of
schematics while its "dynamics”
define the behavior of symbols
in response to data value
changes.

Commands and tools are ac-
cessed through pull-down
menus, palettes, and accelerator
keys (see Figure 1). The
builder’s workspace can be re-
sized, zoomed, and panned.

A schematic or symbol is built
by placing graphic primitives in
the workspace and adding dy-
namics to link them to external
sources. Reusable collections of
primitives and dynamics, called
symbols, can be created and
then placed, similar to primi-
tives. The builder’s alignment
tools, such as the snap-to-vertex
and snap-to-grid, help you place
components accurately and eas-
ily. The components can then
be selected for editing, moving,
deleting, raising, or lowering.
When finished, the schematic or
symbol is saved to a disk file for
use by IGLOOQO applications and
in other higher-level symbols or
schematics.

Table 1 - Summary of RtapScBuiider's Features

General

Opuimized for creating symbbls and process schematics
Provides CAD-like drawing tools
Workspace is a resizable window

Graphic Primitives

Basic drawing »
primitives .
*
-
-
.
»
Visual .

characteristics

Drawing Aids
Alignment .
tools
-
-
Miscellaneous
tools -
L]
*»
-
Dynamics
Analog .
dynamics .
-
-
-
-

147

Line and polyline
Polygon

Rectangle and square
Ellipse and circle
Ares:

Text:

Pie. chord. and open

Three sizes

Normal or bold face
Composite-edge primitive for combining curves and lines
into fillable shapes

8 line styles: Solid, dashed, doned, and combinations
2 fill styles: Solid or empty
Colors: 12 colors for 98545A monitors
48 colors for other monitors
Solid, blinking, pulsing, and flowing colors
Snap-to-grid: Enabled or disabled
Visible or invisibie grid
User-definable grid size
Movable grid
Snap-to-vertex: Enabled or disabled

User-definable gravity
User-definable snap potnts called markers

Limits lines to horizontal or vertical
Limits ellipses to circles
Limits rectangles to squares

Constrain key:

Default coordinates for sizing symbols and schematics
Zoom and pan drawing surface

Second view in a different window

Raise and lower components

CTRL key reverses direction arcs are drawn

Comirols a primitive’s color. line style. and fill stvie

Controls one or more pritnitives

Threshold levels define states; changes in current value

cause State transitions

Appearance of primitives in each state is defined by editing the
primitives and then 1aking a "snapshot”

Multiple threshold levels are supponied

Threshold values can be entered in the builder. read from an RTAP
database, or set programralically

Current value can be obtained from an RTAP dawabase or

se1 programmatically

Test mode provides the ability to interactively check ali siates to
cnsure that the dynamic works as intended

e

Filt « Mutlti-laver and mulu-color fills are supported
dynamics « Fill any closed shape: polygons, ellipses, circles. closed arcs. and
composile edges
« Operate in one of three modes: Bar graph, Layer, Level meter
+ Four fili directions
« Transition levels define layers/colors: currem value defines
current fill ievel
+ Multiple transition levels are supported
« Transition tevels can be entered in the builder, read from an RTAP
database, or set programmatically
o Current value can be obtained from an RTAP database or
set programmatically
» Test mode provides ability to interactively verify that the fill
dynamic works as intended

Control the format and contents of 1ext

Support printf)-style numeric formats

Fixed and variable text can be intermixed

Can interactively test the dynamic 1o make sure it

behaves correctly

+ The current value that controls the text content can be obtained from an
RTAP database or set programmatically

Format
dynamics

Symbol Management

» Default symbol directory
» Symbols can be loaded into a palette for placement
« Symbols can be retrieved for editing

Programmatic Access
» Components in schematics can be named and then referenced by
application programs
+ Primitives, dvnamics, and symbols ¢an be controlled programmatically
+ Dynamics in a schematic can be driven directly from an RTAP

|
!

Schematics and Symbols

Schematics are graphic displays
which, typically, represent the
physical systems and processes
monitored by an RTAP SCADA
system. Examples of typical
schematics include gas fields,
substations in power distribu-
tion systems, filter stations in
water distribution systems, and
telecommunications network
maps.

Schematics consist of primitives,
dynamics, and symbols. Primi-
tives are the graphic compo-
nents, such as lines and ares.
Dynamics are objects that ani-
mate or update primitives at
run time based on values from
an external source, usually an
RTAP database. Symbols are
reusable collections of primi-
tives, dynamics, and other sym-
bols (see Figure 2).

Typically, symbols are used to
model repetitive components of

datab .
alabase a physical system: valves,
e St Tt T T Ss T TES T LE T T wEng T T T T T T T
A i ‘ 25 ! 25 517 20 I
: F‘A’r N.NN “ : PI=¥N l | P A Kea DEGC ' """"‘—H—'—‘—WI —m— !
| - won | ~ |) ! i “"ﬁ.iié"@‘;fh. !
n:> il ey o) G ()7 LU
‘ r-i.T \r i : J l ol l - = I
ooET A —_ i j _ Be= i
Primitives Symbo! Symbol made up Schematic

and Dynamics of three subsymbols

Figure 2 - Forming a Symbol Hierarchy

148

transducers, meters, and so on.
By building a library of common
symbols, such as the standard
ISA set, you can reduce the time
and effort required to build
schematics.

In addition to primitives and dy-
namics, symbols can contain
other symbols. Any symbol con-
tained by another is called a
subsymbol. For example, a me-
ter run symbol with three
transducers would contain a top-
level symbol with three
transducer subsymbols. The
subsymbols can, in turn, contain
other subgymbeols. This nesting
forms a hierarchy that can con-
tinue to any depth. By building
the symbol hierarchy to match
the hierarchy of the RTAP data-
base, you can make schematics
which are reuseable. A single
schematic can be used to display
identical branches of the data-
base.

¢ RiapScBoidder

Graphic Primitives

Primitives are the visual ele-
ments you draw with: lines,
polylines, and so on. Closed (fil-
lable) shapes called composite
edges can be created by combin-
ing lines, polylines, and open
arcs. Figure 3 illustrates creat-
ing a composite edge.

Each primitive has a number of
visual characteristics you can
set in the builder, and control
dynamically or programmati-
cally:

Color

Depending on the display hard-
ware, you can choose from a pal-
ette of 12 or 48 colors. These in-
clude solid, blinking, pulsing,
and flowing colors. A flow color
consists of several palette items
of the same color pulsing at dif-
ferent times. By sequentially
assigning the items of a flow

Deste
Bring to Fron
! Sana £ Back
I Set Name...

! a1 Color

Zet Line Style
W21 Fill Stvie
Maks Composhe Edge
Break Composite Edge
Fympols

Crnamice

tewr b MGaE

w

Figure 3 - Creating a Composite Edge

149

color to a series of fillable
shapes, you can produce the il-
lusion of movement.

Line Style

Various line styles—solid, dot-
ted, dashed, and combinations of
these—are provided for open
primitives and the outlines of
closed primitives.

Fill Style

For closed primitives (ellipses,
pie arcs, chord arcs, polygons,
rectangles, and composite edges)
you can choose from two avail-
able fill styles—empty or solid.
You can also create animated
partial fills using fill dynamies.

Drawing Aids

RtapScBuilder provides many
features to help build symbols
and process schematics.

The scale for sizing symbols and
schematics is user-selectable.
To provide a starting point, the
builder provides two defaults:
one for schematics and another
for symbols.

Similar to a draftsman’s ruler,
T-square, and angles, Riap-
SeBuilder’s alignment tools help
you draw the components of
schematics and symbols. The
snap-to-grid tool is used for
aligning primitives and symbols
when placing them on the view.

The grid is a matrix of points
that covers the entire work-
space. When a component is

placed, it “snaps” to the nearest
grid point. The grid can be de-
activated for drawing freehand.
It can also be repositioned, re-
sized, and made invisible.
Another alignment tool is the
snap-to-vertex feature. When
enabled, snap-to-vertex makes
components placed on the view
snap to the vertices of other
components. This makes it easy
to connect primitives and sym-
bols. By setting the “gravity” of
the vertices, you can specify how
close a component must be in
order to snap to a vertex. You
can also create yvour own snap
points called markers.

Figure 4 shows how markers
help when positioning compo-
nents. Without markers, the
center of the pump snaps only to
a grid point and can not be eas-
ily aligned with the pipes. The
usual workaround is to turn off
the snap feature and manually
position the pump. However, by
adding markers to the pump
symbol, you can define your own
snap points and positioning can
be done rapidly and accurately.
These user-defined snap points
become part of the symbol.

The constrain key is a third
alignment tool. Pressing the
control key while you are defin-
ing a primitive causes Rtap-
ScBuilder to constrain the
primitive to a certain shape. El-
lipses are constrained to circles,
rectangles constrained to
squares, and lines, polylines,
and polygon edges constrained
to horizontal or vertical.

]
-4

Figure 4 - Using Markers to Help Align Symbols

.Another feature of Rtap-

ScBuilder allows you to display
the current symbol or schematic
in a second window. This is use-
ful when you have zoomed into
the schematic to work on some
detail and need a quick look at
the overall schematic.

Dynamics

Dynamies link a schematic’s
run-time appearance to values
from an external source, usually
an RTAP database. They define
the schematic’s appearance and
how it changes for different val-
ues from the data source.

i RiapScBatider

There are three kinds of dynam-
ics designed for different types
of animation (see Figure 5):

An analog dynamic resolves an
analog value into one of a num-
ber of states, and then updates
the visual characteristics—color,
line style, and fill style—of one
or more primitives according to
that state.

A fill dyramic models one or
more analog values by filling
part or all of a closed shape—an
ellipse, rectangle, polygon, arc,
or composite edge—in a speci-
fied mode and direction. There

- Fide Edit Yiew Settings |
Brimitives = 11%
Zalars i
Line Styiee 1
FM Trdes |
Dynamica "D J i
. -— LY . 3
-------- - Drasmics e e e e e e e e e e
—_ ﬁ 37151 units — 368.77 anits
MN.NN T T T T T
e — Format Dynamics [
Analeg Dynamics & |
ity 1
i
i
[
1]
E
Fill Dynamics !
- .

Figure 3 - Three Types of Dynamics Are Availabie for Animating Symbols

150

’

Bar Graph
. -100 —- 100 . -100

(s (7S 75
| i '
;50 ‘ +50 50

|. ‘ 5

:"_; ’ .

CV=ad Cv=70 CV=gE

D Graz;

Figure 6 - The Three Modes of a Fill Dynamic

are three fill modes—bar graph,
layer and level meter (see Fig-
ure 6)—and four fill directions—
up, down, right, and left.

A format dynamic represents an
analog value as a combination of
string and numeric data.

Creating Smart Symbols;

Figure 2 contains an example of
a simple transducer symbol.
Visually, this symbol consists of
six primitives: an ellipse, two
lines, and three text primitives.
In addition, the symbol has a
link to the RTAP database and
an analog dynamic that defines
three states with corresponding
colors (high alarm = flashing
red, normal = green, and low
alarm = flashing yellow}). Ifthe
symbol is defined to take advan-
tage of the RTAP database’s hi-
erarchical structure, even the
database link becomes reusable,
Each time you use this “smart”
symbol, you get the primitives,
the behavior {the analog dy-
namic with its three states), and
the database link.

Symbol Management

To help organize your symbols,
RtapScBuilder places them in a
default symbol directory. All
schematics go in another default
directory. HP-UX environment
variables are used to specify the
default directories, so individual
users can specify their own di-
rectories.

When you need to access sym-
bols or schematics which are not
in your default directory, the
builder’s file-select box helps
you traverse the directory tree.

To use a symbol in a schematic
or higher-level symbol, you load
it into the builder’s Symbols pal-
ette. It can then be selected and
placed in the workspace as often
as necessary, just like adding
primitives. The Symbols palette
can hold up to eight symbols at
once; when you add the ninth
symbol, the builder automati-
cally replaces the one you least
recently used.

151

=]

Level Meter

s 100 o -100 . -100

-75 '_i 75

Programmatic Access

When you create a schematic
with RtapScBuilder, you are de-
fining its appearance and visual
behavior. To display it at run
time, you write a program using
the IGLOO library to load the
schematic from an archive file.
Once the schematic is loaded,
you have complete control over
its appearance and behavior.

IGLOO provides facilities to
help connect a schematic to an
RTAP database. If needed, di-
rect programmatic control of in-
dividual components is available
using names assigned in Riap-
ScBuilder. By detecting user
actions, the application can cre-
ate hot spots—areas that the
user clicks on with a mouse to
initiate actions such as popping
a control panel out of the sche-
matic.

s

fiar

-
i

RtapCpBuilder } Ripcpkuier

LilJ [Twels View Settiags] Centrels
Like the schematic builder, | © Butten lg:r_a
RtapCpBuilder is an interactive ~ Gas Flow Control ™\ |
window-based program (see Fig-

ure 7). Using commands ac- Setpotnt: O darten

cessed through its menu bar, a = E—
control panel is created, then I‘l o I»I mamalaay am | =
saved to a file. The builder pro- o

vides commands for editing, Actual Flow: — E3m3/da —
moving, resizing, and deleting) e ¥ T —
controls. Individual controls —
can be named for programmatic \ / — D
access. Once controls are placed =

on the view, you can switch to (_Accept) (__Reset) (_ Cancel) T

test mode to verify their opera-

tion. S =8

Figure 7 - RtapCpBuilder and its Controls Palette
Control Panels

Control panels are interactive

displays used by application pro-

grams to get input from users.

For example, a simple control Table 2 - Summary of RtapCpBuilder's Features

panel might let the user specify

tnoint f 1 si General
a setpoint for a well site. o [Interactively place. move. resize, delete, and edit controls
+ Test mode for previewing the contro} panel’s visual behavior
Control panels are made up of » Instance names support programmatic access
: : + Workspace is a resizable window
cqntrols graphw_oﬁbjects de £ + Pan large drawing surfaces
?’1gned to get specific types o) « Pop-up edit paneis for configuring individual controls
input from users. There are dif-
ferent types of controls for ac- Controls seroll bars for val
: . « Scroll bars for valuators:
FePtlng different ty}_)es of ~Horizontal and vertical
input—text, numeric values, se- Interactive and normal modes
lections from groups of options, « Push buttons for triggering actions:
and so on. Specify a default button
» Radio buttons for selecting one of a group:
. Group radio buttons in RtapCpBuilder
To use a control pal’lel in an ap- s Check boxes for selecting any number of options from a group
plication program, you simply + Frames provide a viewport onto a larger view:
load it using facilities contained gﬂl"“ bars f°f"P;""'“-9 the view
. . . 1, or 2 scroll bars
in the IGLOO lib_rarl},._ The pro- s Text editors for entering a single line of text
gram can access individual con- « Page cditors for entering multiple tines of text
trols through the names you as- + Group boxes for grouping related controls:
: : Three title alignments: left. right. and center
signed when you built the panel. e - F1g
an Y . h t'p £ Threa comer styles: round. square, and beveled
ou can customize the actions o Adjusiable border widih
the control panel by writing Statie 1251 for lubeding control pancis:
small C functions called han- Three alignment styles: lefi. right. and cemer
dlers. Each handler is associ- Drawing Ai
. rawing Aids
ated with one or more controls. e Snapto grid: Enabied or disabled
User-detinable grid size
v Shrinkwrapping

152

Controls

Often control panels represent
physical controls such as but-
tons. Since applications need to
get many different types of in-
put from users, there are differ-
ent types of controls:

Scroll Bars

A scroll bar is used to enter a
value within a specified range,
or to scroll through the informa-
tion in a window. For example,
a scroll bar could be used to al-
low an operator to enter a set-
point for a control loop.

Push Buttons

Push buttons are used to start
immediate actions. Often, they
are used in applications to give
the user a way to signal comple-
tion of a task, such as entering
data or reading a message. -

Radio Buttons

Radio buttons operate like the
channel-select buttons on a car
radio: they let the user choose a
single option from a group.
Whenever the user “pushes” a
radio button, the previously se-
lected button is no longer se-
lected. For example, radio but-
tons could be used to let opera-
tors select one of several avail-
able communication rates—300,
1200, or 9600 baud.

Check Boxes

Check boxes are for selecting
zero or more options from a
group. Whenever the user se-
lects a check box, its value
toggles. For example, an opera-
tor could use check boxes to en-
able or disable alarm options
like high limit, low limit, and
rate-of-change.

Frames

Frames hold views—windows
that display text, control panels,
graphics, or tables. The under-
lying view is usually larger than
the frame: users scroll through
the view using scroll bars on the
right side and bottom of the
frame.

Text Editors

Text editors are for entering or
editing a one-line text string.
Applications use them to obtain
strings such as file names from
the user.

Page Editors
Page editors are for entering or
editing multiple lines of text.

Group Boxes

A group box is a titled border
used to organize related con-
trols.

Static Text

Static text is for adding titles to
controls panels.

153

Drawing Aids

RiapCpBuilder provides draw-
ing aids that help vou create
control panels quickly and effi-
ciently.

The snap-to-grid tool helps align
and place controls. It is used for
positioning controls in control
panels. You can enable the grid
to make components you place
“snap” to grid points, or disable
it to place controls freehand.
You can also adjust its size—the
distance between adjacent grid
points.

To conserve space on the screen,
the shrinkwrap feature sizes the
control panel so it is just large
enough to display all the con-
trols.

-

_—
A,
.o R
e [= Vi T]
[T AL, e———
i I) T Thew Jaisinge
- =t
_ R R ——
: o T Bl
L |
Schematics - — & B o
; — &0 a
—_— T]

main (}
{

Igloo Code

}
?vonl Handleri {)

}
‘Evmt Handler2 {)

The IGLOO Library

UIP-based user interfaces have

i three components—schematics,

control panels, and application
code (see Figure 8). Schematics
and control panels are both cre-
ated with interactive builders.
To access schematics and control
panels from an application, you
use the IGLOO library.

IGLOO combines industry stan-
dards for windows and graphics
with event-processing facilities,
dynamics, and access to RTAP.
This gives you a single consis-
tent application program inter-
face (API) to all these resources,
50 you have only one learning
curve to master (see Figure 9).

Applications

IGLOO ;
! ‘ |

Xeray! | SIlerulu 1 |
o :
X Ubrary | | RTAP

HPUX

Figure 9 - The Structure of IGLOO

IGLOOQO is an object-oriented C
library. Rather than containing
functions, it contains classes.
Each class defines the data and
methods (functions) of a type of
object. Classes act as templates

_—
- i'
|
| C e) (_Eom) (CCanst)
a_— ! :
'
Figure 8 - The Elements of a UIP Implementation
-~

for creating instances of these
objects. Each instance of a class
is unique because it has its own
copy of the data defined by the

class. All instances of a class
can perform the same tasks be-
cause they share their class’s
methods. Methods are invoked
by sending messages to the in-
stances. Figure 10 contrasts the
object-oriented and procedure
paradigms.

Each class in the library imple-
ments one of the building blocks
of a graphic user interface. To
use any component, you simply
create an instance of the appro-
priate class. Newly created in-
stances have logical defaults so
they can be used with minimal
initialization. Messages are
used to change these defaults as
well as to perform other tasks.
The set of messages which the
class supports forms a well-de-
fined programmatic interface.
As an example of a class, con-
sider the rtDynamicWindow
clags. This class implements the
type of user-controllable window
that serves as the main window
for most applications (including
the two builders). Each dy-
namic window in an application
is an instance of this class.

The rtDynamicWindow class
contains all the data needed to
describe a dynamic window:
size, screen position, title, and
so on. It also defines methods,
such as move and resize, for con-
trolling the window. Each in-
stance of rtDynamicWindow has
all the data and methods de-
fined by the class. To use an in-
stance, you simply send mes-
sages telling it what to do.

IGLOO is a true object-oriented
library, providing data and
method inheritance. encapsula-
tion. message passing, and run-
time binding. Since IGLOO _
u=es standard C syntax, vou do

Function 1

Function 2 =~ ———= ;
i Proc eduta:

Data |
‘ paradigm

Funetion 3

!
. . !
P e
"a g & Qoiect Oriented
: CE o paragigm
"’“-...,,_‘_ — \F’/‘
' S~ B —
{Mathod, - Data ! Methed | Messuge -
[e . :
e
L z .
N £ 4’0‘,
&

Figure 10 - Procedural verses Object
Oriented Paradigms

not need to use a preprocessor,
and you can use standard devel-
opment tools such as cdb.
Classes are linked to an applica-
tion as externals, and message
passing is done using a single C
function—called rtTell().

IGLOO supplies more than 50
classes of user-interface objects.
The classes used most often are
outlined in Table 3.

-System Gadget Box

|“ Appliralilon Wame |
Settings

! M Edit

Window Classes

IGLOQ applications use differ-
ent types of windows for differ-
ent purposes. Typically, an ap-
plication has a main window it
uses to display commands and
hold its workspace. Some win-
dows are used primarily for dis-
playing output such as text or
controls, while others are used
mainly for input.

Most UIP applications appear in
dynamic windows, which users
can move, resize, minimize,
maximize, and close. Users can
also bring up pop-up menus
from an optional menu bar (see
Figure 11). Most of a dynamic
window is occupied by its view-
port and view. The viewport is
a window the user “looks
through” to see the view. The
view, which can be much larger
than the viewport, is the user’s
workspace. To see any part of
the view, the user pans it using
scroll bars on the right side and
bottom of the dynamic window.
All this user interaction is

_-Title Bar

. Menu

! | Srwinkweap Virw
: " 3hrnkwrar Padar
RESLEERUT

-

~§ Bar

Menu

View

. Scroll
Bars

Size
Box

Figure 11 - The Components of a Dynamic Window

155

Table 3 - Summary of IGLOO Classes

Window Classes

rtDynamicWindow A main window for applications
rtFrame A viewport onto a view
rtlcon Holds a text label and a pixmap
rtStaticWindow Optimized for transient windows
(such as menus and dialog boxes)
rtTransparentWindow An input-only window
rtWindow The superclass of all window classes
View Classes
rtGraphicView For displaying IGLOO's graphic objects
rtStarView For displaying Starbase graphics
rtTableView For displaying lists or tables of data
rtView For displaying text and controls
Control Classes
rtCheckBox For selecting a variable number of options
rtGroupBox A titled border for grouping related controls
rtPageEdit For entering multiple lines of text
rtPushButton For initiating actions
rtRadioButton For selecting one of a group of options
riSerollBar For entering a value within a set range
rtStaticText For displaying static text
rtTextEdit For entering a single line of text
Dialog-Box Classes
rtDialogBox For building custom dialog boxes
rtFileSelect Prompts the user for a file name
rtMessageBox Displays messages the user must acknowledge
rtPromptBox Prompts a user for text input
Command-Initiator Classes
rtMenu Allows the user to select commands
rtMenuBar Gives a user access to various menus
rtPalette A graphic menu that holds icons

Event-Processing Classes

rtEventDispatcher
rtEventHandler

rtEventMonitor
rtFunction

Graphic Classes
rtAre
rtCompositeEdge

rtEllipse
rtGraphicsText
rtPolygon
rtPolyline
rtSymbol

Dynamics Classes
rtAnalogDynamic

rtFillDynamic
rtFormatDynamic
rtRtapDbPoller

Archive-File Classes
rtBinarvArchiver
rtTextual Archiver

Superclass to all classes that have events

Passes event information plus additional parameters to

your event-handler functions
Connects the application to multiple event sources
Passes parameters to your event-handler functions

Impiements three types of arcs: open, pie, and chord
For combining instances of rtPolyline and rtAre into
closed shapes

Implements ellipses and circles

Implements scalable text

Implements polygons, rectangles, and squares
Implements lines and polylines

Implements symbols. Each can contain graphie
primitives, dynamics, and subsymbols

Change the characteristics of primitives based
on external values

Allows partial and complete filis of closed shapes
For displaving formatted text

Connects dvnamics to an RTAP database

For saving and retrieving schematic archive files
For saving and retrieving control-panel archive files

Data-Collection Classes

rtLinkedList
rtStack

Implements a tinked list data structure
Implements a stack data structure

156

11

handled automatically by the
dynamic window-—you do not
have to write any code,

View Classes

An interactive application needs
a workspace to convey informa-
tion to the user. Normally, you
use a view so the workspace can
be put in a frame or a dynamic
window (dynamic windows have
built-in frames). Views commu-
nicate with frames to handle
panning and clipping automati-
cally.

There are different kinds of
views for showing different
kinds of output. The rtView
class implements a view used to
display text and controls. Con-
trol panels created with
RtapCpBuilder can be loaded
into an instance of rtView.

Instances of the riStarView
class display Starbase graphics.
This allows you to easily port
existing Starbase applications
not originally written for use in
windows. Instances of
rtStarView take care of clipping
and panning the output of the
Starbase application.

Graphic views, along with IG-
LOO’s graphic objects, provide
more powerful graphic capabili-
ties. Instances of rtGraph-
icView are designed for display-
ing IGLOO’s graphic objects.
When placed in a dynamic win-
dow, a graphic view automati-

cally adds a cascading menu to
the dynamic window’s System
menu. The new menu allows
the user to interactively zoom
the view, and to control resizing
and panning. The graphic view
works with the dynamic window
so that its scroll bars indicate
the portion of the view which is
currently visible. All zoom and
pan operations are handled by
the IGLOO library—no pro-
gramming is required. Re-
peated zoom operations are
stacked, so the user can back
out one level at a time, or all the
way to full view with a single
command.

A fourth type of view, rtTa-
bleView, is for displaying lists
and tables of data. Simply sup-
ply a list and the table view for-
mats it into rows and columns.
If the user clicks on an item in
the list at run time, the table
view informs your application so
it can respond appropriately.

Control Classes

Controls are graphic objects,
used to get input from users.
There are different types of con-
trols for getting different types
of input: values, actions, selec-
tions, and text. Each type of
control is implemented by an ob-
ject class.

Like all interactive IGLOO ob-
jects, the control classes can
automatically handle low-level
user interaction. Buttons high-
light, the slide box in a scroll
bar moves, and page editors al-
low the user to edit text—all
without any application code.
When the user finishes interact-
ing with a control, the object in-
forms your application so it can
respond appropriately.

Dialog Box Classes

Applications use dialog boxes to
interact with the user. Typi-
cally, each dialog box is for a
specific purpose: getting a file
name, accepting a command to
start a pump, and so on. Dialog
boxes are transient in nature—
they pop up out other windows
and disappear when they are no
longer required. Dialog boxes
are modal—they force the user
to complete the interaction be-
fore performing any other ac-
tions. Once the user has dealt
with it satisfactorily the dialog
box allows the application to
continue,

There are several classes of dia-
log boxes, each suited to a differ-
ent type of interaction. Message
boxes normally display mes-
sages that the user must ac-
knowledge. You can also use
one to get a simple multiple
choice response. A message box
contains a line of static text and
one or more push buttons.

157

i -

When the user clicks on one of
the buttons, the message box
automatically disappears and
then invokes the appropriate ap-
plication funetion.

A prompt box is used to get a
single line of text from the user.
Each contains a static-text
prompt, a text editor control,
and one or more push buttons.

File select boxes provide ad-
vanced features for getting file
names from users. The box con-
tains a scrollable list of file
names, a text editor control con-
taining a file name, and two
push buttons labeled “Accept”
and “Cancel”. Using the key-
board or mouse, the user selects
an existing file name or supplies
a new one. If the file is not con-
tained in the current directory,
the user can traverse the HP-
UX directory structure by click-
ing on directory names in the
scrollable list. File name com-
pletion and wild card expansion
are supported. The application
simply supplies the name of the
initial directory. The file select
box handles all interaction with
the user and simply passes the
selected file name to the applica-
tion when the user makes a se-
lection.

For custom dialogs, you can
build your own dialog box using
various controls—or a control
panel from RtapCpBuilder—and
an instance of the rtDialogBox
class.

2

J)

M

Command-Initiator Classes

Menus

The rtMenu class implements
menus. Menus are transient
windows used to present com-
mands to the user on request.
Menus consist of one or more
menu items. IGLOO supports
five types of items, each suited
to a different kind of command:

Action
Initiates an action when se-
lected.

Dialog

Brings up a dialog box when se-
lected. Each of these items has
an ellipsis (...) appended to its
label to identify it as a dialog
item.

State

State items are usually found in
groups of two or more. Selecting
one state item unselects the oth-
ers in its group. When the user
selects this type of item, & check
mark is drawn to the left of the
label to show that it is selected.

Toggle

Toggle items alternate between
two choices when they are se-
lected. The label indicates the
choice which is activated if the
item is selected.

Cascading

A cascade item posts another
menu. They are identified by an
arrow (->) on the right side of
the label.

Menu Bars

Menus and menu bars work to-
gether to interact with the user.
The menu bar automatically
posts and unposts menus as the
user drags the sprite (mouse
cursor) across their labels. The
menus highlight items and post
cascaded menus when the user
drags the mouse over them.
When the user selects an item,
the menu informs your applica-
tion so it can respond.

Pallettes

Palettes are windows you can
use to create graphic (rather
than textual) command initia-
tors. A palette consists of a two-
dimensional array of cells, each
of which can hold an icon.

When the user clicks on the cell,
the application can initiate the
corresponding command.

13

Event-Processing Classes

IGLOO provides built-in event-
processing facilities which form a
framework that implements the
application-independent parts of
an event-driven program. In an
IGLOO application, you write a
mainline and some event-handler
functions. However, your main-
line does not call the event-han-
dler functions-—it just connects
them to IGLOO, which then calls
them when the run-time events
occur (see Figure 12).

Two object classes— rtEventiMo-
nitor and rtEventDispatcher—
implement most of IGLOO’s
event-processing framework. A
single event-monitor object con-
nects your program to multiple
event sources, including X and
RTAP. Associated with each
event source is a dispatch han-
dler. When an event arrives
from a particular source, the
event monitor invokes the corre-
sponding dispatch handler,

Your
mainline
) maihline
LT IGLOO s | Y L
i event -
handiing
your | detault your your default |
event | event event event event .
handler handler handler handler handler

Figure 12 - How Your Code Connects to the IGLOO Framework

158

which sends a message to the
appropriate object. The object
then invokes the appropriate
event-handler function (see Fig-
ure 13).

This event-processing scheme
allows IGLOO objects to handle
a great deal of user interaction
automatically. When an object
receives an event, it invokes
whichever handler i1s attached
to the event. Because the -
brary contains default handlers
for all the low-level interaction,
you do not have to write this
code. You write handlers only
for higher-level, application-spe-
cific events. For example, dy-
namic windows have default
handlers for moving, resizing,
minimizing, and so on.

Another benefit of the event-
processing scheme is user-con-
figurable mouse button map-
pings. IGLOO allows the user
to assign logical mouse buttons
used by applications—inside,
middle, and outside——to the

RTAF
Processes

=

physical mouse buttons. This
lets left-handed users swap the
inside button so that it is still
under their index fingers. This
is also useful for assigning but-
tons when you use different
pointing devices, such as a
trackball.

Graphic Classes

IGLOO’s graphic classes are
based on the Starbase Graphics
Library. By turning the Star-
base primitives into object
classes, IGLOO has tightly inte-
grated the graphics with the
window-based environment.

An IGLOO primitive keeps
track of its visual characteris-
tics, vertices, and position, so it
knows how to move and redraw
itself. These abilities are used
to advantage by the r2Symbol
class, which groups primitives,
dynamics, and other symbols so
they can be manipulated as a
single entity. When a message
(such as move) is sent to a sym-

Instance
of
rtEventMonitor

Figure 13 - Using the UIP Event Monitor

159

Time Out
Handler

14

bol, all of the symbol’s compo-
nents are affected. The rtSym-
bol class is integrated with the
rtGraphicView class so that clip-
ping, redrawing, and moving
are handled automatically.

A symbol can appear in more
than one graphic view at a time.
The symbol communicates with
all views on which it appears so
it is displayed consistently in
each view. You can use this to
show a subset of a symbol in a
separate view—the symbol
keeps the second view up to date
without any work by your appli-
cation.

Dynamics Classes

Displaying a schematic is only
half the job required for a
SCADA system interface. The
other half is presenting real-
time values from the monitored
process. There are several dif-
ferent types of values to present,
and a number of ways to show
each type.

Default
Handiers

Application
Handlers

s

To meet this need, IGLOQ pro-
vides three classes specifically
designed to animate displays.
Collectively, these classes are
called dynamics. All the dynam-
ics classes have a mechanism for
accepting a current value from
an external source, comparing it
to some set of reference values
{which can also come from an
external source), then setting
the visual representation of one
or more primitives based on the
outcome of the comparison.
There are three different dy-
namics classes: rtAnalogDy-
nemic, rtFillDynamic, and rt-
FormatDynamic,

All the dynamies classes accept
messages to set their current
and reference values. This sepa-
rates the dynamics (and hence
the animation of a schematic)
from any particular data source.
IGLOO supplies a class—
rtRtapDbPoller—to automate in-
terfacing to an RTAP database,
but you can use any data source
you want to drive the dynamics,
either in addition to or instead
of RTAP.

Archive-File Classes

Control panels and schematics
can be saved and retrieved to
and from archive files. Al-
though archive files can be cre-
ated programmatically, you usu-
ally use the interactive builders,
RtapScBuilder and
RtapCpBuilder, to create them.
Application programs can then
load these archives using the
IGLOO library’s archive file
classes.

The archive scheme for control
panels is based on a textual for-
mat. Control panels are ar-

Specifications
Minimum run-time configuration

15

Hardware Requirements « HP 9000 series 340

Software Requirements

« 8MB RAM

« 79588 152MB disk drive

e 9144A or 9145B canridge tape drive

o 1024 x 768 color display and video card
» 46021 A HP-HIL keyboard

« 46060A or 460608 HP-HIL mouse

¢ 723224 or T2322R RTAP License

« HP-UX version 6.5 application
execulion environment

+ X Window system version 10.4*

Minimum development configuration includes the above and the following

« 7959B 304MB disk drive {instead
of a 152MB)

» HP-UX version 6.5
programming environment

* Contact your local Sales office for availability of version X-11

Ordering Information

UTP can be purchased only as an option to RTAP.

License to use :
License to reproduce:

Training
72322T opt 020

72322T opt 010

72322A option 011 through to 016
72322R option 011 through to 016

UIP Fundamentals for Programmers: a five
day course covering the fundamentals

of building a user interface platform
around RTAP.

RTAP Fundamentals for Programmers:

a five day course covering the
fundamentals of building a SCADA system
with RTAP.

Training must be ordered by contacting the Calgary sales office

at (403) 235-3100.

Documentation
72322K opt 020

72322K opt 010

Includes the UIP Programmer’s,
Reference, and User’s Manuals.

Includes the RTAP Programmer's
and Reference Manuals

Manuals are not bundled with a sofrware order. they must be

ordered as options.

chived by a text archive class,
rtTextualArchiver. All windows
can communicate with a textual
archiver to retrieve or save con-
trol panels.

The archive scheme for symbols
and schematics is based on a bi-
nary format, using the rtBinar-
yArchiver class. This reduces
the time required to load sche-
matics.

160

Data-Collection Classes

Linked lists and stacks are well-
known data structures often
used by applications. IGLOO
provides classes that implement
both. You can use them to store
any tvpe of data, from basic C
data types to arrays and struc-
tures.

(ﬁf HEWLETT

PACKARD

For more information, contact your local Hewlett-Packard sales
office listed in your telephone directory or one of the HP

regional offices listed below:

United States
Hewiett-Packard Company
4 Choke Cherry Road
Rockville, MD 20850

{301) 670-4300

Hewlett-Packard Company
5201 Tollview Drive
Rolling Meadows, IL 60008
t312) 255-9800

Hewlett-Packard Company
5161 Lankershim Blvd.
No. Hollywood, CA 91601
818) 505-5600

Hewlett-Packard Company
2015 South Park Place
Atlanta, GA 30339

(404) 955-1500

Canada

Hewlett-Packard Ltd.

6877 Goreway Drive
Mississauga, Ontario 1L4V1M8
{416) 678-9430

Japan
Yokogawa-Hewlett-Packard Ltd.
29-21, Takaido-Higashi 3-chome
Suginami-ku, Tokyo 168

(03) 331-6111

Latin America

Latin American Region Headquarters
Monte Pelvoux Nbr, 111

Lomas de Chapultapec

11000 Mexico, D.F. Mexico

(905) 596-79-33

Australia/New Zealand
Hewlett-Packard Australia Ltd.
31-41 Joseph Street

Blackburn, Victoria 3130
Melbourne, Australia

(03) 895-2895

Far East
Hewlett-Packard Asia Ltd.
22/F Bond Centre

West Tower

89 Queensway

Central, Hong Kong

15) 8487777

Germany

Hewlett-Packard GmbH
Vertriebzentrale Deutschland
Hewlett-Packard-Strasse
Postfach 1641

6380 Bad Homburg v.d.FH.
Federal Republic of Germany
06172/400-0

France

Hewlett-Packard France
Pare d'activite du Bios Briard
2, avenue du Lac

91040 EVRY Cedex

01/60 77 83 83

United Kingdom
Hewlett-Packard Ltd.
Customer Information Centre
King Street Lane

‘Winnersh

Wokingham

Berkshire

RG11 5AR

0734 777828

1taly

Hewlett-Packard [taliana S.p.A
Via G. di Vittorio, 9

20063 Cernusco Sul Navigtio (MI)
Milano

02/923891

European Headguarters
European Multi Country Region:
Hewlett-Packard S.A.

Route du Nant d’Avril 150
1217 Meyrin 2 - Geneva
Switzerland

(41)22/83 81 11
Africa/Middle East
Hewlett-Packard S.A.
Central Mailing Department
P.O. Box 529

1180 AM Amstelveen

The Netherlands

{31) 20/547-9999

Technical information in this document is
subject to change without notice.

RTAP is a registered trademark of
Hewlett-Packard in Canada.

Printed in Canada 07/89

5952-7193

161

)

HEWLETT-PACKARD

RTAP

Real-Time Applications Platform

The Real-Time Applications Platform
(RTAP) is a flexible toolkit designed for
software engineers who build supervi-
sory control and data acquisition (SCADA)
systems. Fully user-configurable,
RTAP runs on the HP-UX operating
svstemn on the HP 9000 computers.

RTAP consists of fundamental SCADA
processes and a set of C-language
access routines which application
processes can use. Six integrated
modules deliver the basic functionality:

The RTAF database, a hierarchy
of flexible points capable of rep-
WU resenting any combination of
SCADA equipment.
[] The calculation engine, which

oouaa

g links the database to the scan

lLEL system and performs spread-
sheet-like functions on real-time data.

The scan system, which sup-

ports multiple types of remote

terminal units (RTUs), pro-
grammabie logic controilers (PLCs),
and other field devices.

The process scheduler, a man-
4 ager module which handles
orderly system startup and
shutdown, run-time priorities, and
interprocess communication within a
single RTAP environment.

f M The event manager, to desig-
w4 nate real-time events important

¥ to the SCADA application and
specify what response actions they will
trigger.
The time keeper, which pro-
vides flexible and precise timing
to govern time- and date-de-
pendent processes,

Technical Data Sheet

USER APPLICATIONS

RTAP is a tooikit that runs on HP-UX and supports SCADA applications.

The interaction of these modules makes
RTAP greater than the sum of its parts.
The event manager interacts with the
database so that any real-time change in
a value can trigger a response appropri-
ate to the SCADA application. The
calculation engine brings process values
from the scan system into the database,
and supports spreadsheet-like functions
to store derived data as well. SCADA
developers use a programmatic inter-
face of C-callable subroutines to
configure the run-time action of the
SCADA svstem.

162

RTAP uses the word environment in a
special sense. An RTAP environment is
a set of cooperating SCADA processes
with its own scan system, database, and
related resources. Multiple environ-
ments can run on a single CPU. Each
RTAT environment, created and
managed by its own process scheduler,
is effectivelv a standalone SCADA
svstem which can conmunicate as
required with other local and remote
environments.

2

RTAP: A New Approach
to SCADA

SCADA systems typically have one or
more “"host” minicomputers that
communicate in real time with a set of
devices monitoring and controlling field
operations. Newer 32-bit host architec-
tures are rapidly phasing out the 16-bit
platforms used in first-generation
systems.

Until now, SCADA end users have had
two options:

1. Buy a turnkey solution from a
SCADA vendor.

2. Deveiop their own SCADA software.

Both routes are expensive, and often
compromise long-term flexibility to
meet short-term deadlines. Turnkey
solutions tend to lock a customer into
depending on a single vendor and make
enhancements difficult; in-house
development involves a steep learning
curve and takes a long time. In both
cases, system integration is character-
ized by tricky interfaces, high labor
content, and tight schedules.

RTAP is a next-generation solution to
these problems. It combines sound

design, scalable 32-bit architecture, HP
reliability, and the power and portabil-
ity of C in a well-integrated platform
optimized for flexibility.

By delivering the basic functionality all
SCADA systems have in common,
RTAP allows both turnkey and in-house
system integrators to build the appilica-
tions they know best on a solid SCADA
foundation. A well-documented library
of more than 75 C-access routines helps
application programmers harness RTAP
tools for their own purposes.

Applications Programs

7
||
[

Time
Keeper

Calculation
Engine

Database

Event
Manager

Scan Manager

L ATAP Environment |

Process
Scheduler

Remote
RTAP
Environment

I
I
I
|
I
I
I
|
I
|
I
I
|
!
J I
I
I
I
|
I
!
!
i
I
|
I
I
I
I
|

L]

RTAP's integrated moduies provide a solid base for SCADA applications. The database is the heart of the RTAP toolkit.

163

3

L _ -~ - -~ |

Product Description

RTAP combines the flexibility and
power of HP-UX with robust SCADA
functionality. Its SCADA capabilities
reside in six main modules:

Database

The database is the heart of the RTAP
toolkit. It is a hierarchy of points. ..
logical data structures you can use to
model any combination of process
equipment. The database hoids up to
63,335 points, a limit which can be
stretched by configuring single RTAP
points to handie multiple hardware
points.

Each database point has up to 255
user-configurable characteristics called
atfrilites, which hold data related to
the point. There are three tvpes of
attributes:

= A scalar attribute holds a single
value...a constant, a process value
from the scan system, a calculated
number, a time stamp, or a character
string. The value of a scalar attribute
can be entered manually or deter-
mined by the calculation engine.

Data types available in RTAP include
all standard C-language numeric
types, character strings from 4-256
bytes in length, and date/time types.

m A pector attribute holds up to 65,535
scalar values of the same data type.
Although they can be entered
manually, these values are normally
determined by the calculation engine,
either through a vector scan-link
(which retrieves a range of similar
values from the scan svstem) or an
expression that resoives to a vector.

m Table attributes are two-dimensional
arravs of values, suitable for histori-
cal measurements or other tabular
data. Tables can be sized up to
65,535 records (rows) by up to 255
fields (columns). Different fields can
have different data tvpes. Both
vector and table attributes let vou
access multiple data values with a
single call.

Tvpical SCADA svstems consist of a
number of similar sites, such as
Compressor stations ar wells inan il
neld. For database purpose-. cach site
van be logically ~ubdividad mto thye
eduitinent at the ~ite and cventualiv
mtv indvidual 1O points.

The RTATD” database represents each
compunent at each level as a logical
point. Points are joined in a parent/
child relationship that models the
phvsical hierarchy.

For example, an orifice meter can be
modeled as a single RTAP point
containing three child points, one for
each of the hardware inputs it
requires...static pressure, differential
pressure, and flow temperature.
Because they are completely user-
configurable, you can use RTAP points
to represent anything...from a physical
I/0 point to a high-level abstraction
like a compressor statien or anv data
structure vour application might
require.

Logical representation has two key
advantages. First, vou can access and
manipulate a SCADA component either

separately or as a part of a larger group.

Second, vou can model similar equip-
ment at different sites very quickly by
cloning repetitive “trees” within the da-
tabase. This substantially reduces the
cost of database configuration and
testing.

Database points can be addressed either
svmbolically or directly. There are two
tvpes of symbolic names: '

1. The point name {such as “flow tem-
perature”) can be duplicated in
different paths of the database.
Point-name addressing specifies
either a full database path or a
reference relative to a current work-
ing point.

Point | Name
Header

outside temp

P | process value

2. The alias {for example, “PT-1017),
unique across the database, provides
an absolute reference to the point.

Each point is assigned to reside either in
RAM (for fast access) or on disk (for
high-capacity storage). Point locking by
application programs ensures exclusive
access, with timeout after a preset
interval.

Database security can be easilv disabled
during system integration, then con-
figured as elaborately as the application
requires. By assigning points to any
subset of 32 independent categories,
and users to functional groups, you can
configure system security to give each
group access to the operational data
thev need. The RTAP system adminis-
trator has unrestricted access to the
database, and assigns the permissions
allowed to other users.

RTAP maintains two recent snapshots
of the database to allow easy recovery
from system problems. The default
interval between database snapshots is
10 minutes; snapshot intervals can be as
frequent as 30 seconds.

RTAP supplies C-access routines to
open/close a database, and to query
and control its structure and contents.
This gives development programmers
quick and easv access to both the
configuration and the values of the
RTAP database.

Scalar Attribute Definition

eng units
Fahrenheit temp

P [.orocess vaiue] »9/5 « 32
f/_,:]-a

Vector Contents

rrend

Point daily conditions
Altnbutes .

. 65535
o [25 273 284 205 266 27.9 252 - - I::::nems

"~._Table Contents

P | Attr Name 255

Month Dayl Day2 Day3 Day4

Figid Names
-

Records

Fiaids >
mas I35 neten, X 83335 recsrs

A sample database point showing scalar, vector. and tabie attributes.

164

nncog
onaca
masoo

e Calculation Engine

The calculation engine acts like an
electronic spreadsheet that evaluates
functions defined during database
configuration. It can get process values
from the scan system, scale a value, per-
form a mathematical, logical, or
statistical function, time-stamp or trend
a value, or detect an alarm situation.

There are two types of calculation
engine definitions. One links to a
specific input/output (1/0) point in the
scan system, for data acquisition or
control purposes. The other holds a
user-configurable expression that
combines mathematical or logical
operators or functions, constants, data-
movement instructions, and cross-
references to other attributes anywhere
in the database. In both cases, the
calculation engine evaluates the
definition to produce the value.

The table on page 5 summarizes the
standard functions perfortmed by the
calculation engine.

Every “write” operation to the RTAP
database triggers the calcuiation engine
to update all other points whose values
depend on the data just written. This
synchronizes all derived data with real-
time changes acquired from the scan
system or application programs.

The calculation engine aiso evaluates
the quality of all values it generates,
tagging each one with a status: “error”,
“disabled”, “suspect”, or “OK”. You
can turn the calculation engine on or off
for any individual point.

SCADA developers can also write their
own industry-specific functions and in-
corporate them into the calculation
engine. This involves writing a C
routine to perform the function, then
linking it into the caiculation engine.
Developers can then use both RTAP
and customized functions in database
expressions.

triggered by
database

write \

\

\

}

*A.wnow = 19.236 ‘%1
start updates”)
i

/' Calculation
Engine

.) s

e \:ﬁ m\fm_ - FOUND 2.2 I (A 11100120,
| TS —
| .
|
|
|
I

Point A E

RTAP Database

tdefinition none

valve 19,236

{oetinition_{» SGRT{.w])

-}/wgf v 4.386

y definition i~ [.x] + 110

[| —vdlug W 114388

idefinition— MAX ([.y). 30.5. [C.s])

| —Value > 114.386

t Point B l

deTmition :“'ngT. 1 ;3_

value -30.6

A sample chain of calculation engine updates triggered by a write to attribute “w” in point A.

165

Y

5

These are the standard aperators and functions available in the calculation engine. Each database attribute can be defined with any
combination of constants, operators, and functions.

Operators + - % /.0, NOT, AND, OR, =, <>, », <, »=, <=
Function Description Function Description
Mathematical . Data Movement
ABS Returns an absolute value. PUTVALUE Puts a referenced value into a specified
POW Returns a parameter raised to the power of database address.
another. PUTVECTOR Puts a value into a specified vector or table
INT Retumns a truncated integer. address.
ROUND Returns a parameter rounded to the number INDEX Returns a database value referenced by the
of places specified by another, specitied index.

SQRT Returns a square root.

Scan Links
Logical . SCAN Brings a referenced value from the scan
Tt F E T f T d) "'h"d T svstem into a specified point attribute in the
IF Evaluates a specified condition and returns database.

the appropriate parameter.]
SCANV Brings a vector of referenced values from the

scan system into a specified vector attribute.

MAX Returns the maximum of a list of values. Real-Time

MIN Returns the minimum of a list of values. ALARM Returns the alarm status of a process

AVERAGE Returns the average of a list of values. variable.

DEVALARM Returns an indicator of deviation between a
process variable and its setpoint,

Time-related
T T T T T e = - - T T SCALE Scales a parameter into a different range of
NOW Returns the current time and date. units.
DAYOFMON Returns the current day (1-31) of the month TREND DPuts a new value into a vector attribute for

(local time). trending purposes; returns the whole vector

DAYOFWK Returns the current day (0-6} of the week of values.
(local time).

MINOFDAY Returns the current minute (0-1439} of the
day (local time).

TIMEDIFF Retumns the difference in seconds between
two time parameters. '

166

N Scan System

The scan svstem links the database with
RTUs, PLCs, and other SCADA devices
in the field. RTAP can support multipie
types of field devices, interfaced
directly, through LANs, or via RS-232
radio or telephone links.

The scan svstem is designed for three
modes of data acquisition. The pofled
mode gathers values on a per-point
basis even if they are unchanged since
the last poll. Polled report-by-cxception
collects only values which differ from
those last reported. Spontancous report-
by-exception allows field units to
interrupt the hast to announce a change
in an 1/C value. The report-by-
exception modes require field devices
capable of supporting them.

Communication parameters...poll
periods, baud rate, parity, and so on...

Process
A

10°C
617 kPa

l i I

() (] (=]

send
heater
setpoint

are stored in database tables used by the
scan system. Each table is organized to
keep device-independent, device-
dependent, and application-defined
data separate. This helps incorporate
new (or muitiple} tvpes of field devices
into RTAP with minimal effort.

In each RTAP environment, a single
scan manager coordinates a number of
scan tasks...one for each type of field
device. A single environment can
handle multidropped field devices on
multiple communications ports, each
configured for the field devices it
serves.

Scan tasks for the 48000 line of RTUs
from HP's Panacom Division, and HP's
3832 data acquisition/control unit, are
currently available. New devices can be
added. Each new device type requires

communication drivers, plus some
device-dependent configuration of the
scan svstem tables,

Through a “buffer” memory segment,
the database is deconpled from the scan
system. This allows RTAP to support a
real-time interface with any field device,
insulate application pregrams from
timing and communication details, and
simulate field /O for development
purposes. The buffer memory segment
also supports error-checking and
deadbanding on incoming data.

RTAT provides a librarv of routines
through which SCADA applications can
use the scan manager. These allow pro-
gramimers to read from. write to, query,
and control the resources of the scan
system. ’

time
to pol

of 98°C group 3

Scarn Input Configuration Table

— — — —— — — —Y To— — — - b — ——

Database

171

10C 617 kPa

1113|rpm a8 C

I

l

II o . Commumcaton Database ane
98°C I Groups Address Address Deacpand

1 37 ;RTUl/port3 x 1°C |

b 12 s TRTUZpone v 10kPa

I I's" s TRU3pont 2 0|

: 4 18 PLCpot3 0w 0

A simplified view of ATAP's table-driven scan system linking field devices with application processes and the daiabase.

167

T

Process
A

Requestto
start up
Process B

Termination
Signal /

-
-

Process

I
I
|
I
I
I
I
I
I
I
I
I
|
!
|
|
|
|
I
I
I
|
|
I
I
I
I

RTAP Environment

e

T
Process B / P \
started \ ro;ess)

/ invoke
/7 Process B

Process

Scheduler Environment Table
Process Process Run-Time Startup
Name D Priority
Rtap Scheduier 1 1o
Rtap Monitor 2 10 1
bi : g - i
Pocessc |Rt@pScanMngr 3 - 25 2
Terminated Application A 0 100 3
Application B 27 128 3
v (other RTAP and application processes
added here) f .
Process : ,'
D 1 i

I
I
I
I
!
I
I
!
I
I
|
I
I
Phase :
I
|
|
I
I
|
I
I
I
|
I
I

The process scheduier creates and manages an RTAF environment according to user-configurable parameters stored in its

environmenttabie.

!‘4 Process Scheduier

The process scheduler manages the
RTAP environment. Based on informa-
tion specified in a master file called the

civironment table, the process scheduler:

s Starts and stops processes in phased
order.

a Assigns RTAP process identification
numbers and uses them to initialize
interprocess communication queues.

® Allows or disallows multiple copies
of each process.

m Sets the real-time priority at which
each process runs.

m Specifies command string options
such as redirecting 170 or adding
run-time parameters.

» Determines what action to take when
a process terminates.

m Informs interested processes about
the termination of other processes.

Linking a S3CADA application with the
RTAP library and entering its execut-
able name in the environment table
makes the application part of the RTAP
environment. Anv process named in
the environment table participates in
that environment.

For development purposes, an applica-
tion process can register for debugging
with the scheduler. This allows the

process to share RTATD resources while
running under the HP-UX C debugger.

168

The process scheduler supports a set of
C-access routines to start processes in
real time, control system startup and
shutdown, query the environment table,
fetch parameters required for inter-
process communication, and register
application processes under develop-
ment for debugging. These routines
give the SCADA programmer control of
the RTAP environment at run time.

Event Manager

The event manager works like a central
postmaster. 1t receives, organizes, and
dispatches all events that occur in real
time. The event manager aiso sets event
triggers on user-specified database
puints so that real-time changes gen-
erate immediate response actions.

The event manager handies three tvpes
of events:

w Database cvents are changes in values
within the RTAP database. You
might use this mechanism, for
instance, to trigger an emergency
shutdown sequence on detecting an
abnormal flow rate.

u System evenfs include mathematical
errors the calculation engine may
encounter, such as division by zero.

database

RTAP
Database

The event manager notifies attached processes of database and application events as they accur in real timme.

-
/

malt Time Keeper

The time keeper manages all time-
related functions in the RTAD environ-
ment. [t triggers a scheduled action
{such as poliing an RTU) by sending an
“alarm-clock” message to the respon-
sible process.

A timekeeping message specifies either
an interval {at 300 or a defay (90
minutes from now), Intervals can be
regular tevery hour on the hour or
irregular (the first of cach month),
Resunchrogization coupled with intervals

This could be used to trigger an
alarm if a calculation engine value
goes askew.

a Application events, defined by the
svstem developer, are tailored to the
needs of the SCADA application.

Event management involves configur-
ing, triggering, and notification. Con-
figuration is a setup function that tells
the event manager which processes are
interested in which events. Triggering
and notification are driven by the real-
time occurrences of configured events.

When a registered event occurs, a
trigger message is sent to the event
manager, who then notifies all proc-
esses interested in that event. Itis up to
the notified processes to take any achion

Event
Manager

Database
Manager

is provided for applications which need
it (such as a shift-change report gener-
ated at $:00 each moming and every
seven hours thereafter).

Wilid cands in time keeper requests
provide flexibility to schedule auto-
matic, repetitive SCADA operation,
The minimum period for regular alarm-
clock messages 15 0.25 seconds. The
time heeper handies time-sone and
davlight savings time changes auto-

matically.
169

notification

required. Notification can be condi-
tional, based on a mathematical com-
parison of previous and current values.

Event information takes the form of an
RTAP message specifving the type and
priority of each event, plus anv related
information you want to attach.
Through the RTAP messaging system,
events can be networked to any process
in any environment on anv host.

The event manager supports a set of C
routines to create, delete, attach, detach,
and trigger real-time events, giving the
application prograrmmer the means to
configure the run-time action of the
SCADA svstem.

Application
Process

Attached
Processes

RTAD's time keeper leaves each process
free to use its private HP-UX timer for
any other timing it may require.
Access rautines supplied with the time
keeper allow the appiication program-
mer to create and delete timer requests,
report pending requests, and add or
subtract time values. This interface lets
the RTAP programmer configure the
timing of SCADA processes appropri-
ately tor the application.

-~ o
T

~J

9

_m

RTAP Utilities

The need for elficient interprocess com-
mugication is eritical 10 SCADA opera-
tons. RTAP uses messaye guenes, gueye
servers, and sockers to establish commu-
nication berween processes. which may
reside in the same environment or in
different environments on one or more
hosts.

The sending process names the process
i wands 10 talk to: RTAP assumes the
destination process resides in the
current environment on the local host.
Messages bound elsewhere have to
name the environmeni (and, 1o talk
across the network. the remote node)
where the destination process resides.
Given this information. RTAP handles
the details of esiablishing the communi-
cation channei.

Each process can handle its message
gueue in either priority or chronalogical
order. Processes can also respond
selectively 10 certain messages identi-
fied as responses to pending requests.

An RTAP message has a standard
format indicating its origin and destina-
tion, the message type and pricrity, a
response flag, and the size of the
message. RTAP messages also have a
userfapplication area 1o contain data
specific to the application.

Applications requiring sophisticared
programming can use an embedding
technique that lets you nest messages
{to any level) for stepped forwarding 10
an evenwal destination. You can use
this technique to reduce system over-
head. since the initial process can send
the message once and be done with it
Each receiver process does its part of
the job and passes on the remaining
message.

Run-time error-handling is centralized in
the RTAP monitor. which is avaiiable 10
both RTAP and application processes.
Errors reported 10 the RTAP monitor
can be redirected 10 an outpul device or
disk file 10 provide a log of anv prob-
lem~ i the SCADA sysiem.

Like database security. RTAP '« svsiem
sechrify s compietely optional: vou cun
iwnore i until you need it Sepurate
RTAP environment~ can have inde-
pendent security rules, or can easily
~hare the same securits scheme. I
desirsabs sevurity can beoestorced v
docesses wross diflerent hosts and
chvisonments,

RTAP applies system security based on
a protile for each HP-UX user. which
makes it possible to record who makes
what changes. Securily can also be
applied on a per-console basis by
treating each console as an HP-UX user.

The RTAP system administrator is an
HP-UX user who has full access to all
RTAP resources. All other users are
subject o securily constraints. User
profiles and other security information
are kept in editable files accessible te the
administrator.

RTAP is not tied to any particular wser
interfuce, cusiomers are free 10 use
whatever terminals, PCs, and HP-UX
screen-layout software they want. For
development and demonstration
purposes. a utility called Point Display
provides a window into the RTAP
database and its run-time operation,

Point Display is a mouse-driven uility

based on X Window System™ software.
X is an industry standard for support-

ing windowed user interfaces across a

computer network.

Point Display consists of a set of contro}
panels used to traverse an RTAP
database. It includes all the intuitive

ools typical of an interactive. window-

baséd interface:

m Dynamic windows that can resize,
refresh. and iconify themselves 1o
CONOMIZE sCreen space.

a Pull-down menus. scroli bary., push-
butions. edit boxes, and other
popular interactive controls,

The first panel (shown below) that
appeuars when Point Display runs shows
the top level of the database hierarchy
(the *‘root”" point). From there. you can:

® Scroll through a list of points on the
next level down,

w Descend 10 any point on the lower
levels.

® Examine detailed information for
any poinr: its place in the database
hierarchy, s symbolic name, the
attributes defined for it their current
values, whether it resides in RAM or
on disk, and other pertinent informa-
tion, Point values update on the
screen in real time.

Applications using Point Display

require extra eguipment itemized under
**Systern Configuration™”

I

Point Navigator

~

Point Location

{r

Path |:

Alias | root

| PUIN

.

=

/——————Point Navigation ———————

Point Contents

arts & science bldg 1
elec distribution
engineering bidg

gas meter station
students union bidg X
support data

utility plant

water pump station Iy

.

Top
Level

Next Display
Level Header

Display
Polnt

J

(])

(Fi<al

=

The Point Display uiility’s "point navigator™ panel. used to traverse an RTAP database

visuaily.

170

10

This is a partial list of the C-access routines in HTAP's programmatic interface. Most routines have multipie aptions 10 do specific tasks. All
are fully documented, with programming exampies, both in the RTAP Reference Manual and online through the HP-UX man-page function.

Subroutine Description Subroutine Description
Database Time Keeper
rtOpenDatabase opens an RTAP database. FtStartTimer requests that the time keeper send a
rtClescDatabase terminates access to the database. message to demgnated process at a
. specified future time.
rtReadDatabase reads values from a database attribute,
) .) rtDelay requests that a message be sent to a
rtWriteDatnbase writes values to a database attribute. designated process after a specified
rtControlDatabase controls database structure, configura- delay.
tion, and access. ritCanceiTimer cancels a previous timer request.
rtQueryDatabase supports querying of database configu- rtRequestTimeReport requests a time keeper report showing
ration and structural information. what is currently pending.
rtAddTimeVals adds two high-resolution time values.
Scan System rtSubTimeVals subtracts two high-resclution time

rtOpenScanSys
rtCloseScanSys
rtReadFromScanSys
rtWritcToScanSys
rtControlScanSys

rtQueryScanSys

rtDirectCmdSS

opens a connection to a scan system.
closes a connection to a scan system.
reads input data from a field device.
writes cutput data to a field device.

supports a range of actions such as
enabling /disabling communication
ports, field devices, and [/O points, and
adjusting communication parameters
used in the scan system.

queries various aspects of a scan
system.

sends a direct command to a scan task
or communications port.

There is also a set of routines to manipulate the “buffer”
which decouples the scan system from the database.

values.

Interprocess Communication

rtMsgSend
rtMsgRect

rtFindMyMsgTypes

sends a message to a specified RTAP
process.

receives a message from another RTAP
process.

extracts a nested message of known type
from a larger message.

Other calls fetch information (such as process [Ds) needed to
configure interprocess communication.

Process Scheduler

riScheduleProcess

rtRegisterForDebug

riShutdowonEnt

is used to start a process programmati-
cally in an RTAP environment.

allows an application process to share
RTAP resources while running under
the control of the HP-UX C debugger.

requests the process scheduler to shut
down the RTAP environment.

There is also a set of routines to get information needed for
interprocess communication from the process scheduler.

Event Manager
rtAtkachDbEvent
rtAtachSysEvent
riCreate AppEvent
reAtachAppEoent
rTrisverAppEeeit
rtDelete AppFEocut

et e Loent Strtus

et e roml cent

attaches an event or a process to a
specific database attribute.

attaches to a svstem event,
creates a new application event,
attaches to an application event.

mforms the event manager that an
application event has occurred.

deletes an application cvent no longer
needed.

activates deagctivates an event attach-
ment.

Preghs ot event altachment.

Utilities

rtCoerceDeTypes
rtDeToStr

rtLogError

converts a specified value from one data
type to another.

formats a data value into a printable
string.

sends application-detected errors to

RtapMonitor, RTAP's central error-
handling program.

There are many other routines to support data manipulation
and error handling within RTAP.

Security
“——rtC-;;f (Iw: lﬁSL'C;t rity
riSetlid
rtSetHostEne

gets a security capability for a user.
sats the effective RTAP user ID.

sets the destination host and environ-
ment for an access request.

There are several other routines to read security profile files,
and to read or change the [D of the current user.

171

'J\

)

Features and Benefits
RTAD is the kev component of a total
systene to help SCADA programmers do
their jobs. Some of the benefits RTAP
delivers come with the system...HP
hardware and HP-UX software. Others
are inherent in RTAP itself.

Hardware

RTAP runs on the 32-bit HP 9000 Series
300 and 800 computers. Everv machine
delivers Hewlett-Packard's assured
quality and reliability. A well-defined
upgrade path of workstations and
multiuser machines is available to
support future expansion for SCADA
end users.

Networking

HP AdvanceNet offers an extensive
product line for multivendor communica-
tions, including both local and wide area
networks.

m

HP 8000
Radio Local
Communications Communications
Port Port
HP-1B
{RS-232) Part (RS5-232)
PLC
Communications
Port
(LAN)
HP HFP
48000 48000 PLC HP HP Other Other
RTU ATU 3852 3852 RTU RTU
fieid 1O figld 1O plamr.b f-eld-iio fiele l-‘b field #C field Ib
paints points points poaints points pomts points

Operating System

RTAP brings the power of HP-UX to the
SCADA business. .
Hewlett-Packard chose UNIX™ System V
Interface Definition, Issue 2, as the base
for HP-UX. A superset of UNIX V.2,
HP-UX adds these real-time extensions:

= Prioritv-based preemptive scheduling

m Process memory locking

= Privilege mechanism to control access
to real-time priorities and memory
locking

m Fine timer resolution and time-
scheduling capabilities

s Interprocess communication and
svnchronization

» Asvynchronous event-signalling
mechanism

s Shared memory for high-bandwidth
communication

m Fast file system [/O

m Asynchronous [/O for increased
throughput

s Kernel preemption for faster response
time

The software development environment
of HP-UX is excellent. It provides more
than 200 utilities.. . shell programming,
the souree code control systent and the make
utifity, to name a few...to simplifv the
work of svstem integration. With these
procrammer’s tools, HI-UN makes it
relatively casy to port existing applica-
tions to an RTAD piattorm.

The HP 9000 host computer can use different methods to communicate with mullipie types

of data acquisition devices.

SCADA Software

RTAP delivers the following benefits to
SCADA system integrators:

m Integrated functionality eliminates the
need to develop and maintain
SCADA software. SCADA develop-
ers simply configure RTAP, write
their C-language applications, and
hook them into the RTAP environ-
ment. This saves time and money by
enabiing developers to concentrate
on high-margin applications, and
helps deliver high-quality SCADA
systems to end users quicker.

® A programmatic interface of more than
75 C-access routines gives applica-
tion programmers easy access to
RTAP services while protecting the
database and other resources. These
routines are fully documented with
programming examples in the RTAP
Reference Mannal, which is also
accessible online. The comparion
RTAP Progrannner’s Manual gives a
higher-level explanation of the
software, including & hands-on
database tutorial and installation
procedures,

172

@ The RTAP database effectively models
any mix of SCADA equipment. You
can accelerate database development
by cloning identical “trees” of RTAP
points. RTAP Original Equipment
Manufacturers (OEMs) can move
into new SCADA markets with
minimal retooling.

» Centralized writes and periodic
snapshots maximize database
integrity while supporting high-
speed concurrent reads.

w The ability to assign any database
point to either RAM or disk resi-
dence gives vou fast access or high
capacity as required.

& The calculation cngine is @ powerful
innovation that cuts the need for
application programming by
supporting spreadsheet-like func-
tions on any database point. The
calculation engine can be turned on/
off for any database point. You can
even add vour own industry-specific
functions to it.

m The scan svstem ts designed to
support mdtipde fupes of RTUs PLCs,
and ot el deees. Sean tasks for
HI' RTU~ are available now; others
can be added. This makes RTAP a

.

12

smart choice for OEMs who want to
integrate their own RTUs, and for

Options

a The User Interface Platform is a

build extra inteiligence into real-time
process interaction.

major accounts who have to accom-
modate a variety of field devices from
different vendors.

Decoupling the RTAP database from
the scan system insulates the database
and applications from the details of
timing, communication, and field-
device architecture. This optimizes
database flexibility, and supports [/O
simulation and error-checking before
data enters the database.

A special register-for-debug call to the
process scheduler allows an applica-
tion under development to share
RTAP resources while running under
the HP-UX C debugger.

User-configurable database, system,
and application events, combined with
a flexible triggering and notification
mechanism, lets you tailor run-time
action to suit the SCADA application.
Real-time changes can automatically
trigger any response you want.
Conditional event notification, based
on mathematical comparison of
previous and current vaiues, lets you

Wild cards in time keeper calls give
you maximum flexibility in schedul-
ing time-dependent processes, such as
polling and reporting.

Interprocess communication builds on
the facilities of the HP-UX kernel and

graphical interface toolkit, based on
the X Window System standard,
used to build control panels and
schematics.

Configurator tools support online
configuration of the RTAP database.

the ARPA /Berkeley networking
services. This gives you quick access
to any RTAP environment on any host
and helps transfer data to other non-
SCADA computers.

» Multilevel security, on both the data-
base and the system, can be easily
disabled during system development,
then configured as required to pre-
vent unauthorized access.

m Tools for alarming, report genera-
tion, and trending are under devei-
opment. Call for availability.

m The Point Display utility is an intuitive
tool that makes database queries and
troubleshooting easy.

a RTAP sets a new reliability standard
for the SCADA business. Thoroughly
tested by quality-assurance engineers
and beta users, RTAP delivers the
assured quality expected of HP.

System Configuration

Ordering Information

Minimum run-time configuration:

HP 9000 Model 318 computer
HP-UX version 6.0 application
execution environment

4-Mb RAM

79578 81-Mb disk drive

9144A 67-Mb cartridge tape drive

Minimum development configuration:

HP 9000 330 (or faster) CPU
HP-UX version 6.0 (or higher) pro-
gram development environment,
ARPA, NFS

8-Mb RAM

7938B 152-Mb disk drive

9144A 67-Mb cartridge tape drive

Additional equipment required to
support the Point Display utility:

X Window Svstem version 10.4
High-resolution, bit-mapped video
board and a compatible high-
resolution dispias

HIP-HID hevboard

F-HAT mouse (or trackbalD

ProductNumber Description

723224 Real-Time Applications Platform, a real-time data acquisition
software toolkit for the HP 9000 Model 300 and Model 800 com-
puters. Software is normaily provided on a 1/4" cartridge tape.

Option 318 318 user licence, for Model 318/319 computers.

Option 330 330 user licence, for Model 320/330 computers. Call for Model 360
availability.

Option 330 350 user licence, for Model 350 computers. Call for Model 370
availability. B

Option 800 Call for availability. -

72322R ___ "Right to Copy RTAP” licence. Same options as "A” product. _

For more information, call your local Hewleft-Packard sales and scroice represciutatioe, or

corttact:

Hewlett-Packard (Canada) Ltd.
Calgary Product Development Center
3030 3rd Avenue N.E.

Calgarv, Alberta, Canada T2A 6T7
Phone: (403) 235-3100

FAX: (403) 272-2299

X Window System is a trademark of the Massachusetts Institute of Technology.
UNIX is a registered trademark of AT&T in the U.S.A, and other countries.

(D YRt

Data subject to change.
Printed m Canada It 88

TII22-91430
173

gem

EPICS Performance Evaluation
Submitted by:

Alberto Romero

EPICS Performunce Evaluation

M. Bouo (hotlo@ssc.gov), M. Jagielski (jagski@slug.ssc.gov). A. Romero tadromero@ stuy sse.gov)
Physics Research Division
Superconducting Super Collider Laboratory
Dallas, TX 73237, USA

Abstract

We report on the sottware architecture, some CPU and memory issues, and the performance of the Experimental Physics
and Industrial Controi System (EPICS) (1], Specifically, we subject each EPICS software layer to a series of tests and
extract quantitative results that should be useful to system architects planning to use EPICS for control applications.

. INTRODUCTION

Consisting of six accelerators and several planned experiments, the SSC [2] has a wide variety of needs for control, mon-
itoring, and data acquisition sysiems that collect information from different sources and present them to operators in
comprehensive form. [t is generally hoped that single system can accommodate all requirements the different applicarions
might have. A prime candidate amongst several packages on the market is EPICS, the Experimental Physics and Indus-
triad Control System. In this paper we measure the performance of the individual building blocks that make up EPICS as it
exists today. Its goal is to give aid in the design cycle of those SSC components that will use EPICS.

EPICS can be characterized as aset of software development tools used to implement real-time distributed data acquisition
systems. User interfaces, alarm handlers and custom applications run on a Unix non-real time kernel { at present SunOS
4.1.2). The real-time single board computers (SBC) are known as the input-output channels JOC). The SBC used in the
study was the MYME167 (68040) from Motorola [3]. As of June 1993, the real-ume kemnel supported by EPICS are
VxWorks versions 5.0.2b and 5.1 [4]. EPICS version 3.7.1 and 3.10 is used for the evaluations presented in this paper.

I EPICS SOFTWARE ORGANIZATION

Figure 1 displays the various.software components used to contigure and run EPICS applications. Central to the EPICS
system is the notion of a database. The database consists of records called process variables (PV), and each process vari-
able bas many fields. During the development of an EPICS application a database is created using a Unix software tool
(Dawabase Configuration Tool or DCT) on the workstation. Since the physical channels are distinguished by name, PV
names must be unique across all IOC"s that participate in a given application. During this step of readout description the
developer links the logical records (PV) io the actual hardware devices that will be read during acquisition runs. A State
Notation Language (SNL.) can be used to describe sequencial action to be executed during data acquisition within the
framework of a run-time sequencer bundled with the EPICS diswribution.

EPICS also provides a Unix software ool called EDD. It is used to create the operator interfaces. Programming through
pictures, EDD allows to construct user interfaces that monitor and change the database PV fields. Other Unix tools pro-
vided by EPICS include an Archiver (AR), Archive Retriever (ARR), and Alarm Handler (ALH). There is aiso an
interface for commercially availabie packages such as Mathematica and Wingz.

EPICS control systems are set up so that the JOC software and the database are loaded at boot time. The I0C must be
rebooted before reloading the IOC. Fig. 2 shows how the EPICS I0OC software is tunctionally organized into four layers:
datbase access, record support, device support and device driver layer. The mechanism used to communicate between
IOCs and Unix applications (for instance the Operator Intertace) is called Channel Access (CA). '

The channel access mechanism provides a "virtual” point-to-point link between a PV and a client application running in
either the real-time or the Unix kernel. This virtual point-to-point link ailows the application 0 examine and modify all
fields in the EPICS records (PV's). In addition, through CA the EPICS database is used as a point of interaction between
client applications. If the ALH for exampie finds an error condition, it will post a message in a PV of type string at the
{OC. The operator console is programmed to monitor the string process variables and will dispiay the change.

. 10C MEMORY REQUIREMENTS AND PERFORMANCE

Table | shows memory requirements for the EPICS IOC layered software architecture. Encugh memory must be
available for the VxWorks kemel (280 kB in our setup), the four IOC software modules (462 kB in our setup), and the
daabase. The dawabase size will vary with the type and number of PV's, the first 256 byte of all PV types have the same

177

EPICS SOFTWARE ARCHITECTURE

UNIX (Sparc) VxWorks (MVME 167 / 68040)
Non-Real Time Kernel Real Time Kernel
Input Qutput Channel {IOC)

TOOLS

Database Cantlg Tool (DCT) Epics Database
GUI{ Davelopment (EDD)
Database support

Record support

CLIENT APPLICATIONS Davice support
Archiver (AR} . .
AR Retrieval (ARR) Davice Drivers
Gut
Alarm Handlars
CACllent | 1 CA Server

Fig. 1: Epics Software Architecture

EPICS Size (KB) Comments
EPICS (R.3.7.1) 462 iocCore,drvCore,recSup,devSup
iocCore 48 Database support and channel access
recSup 47 Record support
devSup _ 40 Device support
drvCore 144 Can be reduced by excluding drivers
VxWorks 5.0.2b 280 Varies based on kernel configuration

Table 1 Memory Utilization for the IOC (does not include the database)

Epics Record Size {bytes) | Epics Record Size (bytes)
{R.3.h1) (R.3.7.1)
aiRecord 576 permissiveRecord 288
aoRecord 656 pidRecord 496
boRecord 544 pulseCounterRecord 392
biRecerd 480 pulseDelayRecord 488
caicRecord 1360 pulseTrainRecord 440
comprassRecord 400 salRecord 1184
eventRecord 424 stateRecord 296
fancutRecord 6800 stappemotorRecord 584
histogramRecord 480 stringinRecord 528
ionginRecord 496 stringoutRecord 584
longoutRecord 552 subRecord 1176
mbhiRecord 800 timerRecord 552
mbboRecord 856 waveformRecord 455

Table 2 Memory utilization for each record (PV) type in the [OC database

2

178

fields. Table 2 lists the 26 process variable types along with their respective size.

The 10C dawmbase layer handles the scheduling of each Process Varable. Each PV tnay be queued by one of four

mechanisms: :

a) Periodic: Seven predefined queues are provided with an execution interval of 0.1, 0.2, 0.5, 1, 2,5 and 10 seconds,
respectively. The database developer may specify other time intervals as long as they exceed the system
clock. The system clock is by defanit 60 Hz.

b) Event: 256 "soft” events are provided to schedule PV's in software controlled asynchronous mode. When a task
that takes part in a run posts an event number (range 1-255}, all PV's that have "Event” as the scheduling
mechanism and the matching number on the EVTN field will be scheduled once.

¢) IO Interrupt: This scheduling mechanism is asynchronous. [t involves an anxiliary device driver task that either polls
for new data or is triggered by VME interrupts.

d) Passive: PV’s are not scheduled if the scan mechanism is set to passive. Passive PV's can be schedulied indirecily
through input or forward links. A link is a field on the PY that points 10 another process variable.

During initialization, the EPICS IOC spawns a total of 16 tasks that support the EPICS services:

a) Seven "scanPeriod” tasks to service the periodic queues.

b) One "scanEvent” task for the soft event queue.

c) Three tasks to support channel access services (CA TCP, CA UDP and on-line).

d) Three callback tasks (low, medium and high priority).

¢) One umestamp task.

) One watchdog task.

All asynchronous device drivers-are implemented as tasks. In addition, for each channel access client the FOC will starts
two tasks: a channel access message task (camsgtask) to service incoming requests, and a task to send packets back to the
client .

TOTALIOC TASKS = (16 defauit tasks) + (user defined scan periodic tasks) +
(2 * number of CA clients) + (number of asynchronous drivers)

Task Name Priority Service

timeStamp 32 time stamp

catlback 40 async [0 drivers _
scankvent 41 record processing queue (event)
scanPeriod 53 record processing queue {.15)
scanPeriod 54 record processing queue {.25)
scanPeriod 35 record processing quene (.35)
scanPeriod 56 record processing queue (15)
cailback 57 async IO drivers

scanPeriod 37 record processing queue (25s)
scanPeriod 58 record processing queue (5s)
scanPeriod 59 record processing queue (10s)
callback 65 async 10 drivers

CATCP 181 channel access client

CAUDP 182 channel access server

CA online 183 channel access

taskwd 200 warchdog timer

Fig. 2: Default IOC tasks and respective priorities. The smailer number indicates higher priority.

179

As described earlier. channel aceess is the mechanism by which information is delivered and extracted out of the IOC. All
fields in the EPICS records may be viewed or modified through CA. The clients running on remote Unix workstations.
such as OPI's and the AR, are compiled and linked with a series of CA functions or a library. The interface o in-house or
third party products is accomplished using the same CA library. At the IOC, the CA mechanism uses the client-server
model known as concurrent server. A concurrent server spawns a child task to service each client application. The CA
concurrent server name is “CA TCP”, and the chiid task (one for each client) is "camsgtask”. For each client a second task
is started at the IQC, the "event_task”. The event_task will send data and control information back to the client by
consuming a buffer known as the clients "event queune” buffer. Figure 3 shows the steps involved in eswublishing the
communication links between the JOC and a client application, the one lime setup time was measured in our lab o be in
the order of 90 ms.

Client broadcasts searching CA UDP task responds

for a given PV

Client establishes refiable CA TCP task spawns a message

connection task for this client

Client Application ——— camsgtask to process requests

Client Application ———— event_task sends data and controf
information stored in the clients
‘event” buffer

Fig. 3. 10C tsks needed (o set up services for a CA client application.

Figure 4 shows how the clients application butfer at the IOC is produced and consumed. Once the communication links are
established, the clients buffer at the IOC is filled with control data (by the camsgtask) and PV data (by the task that
schedules the PV).

Task processing PVY Client Task Sending Data
(i.e.,.scanPericdic} —w Event —»- (event_task)
Queue

Fig. 4: IOC tasks needed to service a CA client application requests

For each PV scheduling mechanism exists a list of PV's and a task to service it. For a 10 Hz PV list, for example, a
“scanPeriodic” task is created. Every 100 ms, the periodic task processes the PV's in its list, Processing a PV involves
four software layers: database access, record layer, device support layer and device driver. In order to understand how the
various software components interact, we put together a case study application: One ai process variable retrieves data at
10 Hz from a XYCOM-566 DAC VME board [5]. Figure 5 displays how the tme is spent in the four software layers
during record processing,

A B ¢ D E F G

database —E—-
record ..E—. _L
device ¢ E

driver . D

Fig 5 Time segments on various software layers during record processing

4

180

Segment A is the time spent preprocessing in ihe dambase layer. [tstrt; when the PV is scheduled for processing, and it
ends when the record layer is called. There are factors in A that will prevent further processing of the record include: if
the record (PV) has been marked active (processing underway but not tinished), if the value in the disable tlag field
(DISA) matches the disable value field (DISV), or if a record support routine {record [ayer) cannot be found for this
process variable type. The presence of an input link on the PV will increase the duration of A. The time spent on A
depends on the record type. In our test application tdme spent on A is:

Segment A(ai): 9.2 usec

Segment G ends processing in the database layer. The time in G is record type dependent. For the ai records we did not find
any factors that influence G.

Segmeni G(ai): 0.6 psec

The database layer calls the record support layer. The record support layer is organized as a vector table. The vector table
is known as the record support entry table (RSET). For each record type supported a function pointer to an initialization
rouline, a read routine and a write routine is kept in the vector table. In general, input record types {ai, bi, mbbi, etc) have
initialization and read routines, and output record types (20, bo, mbbo, etc) bave initialization and write routines. One field
in afl PV types is the RECORD TYPE field. This information is used by the database layer to call the appropriate function
in the record layer. Fig 6 is the vector wable organization of the record layer.

INT | READ | WRITE

ai ai_init() | ai_read() | NULL
ao | ao_init() | NULL - ao_write()
bi bi_init() | bi_read() | NULL

. bo | bo_init() | NULL ~ bo_write()

Fig. 6: Record Support Entry Table (RSET)

Segment B in Figure 5 denotes pre-processing in the record layer. It starts after arrival in the process() routine for the
particular record type and it ends just before the device support layer is called. Factors that will affect the duration of B are
the use of the simulation fieids.

Segment B{ai): 8.8 usec

Segment F is the post-processing in the record layer. Factors that affect the time in F include the presence of alarm
conditions and the number of client applications requesting data from the fields in that record. The time stamp is set in F.
Segment F is record type dependent. The results of our test for segment F are:

Segment F(ai), 0 CA client (32.4 £2.5) usec
Segment F(ai), l CAclient: (91.1 £7.3) psec
Segment F(ai), 2 CA client:s { 1342 £ 13.7) psec

Note that the execution umes of F are non-deterministic. The number after a "t " symbol is the one standard deviation
fluctuation around the mean time value.

Multiple devices may be supported for a given record (PV) type. The device support layer is also organized as a vector
tabie or device support entry table (DSET). For each device supported, for instance a VME board, a pointer to an initial-
ization, 1o a read and to a write function is kept. One field in all PV types is the DEVICE TYPE field. This information is

181

SR

used by the record layer to call the appropriate funciion in the device support layer. Figure 7 gives the vector table
organization of the device support layer.

INIT ¢ READ | WRITE
devi devl_init{) devi_read() | NULL
dev2 deve_init() | NULL dev2_write(}
dev3 dev3_init() | dev3_read() | NULL
devd4 | dev4_init() ' NULL dev4_write()

Fig 7: Device Support Enuy Tabie (DSET)

Segment C is the pre-processing in the device support laver. For the device type tested we find no time variations in C. The
duration of C depends on the record type and device type. For our case study application it is:

Segment C(ai, XY566DI): 0.3 psec

Segment E contains the post-processing in the device driver layer, A driver failure would prolong the time spent here (i.e.,
raising alarms). The duration of E depends on the record type and device type. For our test example it is:

Segment E(ai, XY366DI): 1.9 usec

The actual work of read/write to front-end acquisition boards is performed by the driver layer. The driver layer contains
regular device drivers adapied to the EPICS style. VME address assignment of Control and Status Registers (CSR), VME
data buffers and backplane interrupt lines are fixed and controlled by Central Authority. This arrangement limits hardware
configurability at the front-end boards in exchange for ease of development at the back-end or user level (U, archiver,
alarm bandler, database, etc). The device driver used in the test application was a simple memory mapped driver that read
one word (16 bits) from YME when a read request arrived. Segment D is the device driver. The device driver used
(XY566D0) ferches a word from VME A24 space. During segment D, the data is gathered from the hardware device and
placed in the record tield. Segment D depends on the device type. For the case study application:

Segment (XY 366D[): 8.6 usec

Segment A through G represenc the actual time of record processing. Additional time is needed to traverse and manage the
list of PV on a given scheduling list.

Time Stamp Latency

We define the time stamp latency as the time preiod that starts with the arrival of data from the hardware device (in
segment D) and stops as soon as a time stamp is acquired for the PV (in segment F). The time stamp latency is not affected
by the number of CA clients. The time stamp latency will vary with record type and device driver, in the case study we find
it 1o be:

Time stamp latency (ai, XY566DI): 11.9 psec

Data Send Latency (DSL)

We define data send latency as the time starting at the arrival of data from the hardware device (in segment D) until the
time the event_task returns from the sendto() routine. The sendto() routine copies the data packet (32 bytes for one ai
value field) to the kernel TCP/IP driver, which will in turn ship it via ethemnet to unix applications. Numerous factors
affect the data send laency:

182

a) Number of PV being processed in the same list or scheduling mechan:sm. The data send laency for the first ai increased
as more PVs were processed in the same list

DSL (1 ai PV)(604 = 60) psec DSL(4ai PV):(1210= 51) psec

DSL (2ai PV):(847 * 80) psec DSL (5 ai PV):(1380 183) psec

DSL 3 aiPV)(970 115) psec
b) The number of CA clients requesting data. The data send latency for successive clients has the previous clients
event_task latencies added in,

DSL (1 client, 1 ai PV): (628 =45) psec
DSL (2 client, 1 ai PV} (658 +£52) usec (1st clienn)
(1153 49) psec (2nd client)

¢) The number of scheduling mechanisms being used in the datbase. All tasks that process PVs run at a higher priority
than the CA tasks in charge of sending data packets (event task).

d) Any factor that prolongs the execution of segments E, F or G during PV processing The reason is, PV processing tasks
run at higher priority than any eévent_task sending data back to a client task.

Asynchronous Scheduling

A second record type (waveform) was evaluated using the Comet Card (6], EPICS 3.10 and VxWorks 5.1. The Comet
waveform driver is asynchronous. The readout of data in asynchronous drivers is tiggered externally. The process vari-
ables (PV) scheduling field (SCAN) is set to IO-INT. The device driver is notified about the arrival of new data via IRQ
or by polling the status of the card. The Comet driver uses the latter mechanism.

Prepara| Put data in Event quause
Record | for client tasks

&/ /O e

Callback, transfers data Davics arms wf
Driver arma card
—_ A
Signal D Task
{Pail or Int)
® [_)
Trigger

Fig. 8: Execution flow for EPICS asynchronous drivers

The execution flow for EPICS asynchronous drivers, shown in Fig. 8, is as follow:
1. External trigger arrives, Card digitizes.
2, I0C is notified via [RQ INT or poiling. The polling resolution is 32 ms.
3. Driver Layerr DoneTask wakes up and calls the device layer.
4, Device Layer: Callback routine transfers data to PV followed by a call to the record layer.
5. Record Layer: Prepare the PV for next processing followed by a call to the device layer.
6. Device Layer: Calls driver layer
7.Driver Layer: arms hardware (Clear and set registers). exits to 6.
8. Device Layer: Exitsto 5.
9. Record Layer: Places the data into "Event Queues” for CA clients (Segment F),
If scan mechanism is [O-INT, schedules PV for next wigger, exit o 4.
10. Device Layer: Exitto 3.
11, Driver Layer: Exit Done task

183

The followiny times were recorded in each software layer of EPICS:

Database Layer
Segment A(wt): 9.0 usec
Segment G(wt): 1.1 usec
A and G are not called when the PV scan is INT-IO.

Record Layer
Segment B(wf): 8.6 usec
Segment B(wf): 2.4 usec, when PV scan is IQ-INT

Segment F(wf), 10 elements, 0 CA client: (45.8 £1.3) usec
Segment F(wit), 10 elements, 1 CA client (69.7 + 2.6) usec
Segment F(wi), 10 elements, 2 CA client: (90.3 £1.7) psec

Segment F(wt), 100 elements, 0 CA client: (458 + 1.4) psec
Segment F(wf), 100 elements, 1 CA client: (66.7 + 2.3) psec
© Segment F(wf), 100 elements, 2 CA client: (89.8 + 1.8) psec

Device Layer
Segment Callback(wf,Comet): 11.6 usec ,
Dara Transfer(wf,Comet): (1.1 * nelements) psec

Segment C(wf, Comet): (14.9 + 1.6) psec
Segment E(wf, Comet): 3.7 usec

Driver:
Segment D (Comert): 9.1 psec

Time Stamp:
Time Stamp Latency(wf,Comet): 39.5 usec

Data Send Latency:
DSL(1 client, T wfPV): (541 % 65) usec
DSL(2 client, 1 wfPV): (584 + 36) psec (1st client)
(1198 = 68) upsec (2nd client)

The factors that affect the performance of asynchronously scheduled PV include:
a) Time spent in the database layer.

b) The frequency of the scheduling is externaily triggered.

c) Executicn of the Done Task (interrupt or polling task), one per card.

d) Number of elements to transfer across VME.

e} Time spent arming the card for next trigger.

£y Other factors discussed before that affect segments B,C,D.E and F.

184

[V. EPICS RECORD PROCESSING OVERHEAD (RPO) AND CHANNEL ACCESS (CA)

We define the record processing overhead as the time nesded to process a record. excluding the device driver laver, The
technique used o measure record processing overhead was indirect. In each test a single PV type was chosen :md.:l single
scan mechanism was used The DEVICE TYPE field in each PV was "Soft Channel”. The soft channet device type
exercises the epics software layers without talking to a real device driver. The first and last record in the queue was a
subroutine record that generated VME activity. A VME tracer measured the time elapsed between processing of the first
and last record in a given queue. The process variables have a PHASE field that allows to prioritize (high 0 - 100 low) the
order in which PV are scheduled within a given queue.

Record (Field,} Comment
sub_tstart{SCAN=13,PHASE=0) Start §ming with VME tracer

ai1{SCAN=1s, PHASE=30,0TYPE=S0f ATYPE=ai}
ai2(SCAN= 15, PHASE=30.0TYPE=Soft ATYPE=ai}
ai3(SCAN=15 PHASE=50,0TYPE=Scrt ATYPE=ai)

aN(SCAN=13,PHASE=50,DTYPE=Soft, RATYPE=ai}

sub_tend(SCAN=15,FHASE=100)} Stop timing with VME tracer

Fig 8 Database Configuration 10 measure record processing overhead

Figure 8 illustrates the database configuration used in the RPO measurements. The SCAN field was used to prioritize the
order in which the PV's were scheduled: first a subroutine record 10 start timing, next one or more ai records, finally the
subroutine to stop timing. The two subroutine records added 140 psec to each measurement. Consequently, the results
reporied were corrected accordingly.

Number PV ai bi mbbi waveform (diff NELEM) CPU Idle
10 | 100 | soo | 1000
10 762 - 660 670 668 668 668 | _ * 99.0
50 3174 2693 2728 2750 2750 2750 * 98.5
500 30576 25333 25989 27500 | 27500 | 27500 - 96.0
800 | 55480 46305 46960 46960 | 46960 | 46960 v 93.0
1000 | - . B - - | . . o

Table 4 EPICS Record Processing Overhead for various record types. Time in microseconds, scan queue running at 1 Hz,
No Channel Access.

The test was first executed using analog input (ai) process variables. As described earlier, there are numerous record types
(PVs), so the test was done with bi (binary input), multibinary input (mbbi) and the waveform record. Most record types
bave a single value field with the exception of waveforms.. The number of elements in a waveform record is specified in
the NELEM field of the PV. Increasing this number does not increase the record processing overhead. However, in the
device driver layer the total record processing me will increase with the number of elements in the waveform record to
account for the buffer copy. Table 4 lists the record processing overhead in psec, for various record types as a function of
the number of records. The average record processing overhead per PV scales well with the number of PV's and is:

RPO(ai): 61 usec

RPO(bi): 51 usec

RPO(mbbi): 52 usec

RPO(wf): 52 usec
The next test was to develop an application with one operator interface (channel access client) and one IOC. The database
contained 100 ai records on a queue at 10 Hz. The first and last records were subroutine records that accessed VME for
timing purposes. An additional subroutine record was added at the end of the queue to change the value field in all PVs.

9

185

The last subroutine record provided 1 "fake” device driver by changing the value field in ail 100 PVs, forcing the Channel
Access mechanism execute at 10 Hz, Channel access clients only receive data when the PV value changes. The last
subroutine record was implemented using two culls provided by EPICS:

dbNameToAddr() Find the address of a process vartable in memory

dbPutField() Change the value feld of the process variable
Record {Field.} Comment
sub_lstart{SCAN=Q. 13,PHASE=G) Start timing with VME racsr

ai1(SCAN=0.15 PHASE=50,DTYPE=Soft ATYPE=ai)
ai2(SCAN=0.15,PHASE=50,DTYPE=Soft. ATYPE=ai)
ANSCAN=0.15,PHASE=50,0TYPE=S0n AT YPE=ai)

A 10O(SCAN=15, PHASE=50,0TYPE=5aft RTYPE=ai}
sub_tend(SCAN=0Q.1s,PHASE=100) Stop timing with YME racer

sub_fillai{SCAN=0.1,PHASE=100) Fill afl ai values (214ms)

Fig. 9: Dawbase Configuration, single periodic queue at 10Hz, 100 ai PV plus a single subroutine record that
fakes the device driver changing the values of all 100 variables at 10Hz

RPO correctad CPU Cbserved

{0.1 8) idla (%) CPU idle (%)
No CA Request B8.615ms -92.3 78.3
One CA Client 100 PV 8.786ms 82.0 £8.0
Two CA Client 100 PV 10.342ms 72,5 58.%5
Three CA-Client 100 PV 11.857ms 82.0 48.0
Four CA Client 100 PV 13.101ms 53.0 39.0

.. Table 5: EPICS Record Processing Overhead (RPO) and CPU utilization for 100 ai PV at 10 Hz, the third column is

corrected (o account for a subroutine used to change the value field on every iteration (aprox 14 ms).

Number of Process Variables | CPU idle (%)
10 79
20 78
30 77
40 76
50 75
100 68

Tabie 6: Application with 100 ai PVs at 10HZ in the IOC and, one operator interface monitoring N variables.

The Iast subroutine record had a loop over 100 elements w change all the PVs. It executed in 13.7 ms. It shounld be noted
that this record was at the end of the 10 Hz queue and did not affect the RPO measurement. However, the CPU idle time
was reduced by 14 percent.

Figure 9 shows the database configuration used in the test. Table 5 lists the RPO and CPU idle time measured, the numbers
in the "c¢orrected” column are the CPU idle times corrected by 14 percent. RPO and CA CPU utilization increase with the
number of clients.

Using a network scope, we observed that the network (Ethemmer) load was 40 kB per client, when 100 ai PVs were

10

186

changing values at 10 Hz. {f we assume 4 bytwes of application data are required to represent the 12bit values being read
from the ai devices, the network overhead is (36/40)*100 = 90%.

To abserve the effect of CPU overload at the [OC, seven CA clients were started on three Sun workstations, Data was
archived for 500,000 data points. We observed a 0.25% data loss with error messages at the IOC, but the channel access
clients were not notified(i.e., operator interface). [n addidon, it appears that the new data packets are discarded in favor of
the ones already queued. When an eighth client was added o the application, the Archiver {(one channel accass client) lost
connection with the IOC.

In another test to study the behavior of CPU usage by channel access, we used one client (operator interface) monitoring
the ai PV queved with 10 Hz. Again. the values of all variables were forced 10 change in each cycle. Table 6 gives the
results of CPU utilization as the number of variables increased.

V. DATA OVERHEAD

We briefly looked at the EPICS Data Presentaton Qverhead: We ran the AR (Archiver) connected to an I0OC which
processes 100 analoyg input records at a frequency of 10 Hz with the VAL fields changing synchronously. No other record
fields were touched. The AR logeed the data in a file and we measured an increase in file size of 999 kB in 109 seconds or
9.17 kB/sec. Next, we compressed the file with the Unix compression utility [compress(1)] and found that the data set was
reduced to 9% of its original size. From that we conclude that a different datz representation in EPICS could, in cerwin
cases, reduce storage requirements by a factor of 10.

V1. EPICS I0C RESOURCE UTILIZATION
The ol CPU usage by the EPICS 10C is:

CPU = TRP + TCA + tKernel

where TRP is the sum of the time spent processing all the records in the database
TCA is the sum of the time spent by all the tasks that service clients event queues,
which include ail the "camsgtasks” and "event_tasks"
tKernel is the tme spent by the VxWorks kemel during task management

The Total Record Processing time is the sum of the Record Processing (RP) time spent in each individual process variable.
Based on our observations the RP for each PV can be estimated:

RP = [Db(recType) + tRec(recType, caReq) + tDev(recType, devType) +
tDriv(devType, nElem) + tFetch] * schFreq

where (Db is the time used by the database layer (segment A and G). It depends on the record type. Other
factors that increase tDb are the presence of input links.
tRec is the ime used by the record layer (segment B and F), This time is a function of the record type

and number of pending channel access requests for fields in the process variable. Other factors
that increase (Rec, are the presence of alarm conditions the size of the data being copied to the
event_queue buffers (i.e., number of elements in waveform).

tDev is the time used by the device support layer (segment C and E) and it depends on the record type
and device type.

Oy is the time spent by the device driver layer (segment D) and it depends on the device type and
number of elements (typically one) to be read or written.

tFetch is the time spent by the epics task fewching or traversing the list of process variables to get the
next record { in the order of 10 w 18 psec).

schFreq is the frequency at which the process variable is scheduled for processing

The Total Channel Access (TCA) time is the time used by the "CA UDP", "CA TCP", "CA online” and the two tasks
necessary per client application which include one "camsgtask” and a "event_task”.

11

187

The TCA tends to tluctuate during a run depending on the number of client tasks, number of oustanding requests for fields
of the PV, the frequency with which the value tields change, the number of requests for control data, and the size of the
data and control packets being sent to each client applicaton.

The tKemel is the time spent by the operating system switching between tasks and is determined by the number of active
tasks and the scheduiing frequency during the interval being measured (7).

VII. CONCLUSIONS

EPICS allows prototyping and development of distributed monitoring and control applications, that use VxWorks for the
front end processors and Unix (SunO8S) for storage and operator interfaces. The amount of front end processors needed is
application specific and can be predicted.

The time stamp latency varies with the record type, a tact that should be considered if the time stamp is to be used for
algonthms other than ordering and sequencing of data packets.

The Data Send Latency is non-deterministic with a mean in the millisecond range and depends mainly on the number of
PV’s and clients. This latency is independent of the carrier.

The current carrier, TCP/IP over Ethernet, is atfected by network load.

The network overhead, defined as the ratio of useful data (timestamp and data value) o total data on the carrier is 20%.
The rauo is better (increases) with the use of array data (waveform). Under overload conditions the channel access
mechanism discards newer packets first with no notification to the client application. The data is only sent to client appli-
cations when they change above cerain programmable threshoids.

The data compression rate achieved on archived dat is 90%.

The data packet send mechanism runs at the lowest priority and may balt under averload conditions, therefore mission
critical comrective algorithms should run on the [OC.

The EPICS application layer has no mechanism of passing configuration data to device drivers. Every desired hardware
functionality has to have its own device support software. '
Acknowledgements

We used a CPU utilization program developed by Carl Kaibfleisch, ported to VxWorks by Lee Miller. He also helped
preparing this document. Database developments were done by James Hayes. Device Driver utilization work was carried
out by Adrian Stipe and Huan Nguyen.

References
{1] Los Alamos National Laboratory; "EPICS users manual”
(2] SSC Site Specific Conceptual Design; SSCL - SR - 1056

[3] Motorola Inc., "MYME166/MVME167/MVMEI1S7 Single Board Computers Programmers Reference Guide", Octo-
ber 1992

f4] Wind River Systems, "VxWorks Programmers Guide"

(51 XYCOM, XVME-566 Manual, May 1987

(6] OMNIBYTE Corp., "COMET Reference Manual”, April 1992

(71 Bodo, M. et al, "VxWorks 5.1 Benchmark Tests", SSCL-627, June 1993

188

