SDC/GEM
JOINT COMPUTING
WORKSHOP
SSCL

JUNE 30 - JULY 2, 1993

453y

soint SDC/GEM Computing Workshop
SSCL June 30-July 2, 1993

Agenda (Note rooms carefully, they are all different)

Weds June 30
AM: Building 1 Room #285
9:00 Report from E-Systems on Mass Storage options E-Systems
10:30 SDC Specific Topics: S. Kunori
 SDCSIM upgrades
Package organization
Event data structure
PM: Building 1 MSD Room (upstairs)

1:30 Report on PASS col |laboration meeting D. Quarrie
2:45 Report/Discussion on video conferencing and ESNet plans: Greg Chartrand
4:00 Status of SDC CORE SW S. Frederiksen
Thurs Jul 1

AM: Building 1 Engineering Room #118¢
9:00 Discussion of GEM/SDC/PRCD operating procedures
Discussion of definition of Joint Projects
Plans for future joint meetings
10:30 Data Modeling & Data definition Ianguage & reiated items
Cheetah: Gary Word
Object persistance, object transport, IPC RPC

Proposal for geometry def’n |anguage J. Womersiey
PM: Building 1 Engineering Rnom #118c
1:30 Worlid-wide Web J. Hilgart

2:30 Programming languages
GEM C++ Pilot Project: Irwin Sheer
C++ Class Libraries Alicia Harvey
C++/FTN status

Frei Jul 2
AM: Building 4 - Directorate 2
9:00 CASE/IDE
Distributed development discussion
PRCD Plans
User education
PM: Building 4 - Upstairs Conference Room
1:30 GUI, Graphics & Event displays

Volunteers for talks or discussion leaders on any of these topics would be
appreciated.

SDCSIM UPGRADE

S. KUNORI
D. SCHMID
A.FRY

‘ R :-“.-l",_:%ﬁ%ﬁ'{f.;’ 5 _;,5\
<y -

J ’ .
A

N

\/’,—‘-‘___-1‘_____

SDCSTM

- uparades
~a
(Pand
- B~ S QTS
T Kanse!
N
Y
ay;
. /2D o
. batura seftiuuece - -
SUCSTIW,
Q..u_*f--ﬂ b}

2.4
Path to the ultimate SDC Software

W s e
Mk dal, vim. codit

time coding axisting Phys :'l.c:i codas
-—— (systeam)
SOCSTH TRIASIY
1993 i i | | !]]
1 = P
[P T— o P fé‘\ 1 ! |
RE | T H 1 | 1
11l | =0 => n?ﬁ | | |
IR i v !]
(RE S o | -] I |
1} i m | | |
| 11 - a=> | 1 [
I R n | | |
H 11 t | 1 |
Lt i 1 | i
1 v A v v
I|l| :--‘.----::;tch +o NEW SYSTEM -
l I - L L L L] L L 1] S G D TR
11 1
| x—————— |l
| !
| | 1
| P 4 II
l
| |
1 i
2000 + v

SDCSTM uparnde B
Goal of Plan

Balp to accelerate the code development in
SDCSTM and evaluation of the detector design.
(= suw.r-" 'Ms;g_s tudiag ‘_)

smaller program size (event siza) ‘ " meenery

- :‘“14.
more user friecdly

toward complata detsctsr simulatien
and avent reconstruction

pPreparation for migration to future
software

“laanar cedae

(see 8.2 for mmjor develoment plaa)

Nota:

¥a continue toe support VAI-VMS and UNIX.
User friendlisess and performance on VAX-Vi3

say be limitted, but functionalities
in Sismlstion and Reconstruction will be fully
available.

Schedulae

T/ form "local Teams” To deuddep “Treposie/plam
8/93 amore concratas propasal.

(with preliminary version of usar guide)
8~9/923 awitch to new code manasment systam

1/94 completeion of lat upgrade

Organization

SDC computing <¢-—) Computing Technical Boad
1 {Gainas) [epecisalists from phywics
| +{Fry, Amakoc) detectors, computing]
]
| =-=0niine
| —HY projects
|-=-8¥ projects
{ -—Code Managemant
i
{~=Phyesice Application (Kunori)
| ~~subsystem coordinators [at remota site]
i (coordination + responsibility)
| —package managers [at remots site]
l {code development + maintsnance)
j=—support group [mostly at S38CL]
| (coda/algorithm test
| + consulting)
| ==general users [at remota sita]

(Nata: 'remote pita’ includes 38CL.)
o Coordination of Physics Application Group:

- regular meeting during collab. mtg.
9¥ GENERAL MEETING/SW TECHNICLL MEETING
PEYSICS ANALYSYS MEETING
(COORDINATORS MEETING)

- wall dafined *package’
‘pacikage’ is defined or aunthorized ot
regelar meatings.

- 'E-zail’

SDHCSIHM W?C\MQ. Yeams (oY SSCL)

merbers = (BD4) * (BD3) ~d

R amoat Sutlaw
- TRTOAS = {VS n prearess

- novaimatey S0 vertlon ceoday “3
3 lera) /0, |

a Eyewt doto, medelin: . . '
—~ Cleamar L compiate " Dawe’ definiTien

. DFD's fer sewarel oS
¢ scanacio e codalalaeritm vors i cadion

o - d.ﬂ-‘c. da\,

Ne:’ w %h&c:p'bﬂné'&ﬂ-‘{h\'ﬂtm for ol dal,

+ Gonaitiasmcs i nv\%imuﬁnx d.m&nﬁs
- 'Emﬂﬁ/@.\ib{'ﬂtnn

-) Ly T T
e BuarT diswiger TemTA /Mty

- dgﬁnr"utc. Lroms GEMMT qropnies

] S\-\/Sﬁ,uup%mdg — jan Beilga—
' P mora ata ot & user Eruud.\-\

- Masl of pd::%_ cda oehikiand) oo wn il
ba. dove. Bwomairal’ auThers .

SDCSIM uparnde Teams

-
mambers = (BiD4) « (BMD3) ~«
° ‘pockoga mua.amqﬂ' systamw
-
s TEyawt dola, mdﬂrw\%
® Mon-avanil daola, modq.\'.ncs
-
* EBuawl disThom
w

& ‘é\é/sq\.\%md.e_ -— (6B Bl

= Mesl of wknoe coda meshikicalioews wil
ba. done. b‘j-ﬂ‘“'\ajﬂn . auThers .

New SDCSIM Code Management Scheme

Current Status

- Alter several more tries, SDCSIM libraries have been
unpatchylied and imported into a CVS tree on PDSF

- Now have functionality equal to old scheme:
- site manager can build libraries
~ users can build customized executables
- developers can use (r)CVS to maintain code
- most users never use CVS

- Have asked a handful of package developers to give new
scheme a try

— Currently, everyone in SDC group on PDSF has write access
to the tree

- Made a feeble attempt to get new scheme going on VMS

- had problems with VMS CPP on FORTRAN code

Plans

~ Make 'unpatch’ program releasable so that users can migrate
their personal .CARs o new scheme

- Write a post-CPP cleanup tool for VMS, or write our own
CPP

- Investigate better protection schemes

Ljave Schmid -2 SSC 1L3b

~

— —
% Pros and Cons of New Scheme
Pros '

- New building scheme using make is nicer:
- NGO more messing with cradle fileg

~ Basically copy code into a directory and it will be finked into
your sdcsim executable

- Make will only recompile modified code — most builds faster

- allows easier use of CASE tools such as Workbench and
CASEVision.

- CVS allows developers to keep better track of code changes

- Can more easily obtain old versions and current “lest’ versions

- Easier for us at SSCL (o fix bugs

Cons

- CVS is hard to set up {but maybe just because of inexperience)

- rCVS has some annoying features:
- No read-onty expornt
- automatic conflict resolution is dangerous

- sometimes cannot 'cvs release’ what you've checked out
= €an 'cvs commit' even after 'cvs release’
-~ various buge

- 1CVS is painfully slow

~ One-way transistion from .CAR o I {no 'repatch')

_F’——’J,‘l qe

Fage

& py
e Testbed "e Desim"
HEnceE Gui | Aerwn/ vy
WRAPPERS I‘\ug g3

" masteR"

aL : RNE
ZEBRA P _

 OF cvs JUNE

SOc s 1M

re- organiznt:
pla.’“ "

MasTER | .M
APT ‘s conceal cases:
- single lawrge (Proass (O

. Coopud‘i“s processes
+ it platfoem / processor:

.- Gu!t s & SEPENRX YL ,aro&fem

o Trocess “pLow’ DEEINITION 'gn.&’y’e_
- -~

v yun-time initiclizaton

Mow?

ATIEMOT (YCT) To Thiwxk Agour
H1STo étamm (w6

RAuDom 1 guutvekiv

otley Ubilidres

SDC FRAMEWORK
DEMO

M. SELOVER
I. CHOW

PR = S

[

[*¥)

SDC Demo Project
SZ /| ZEBRA Bank Server

Mark Selover
[van Chow

June 23, 1993

BASIC OVERVIEW

. Software Architecture for SDC distributed

computing applications.
a.) coarse-grain paralletism
b.) shared data. distributed memory.

C.) inter-process communication via
message passing.

. Models for sharing data between processes.

. Process Control model using
Token (Event [d) message passing network.

. SZ/ZEBR A Bunk Server model for the

“data server™ concept.

PROJECT GOALS

F. Test out basic ideas in “CORE Concepts”

[

12

-
J.

document using simpie prototyping
package based on customized version
of HENCE/PVM.

Primary Focus on evaluating
“data server” concept with real physics
multi-process, multi-cpu applications.

Understand better implications of running
SDC software in distributed computing env.

Test out “Modularity™ of various SDCSIM
Physics sub-packages.

4. Generate feedback and new ideas to berter

focus efforts in Core Development process.

Parallel Process - Shared Data Models

Shared Memory

—(D
B®

?J

? |

Distribuied Memory.,
Message Passing

Process Dot Conmnutueaiion Modebs

Process D Commupucation Modebs

1

! MENMORY \

|

TN '
fr'-*/—-—n-— :
1

Shared Memory Arca

Chent/Server Moadel

SZ [Zebra Bank Server Model
Process Control Model for “data server” concept.

Token (Event 1d) message passing network

Master
(Hence)

fanout

Zebra Bank

done nles

87 Zcbhra Bank Server Desgoen

1. Basie Reguirements
ao mantain compatibifiny with curtent
SDCSIM FZ file fommats
b. provide virtually same SZ APLwo chien
¢ mmnimum code re-write of SZ routnes
d.y max. number events cached as possible

| J

. Basic Design Solution

a.) bulk of SZ and Zebra softwuare runs on
server. only thin SZ laver on client.

b.) no Zebra on clients. all event data stored
in multiple Zebra event store arcas on
server.

c.) transaction size between client and
server 18 | bank per request.

d.) server handles requests from FIFO

in sequential order.

client sends requests to server in
synchronous fashion. waits for server
to respond before continue.

e.) bunk modificarions handled on first

come. first serve basis

Cliern CPU

il TOCESS

Hence wrapper code

|

physics puckag:}

|

SZ interface

szegel.szfill

1
L.

Zserv cmd interface |
zselient routines

e

PVM inertace Y

msp yueue

Y

t PVM duemon

Server CPU

hry Server

i
ZS server routines
zsgetzshill.zswipe,
zstoad. zsfish.cic.

Y

Zebra sofiware r

rsnom 0.1 .1.3?]

L

PVM interfuce j

L

DCESY —\
4 ZSETVET main loop

ML yupoe

BVA daemon

LT sonhes commuincanion

CEHR A Sery o e

SNy e
——

SZCONMOD Statwe Parameters stare arey,
STPS + TEMP divisione
[.O0000 words
SZCOMY Evenn siore area #1
. HEAD + TEMP divisions
2.000.000 words
SZCONMT Event siore area #2
: HEAD + TEMP divisions
2.000.000 words
. SZCOM3 Event store area #3 i ’
HEAD + TEMP divisions ;
2.000.000 words i |
| :
*SZCOMI Event siore area #4 | |
HEAD +TEMP divisions E i
2.000.000 words [\
N I

Scrver event index lookup table | |
event # => stare area # ' ‘

SZ Clignt/Zebra Server command sequences

st open hiles

zsioad: lad next event

Zaget: pet bank

zebry server

i

szgomO L2 d

2shil: update bank

zsthn: Hush even

ayl fije

end: Close e

1J

[

- Zebra Server working now in read+write

CURRENT STATUS

maodes on multi-cpu applications.
Only tested so far on PDSF Sun's.

- Currently testing SZ client tunctions:

szgetszgetl.szgel2 szget3
szhill.szfil1.szfil2.52f13

- Soon to add other SZ functions:

szdrop.szdroi,szdro2.szdro3
sznum,sznuml.sznum?2.sznum3

. Have not tested vet to see if server

FZ output file can be read back in
by SDCSIM.

[

L)

PRELIMINARY CONCLUSIONS

. Zebra is not well suited for this hind of

application. This type of data server
15 a major Kludge.

- Zebra server limited in its capabilites

a.) cannot cache more than 4 events
b.) FZ file input is one pass only
c.} PVM send.recv is slow
d.) clients will see major deadtime if
server is busy.
e.) server does not protect banks
no lock mechanism for now.

. Demo package may not be able to

handle large applications with many
processes because of limits of server.

PASS STATUS

D. QUARRIE

[

— SDC Cumputing Warkshup - 30 June 1991

PASS Status Report \

David R. Quarrie :

LBL - MS 508B-3238
1 Cyciotron Road]
Berkeley, CA 94720
(510) 486-4868
DRQuarrie@LBL.Gov

i

id Quarrie - PASS Status Report

/ SDC Computing Workshop - 30 June 1993 \\

Major Ongoing Projects

Architectural Model Document

SSCL Testbed

et oa -

———
e o e b e AR T g

LBL CDF Tests
64-bit PTool/VTool enhancements
Preparations for Mark 1 at ANL

Monitoring related projects

Ay ayvemrR e PR L Ll i

e
-

Duvrd Quuarne - PASS Sturus Report

/— SDC Computing Workshop < 340 June 19973

/

_—

Architectural Model Document 1

Concise statement of PASS goals and architecture

* Requirements
Swawement of Problem . :
Statement of Goals |

. Abstract Reference Maodel

Identily componenis and mechanisms
No discussion of hardware or policy issucs

* Policy Issues
Identily areas of concern
Discuss possible approachs

» Implementation Models :
Generic
Specific to SDC/GEM

David Quuarrie - PASS Starus Report

SDC Computing Workshop - 30 June 1993

Prisary Dats Siore Secomdary Data Siore 3
‘ |
I i
3]
]
4
i
‘ i
Staisuct %
Provider j'
i
|
i
!
;

|

lateray
Figure 3. Process Modek }

\. User !
_-; CaCTre I OE .

Duvid Quarrte - PASS Siutus Report

SDC Compunng Workshop - 3t June (993

Application

Query Services Cosl: putation]
rvices 1
Adaptor ‘Adaptor ‘
Query Scrvices Computation i
Services
Broker Broker

Object Request Broker

e

|

Query Engincs Computation Engines

Figure 4. Communication Model

David Quarrie - PASS Status Report

/— SDC Compuiing Workshop - 30 June 1993

Architectural Model (cont.)

oI A TP

Draft being internally circulated

. Still lots of work to do
Correct inconsistencics
Expand Policy lssucs
Expand Implemenuation Modeis

E it e 2k A Vi,

= Aim for August 93

Working document
Expect to change as project conlinues

Basis for future work and discussions with customers
E.g. SDC/IGEM
Also discussions with vendors

. Vital!

T A e b v b 8 M, iy o] ur2 €

i e T

Duvid Quarrie - PASS Status Report

/—— SDC Compunng Warkthop - JU June (99

[

SSCL Testhed

e B — " "

Tests of multiple databases with DD-2 tape
YBOS. Sybase. ObjectStone & PTool/VTool

* 0GB CDF Daa
Major job o creats data model

. Tests on Sun & SGI i

Some configuration limitations

—— r

Duavid Quarrie - PASS Siarus Report

— 3
Sybase “ ObjeciSione l PTool/VTool —l ‘ YBOS ‘ §

P ot

Gi

/
= ool (=

DD?2 Tape Drive > '

SSCL Testbed tardware Configuration

/-— SDC Cumpunng Warkshap - JU June 1993

[

SSCL TFestbed

. 1QOOMB file (database) size
Not optimal for DD2 Tapes

Limited Data configurations

Presently Event-oricated (event data clustering) 1
Perhaps Data-oricated (similar data clustering)

1
Good integration & concepts testbed

Less than ideal comparison benchmark testbed

David Quarrie - PASS Status Report

/— SDC Computing Workshop - 30 June 1993

LBL-CDF Project ;
* Demonstrate use of OODBMS & Mass Store in existing :
physics analysis framework

CDF Analysis_Conuol {framework

Access to complex queries

Mark 0 & Mark | use rather simple queries because existing querics in
FORTRAN and databases use SQU or C+.

T e B

Access to large quantities of data (“blobs™)

Mark 0 limited because of mismaich between available data and the
data mode!s supported by the databases. Very labor intensive.

P i

Perform real physics analysis :
LBL physicists alrcady have a data aceess problem (10-100 GB data) :

Stepping stone to final solution

Maintins physicists conventionat analysis model
Exposc physicists to pains through datbase wehniques

Duvid Quarrie - PASS Siutus Repart

/— SDC Cumpunag Workshop - 30 June 1991 -

LBL-CDF Project - Software Configuration]

Anajysis Drver

User Modules

Analysis Services

ObjectSiore File Inptil
put Maodulc
Module |
ObjcctStore Access layer { Data Access Layer (YBOS)

L
TZis

Moadify low-level Data Access Layer Routines
25% of files in package moedified

Completely transparent to user code

Also transparent 10 Analysis Services apan from Input Module
Input Module selectable at run-time - casy to do benchmarks

Demand driven data access

Contrast to conventonal sequential access

P ———

David Quarrie - PASS Status Report

/— SDC Computing Workshop - 30 June 1993

LBL-CDF Project - Hardware Configuration

* RS/6000 client

CDF code aiready ported to this platform
Acts as ObjecetStore database client

* SparcStation server

Acts as ObjectSiore daabase server
2GB locally mounied disks

. LBL UniTree

500 GBywe wape (100 8mm canunidges)
4 tape drives

10 GByie disks :
Appears as NSF-mounted filesystem

Duvnf Quarrte - PASS Stuius Report

SOC Cumpunng Warkshop - JU June 1993

LBL-CDF Project - Status i

- . r

Database loading program operational
Only loaded 300MB of raw data 50 far r
Investigating performance and optimum organization of data

Cluster similar data together
Data from banks with same name in same datbase file
Data from a single event scattered across multiple files
Two Full Analysis Programs functional

Iresi & B-lifetime job (22 modules in analysis path)
W/Z job (5 modules)

{dentical results between YBOS fiies & OODBMS
No benchmarks done yet (“comparable™)

. Goal

Functionai system using UniTree by end of July

David Quarrie - PASS Siaius Report

/— SDC Computing Workshop - 30 June 1993

64-bit PTool/VTool

» UIC Persistent Object Manager

* Scalable

. Interacts with Mass Stores

. Distributed Stores

. Distributed Queries

o e T m ST e e o

" —

Duviid Quurrie - PASS Status Report

/— SDC Compuning Warkshop - JO June 1991

/ Configuration of ANL System
3 Drive
DD2 Tape Robol R“_“D
Disk
RAID
Disk
POWERparallel
Sysiem-1 HIPPI RAID
Switch Disk
128 nodes
(initally 32) RAID
Disk
220 GBytes of RAID Storage]E?SLD
6 TBytes of Tape Storage
UniTree File Management

David Quarrie - PASS Status Report

/-— SDC Computing Workshap - 30 June 1993

Mark I at ANL

* Timescale is end of 93

In process of defining goals and tests

* Incorporate LBL, SSCL & ANL/UIC tests

What decisions do we need to make for Mark I1?
Fecdback from Mark 1

/— 3DC Compunng Workshop - 30 June 1991

Monitoring Related Work

Qbject Management Group |
Distributed Computing (CORBA c1c.)

Object Database Management Group
Standardized Object Database Query language

IEEE Mass Store Reference Model Group
Ensure consistency between our Reflerence Model and theirs
+ Sequoia
Large-scale Database project at UCRB (DEC)
« LBL

. ANL
Baitiefield Simulations

]
1

!

i

i

i

2

t

L3

3

i

i

Other work within ICSD H
;

1

:

¥

)

David Quarrie - PASS Status Report

SDC Computing Workshop - 30 June 1993

PASS Summary

Good progress towards architecural model

Several implementation testbeds

. On track for Mark | E
End of 93

-~

« Ensure compatibility with Standards ‘
Framework

Repiaceable components from differefit vendars

1
. Simuiation Studies? i
§

Do we have enough input information?
We do have expenisc & hargware/soliware

David Quurrie - PASS Siuius Repart

PSDF UPGRADE

S. FREDERICKSEN

Plans for PDSF Upgrade

urremt Phvucy Detecior Sisuiaivon Fagihty {PDSF) is 1 the process of being upgraded (rom
. SSCUP watem 10 & 4000 SSCUP 1ysem. This upgrada wall conusi of upgreoes 1o “’f curment

-mingy and wnll not include rny new AL PDSE of 4 "comals” each of
»hich consists of 3 Daca ServerCompuit Server (SG1 360 wath 13 ae |6 individusl Compute Servers
Sparc 1 or HP-T20 anached. From eapenence wnth PDSF.2 it has been found that it 43 very impor-
tant 10 separaie the Data Scrver and C Server { Jity and so (o¢ PDSF-) no mactnes
will ach a3 botn & Data Server and a Computt Server. This should elinunaic problems thal has been
abserved with PDSF.2 where 2 “corral” had very show ditk response because INCre were s numoer of
CPU iniensive jobs ruaming on the Data Server. There is also a deed 10 prntion the bach and wmerac:
ive ysage and hat division wnll aiso be addressed with the upgETade.

The hardware upgrade consiss of thres banc peces: the SUN_ Sparc 2 have been upgruded 1o
Spare 103 the HP-T201 are being upgraded w HP- 733, and 4 addiuonal 5G1 Challenge-Ls are bewng
lled {ihey are g 10 be upgrades of the SGT 3604, although the SGL 3608 will not be .
maded 1n). Alsa two additional SUN Sparc 103 have been purchased 10 bring the mual number of SUN
warksauons o 32 (16 per comral). The 1P and SUNs will also have their memory increased from 31
10 64 MBytet. The software upgrades conusts of installing SunOS 4.1.3 on the SUN worksations
(previcusly 4.1.21, HPUX-9.01 on the HP workstations | previously 8.07). and the Challenge-Ls will
e running (RIX 5.0 while the SG1 3608 will connnue 1o s [RLX 4.0.5 untl IRIX 5.0 11 avalable for
the SG§ 3601 20d the users are ready 10 The ok

o pgrade should not cause any probiems
for the SUNs sance the O/5 vernons are very ciose. and for the HP it has beea observed on AL least one

machne that HPUX-3.07 binknes are compazbie and can be ran on an HPUX-9.04 machine. At

present there has not been any eaperience with rannang LREX 4.0.5 binanes on an iRIX 5.0 machine

50 the effect of tis VS upgrade is but under i L a8 this time. Evensually the SUN
will be upg nmmummmmllwuhﬂymummlm

with banary compatibilities, however this will not occur unal afier the hard perade is d
and stabilized.

Two of the 4 SGI-3608 will be Tansierred o the Physcs Groups in the Physics Research Division
of the SSCL. The remuning 1wo will be avariable 23 Compute Servers as pan of PDSF. This wll
=mblem%msmawmmmmSGlslouheu'comnng.Munh:gmamm

of therr 10 the Chall Ls g IR1X $.0. Since the 4 Challenge-Ls at prezent
exceed the expested Joad for the das serang nesdi. oot of the Challenge-Ls will be asa

Compute Server thus there will be 2 SGI 3601 and | Challenge-L as Compute Servers and 3 Chal.
lenge-L3 as Data Servers, This impiics that the esumated fils serving ioad will be abous L2273 of the
CPU power of the Chall Ls The Chalt Ls shouid be able to handie this load. This may
cause some G b 2 SG1 Compuse Servers will be runmng IRDC 4.0.5 and | will be
rannung (RLX 5.0, houwever this 13 also an advamage becausa this will give peopit an oppormumey 10
UpETILE thesr 3oitware that Tuns oa {R1X 4.0.5 1o somethung that runs on JRLX 5.0 and be prepared for
when the SG1 360z gey upgraded 10 IRLX 5.0.

1et§

disk space will be divided up roughly as follaws: 80 GByies for GEM, 80 GByies for SDC. 16
GBytes for DO, 16 GByses for CDF. and 16 GByies “others”. The namung comvenuan of the file sys-
tems will also change gowng from POSF.2 1o PDSF-3. the new will use /My pedst/
CTRuE+StTal tumber+disk pummher thus the SDC file sysiems o6 e 5G1 corral will be labsled /

b pasifadctX). M dsf/sdcOl, /M dsl/sdc.. and file symems on the SUN corral will be
labeled M P 10, A fisdell. M pasi/sdcll... Esch file syssem wiill be livraned o
4 GByses unleas the collabormoon/ group sMCis 10 Aawe & larger file 3ysiem that dots aot get bacied up
(for exampie sevporary or scratch disks). It is slso expemed that tha users directones will be spred
OUL ACTOSS thesa Rl syssens and not ail users will have o on ail file
ems can be -] P g on the
ot/ groups.

Soms fike 3ys-
of the individual collabora-

The aanution from PDISF-2 10 PDSF-3 will proceed in & coupie of saeps. At present the SUN
Sparc-13 have boen upgraded 10 SueQS 4.1.3 and have iy bees upgraced 10 Sparc- 108 with 64
MByies of memwory and are part of PDSF-2. Next the HP-T20s will have their /S upgraded from
HPUX 4.07 10 HPUX 9.00 and snen the HPs will have their handwere upgraded from 72010 733 wuh
64 MByies of memory. This wil) resuls in PDSF-15 with will by tha presems PDSF with Sparc-108
and HP-T35s

While the

are teing uppraded throe of the new Challenge-La will be 361 up and con-
fecied Logetver on an FDDI ring and the 160 GBytes of disks formared, The fourth Challenge-L will
be astached 10 the socandary FDDI ring (FDDI-0Y, Ones the Challeage-Li have been siabilized and ail

the 1yszem sarrware for PDSF-) has be develope aod tested tyere will be & mayor dasrupoon of

PDSF-1.5. The file synems of twe cxareis wall be ragras from the SGL 3601 to two of the Chals
lenge-Ls with the sppropriate file sysiam aame change. Once all files have deen migrated from the
SG1 3605 the rerd corrals tone SUN and ons HP) will be dracoanected from the PDSF-2 nag and ihe
disks on the SG1 1605 will be acacived to ot of the Challenge-Li The SGI 3603 wmil then be acaches
o tne¢ FODI nng. w e Ch el G Server (FDDI-0% The rwo corraly of work-
wil be 0 the Challenge: L through thesr FODT concearasors. Once ail the
connecions have boen made Snd U SYstem e out ihe onpueal PDSF- 1.5 will be shusdown and all
USEFS MOvE 10 I tew confipursnon. Alter All uwer) have boen Movad W the new configuranon the
warous Ale Syisems wiil be ragrazed over w the “new ™ PDSF. Once thw file syusm magranon 15 com-
pleted the remaming SUN anxd HP wrtld bt d t0 Uhe APPIOTNALE CTITAIS and mads
Avaulable to the poeral users. The magranon of flle symems will cause somse problems for users, bud it
will allsw U users to have access W ail thew fides dunng the move. The last twa SGi 3608 Uhat wiil
form the nucieus of e Wark Group clussers will be insialics and sevap once PDSF-3 11 up ang run-
aing .

The Sparc- 10

" duled 10 be et by &/ LL93 The HPLIX upgrace 18.07 10
901) n scheqguled 10 be compicted 77293 and the HP hardwire upgrade will be compleisd by 718/
93 The Chal

ge-La wall be Sed and readv for yiage by 2301 This wall mean 3 shutdown of
172 o POSF-1.5 on WU/9) wih the new connguranom ready far use by /13493 The gantrer of e

UETS (0 LW NEW COANEUranon will be compieten by A/1 TR The naal hardwane upgraae w0 POSF-1
witl br compleied by WM}

Purs e POLE Upgreas e s

The POSF.) connguraton connius of 3 Challenge-Ls used a1 Dara Servers oaly, which means
URIL wrers cannot bog onvo these thetr OnAlY frurpase 13 10 36t s servers. Two of ihe Chal.
enpe-La will mantain &) GBytes of disk ¢3ch, and the ifrd Challenge: L will have 48 GByies of disk
SPICE wimch 1a u dowbling of the 1oual dusk space. The 16l GBytes 12 1 B0) are sl new dis (2
GBytes, SCS1.11) while the 4% GBytes are the old diske thas were on (he rwo SGI 3603 Servers, The §

Daia Servers wiil all be connected together on an FODL nng {(FDDI-3), The two SGI 360s which wall
basransterred 10 the PRD Giroups will also be on shis nng and
Group Clusters,

form the aucicus at Lwo new Work

There will be second FODI ning siusched 10 each Daw Server providing fiber (100 Mivs) connec.
ton o each Compuse Server, For the 48 GByie Daia Server this FDOU ring (FDD1-0} will be attached
10 the 2 5G1 360 and Challenge-L. Compuie Servers. One of the 80 GByte Challenge-La will be
attached 1o 32 HP-T35s (FODI- 1), whale the third Challenge-L will be hed 1o the 32 SUN Spare
10t (FDDL-2). The 32 will be divided 4P th1d two groups of 16, cach of which 13

hed 1o an FDDS which 13 then anacred 10 ihe FDDI ring gomng w the Data Server,
One group of work wall be dedti

d 16 basch and the other group 10 baich and inveraciive
usage.
There will aiso bs one Appis Server d to each Compute Server ring. This Applicaton
Server will be g the Andrew File Sy (AF3) and will be supplying a number of programs,
L g the collab developed tofi E ly when 1he Challenge-Ls can ren AFS this
Appli Server i lity will be mowed tw the Dats Servers. Applicanon
LIB, SDC

programs (CERN-
and GEM libraries, comptlers. ete.) will be “supplied™ by a combinacion of the Data Serv-
€71 and the Application Servers.

The three coersd architecture is much mors with the 3 supp C Server arcm-
tecture. It is also much more efficient frorm » Jupport viewpout since all the same Compuie Server
architectures are 1 the same coreal, and this should 8130 reduce the confusion 10 the users.

Users logging oneo the system would specily “sun.pdsf.ssc.gov”. “hp.pdsf.sic_gov", of “sgi.pdsf.-
$5C. pov” depending on which type of architecture they want io log om0, The sun.pdsf and hp.pdsf
names wouid aitach e users to one of e SUN or HP worksanons dedicated to incracove usage
through s program like WASH. The sjp.pdsf name will log the user onso one of tve 5G1 3608 which
will be dedicared W interaetrve usa

ge. The socond SG1 360 will be dedicated to oniy baxch uthge. The
Chalienge-L will be d by specifying it Y. and will ami of i

and batch usage. When the SG1 J604 have been upgraded w IRIX S.O(arnrdmble wah the Chal-
tenge-L3) then the Ch

ge-L. will be dedi 10 baxch utage only and iteracove usage will be
resmcied w one of the SG1 360s.

This dedicanon of at least 1/2 the corrals and 23 of ihe SGI Compute Servers to batch is done
Order to Meet I fequreTncnl that 4t least 50% and preferably even 75% of the avasiable compuung
fesources be dedicaed to batch usage. The software for the Balch sys1em 1s in process of being pur-
chased. .

Wish this upgrade the wtal amount of disk spsce avait will be app v 208 GBvtes (160
GBytes of new disk plus 4% GByes of old disks), with 5ome disk sn-c. 31 for the sysiem files. This

teis

Pans ler POSF Upgrase:

PDSF Upgrade Scheduie

lune July August Scpember
Upgrade SUNs samanss
Upgrade HPs
Setup Challenge-Ls
Upgrade Software
Test Software semans
Shuwdown 172 PDSF
Sewp 172 PDSF-3
Reconnect PDSF-3 sennne
Setup Work Groups

PPTETEY 2 Ty

Foary war PO Ungrase

PDSF . Work

Plons lar POSF Upgrass : Sels

NETWORKING ISSUES

G. CHARTRAND

Energy Research Video Network (ERVN)

NETWORKING RELATED ITEMS

Video Conterencing
ESnet Usgraang
NSFnel

Russian Cannectivity

S —
LABORATORY
e

L1
BHL
Ty
WFH
NIALY)
© BRI
/18091

-

~ mocHEILLIA

. MCINGAN

WAKAHACHIE

CALIECH

/

LBL
.__ﬂ
SLAC
AN
LLrL
U CARvinE
REK
VAPANH)
A3

Lags wliie sygupment s o0 oeder

VIDEQ CONFEREINCING

The Energy Research Video Netwark {ERVN) has-

12 Sites {three agditional on order)
17 systems {ihree additional cn order)

Gateway to the Spnnt Mesting and AT4T GBVS video networks

FT5-2000 and ATAT Accunet tor wortd-wide \SDON access.

LABORATORY
Gueq Chanrang
[

VIDEQ CONFERENCING

ERVN Status

All systems can operate with the H.261 stancard
Muitipoint capability with Viel systems only

Migration 1o ISON
4- Accunet
8- FTS-2000
4. ESnet dependent

SsC '
LABORATORY

Giwq Chanrand
33

ERVILIGDI CONFIGURATION
AND
BONOIMG V'S NON-BONDING

=T videclonterence Staustical report tor the month ol May 1993
- S50 STaTs
N : o
'

/i
MCU «<F 5 37 Sionernage
VCF's 3t Cenweat Faciity

= = rous: s5cuvers 37 can

81 eacn

118 e3ch
sseL _ reLcos Totat S5CL scneauted VCF hours 151 hours
ELI -
G-3PAX MULTIPLEXER Total SSCL actual VCF hours 82.5 nours

Average S5CL VCF jength 1 hour anc & min
Tatal SSCL VCF problems expenenceg B eych / or 10%
Total SSCL No-Shows experenced 22 each « or 18.6%
Total $5CL canceilations expenenced 15 each » or 12.7%
Stonengge ang Central Facility "other” room usage 44 hours - ngt nclysive

OFf the 118 wotal S5CL vCF's -
£aciity, CF's - 31 each were betweeen Stoneridge ana Centear

o A N A :
VIDEO CONFERENCING FUTURES
ERYN STATS
Tatal VOF's thraugnout atl ERVN network 204 each

Total ERVN VCF problems expenenced 19 each / or 9%

Total ERVN No-Shows experenced 46 each / or 22.5%

Tatal ERVN canceiations experienced 30 each / or 15%

Tortal ERVN scheduled VCF hours 352.5 hours

Total Actual ERVN VCF hours 209 hours

Multipgint using H.261 stanaands
Average ERVN VCF jength

1 hour and 36 rman.

Desitop vided canferencing..............In what form......7
Sionenage and Central facility ERVN participation 92% of VCF's

Possible billing arangements for FT5-2000
Percentage of VCF's scheduled after 2200 GMT 15e3ch/or 7%

Stonenoge and Central Facility "other™ room usage refliects only those actvities

scrieduted with me prior T the usage of the room. ang are nat inckyded wn the figures
quoted for ragular VideaCanterence activity.

Comoned 5/28/93
oy Sddie Reece

CI. Wavne Gore

LABCRATOR
Geag Cranrang
e 5]

ZSNET UPGRADET)

o
: —
We should be runming € T-3 now But........... o 8 =~
Na) B
The acquisition process will put upgraaes almost a year behind. v 9 =
) 'S
Sie selechion/pnontzalion process restared due to delay ™ E 3
(== Y T —_
Additional ines will be put In 10 avoid Nerwork congeston < -
2 ®O ’
QJ : L] - -
S a ‘ ——— el i1
70! Q — ' :;.
=l - ~ i
i « —_ 34
. e al S g 3
. = i 3d.8
‘.t FERH
— -
_:-’ B E &i !
—_ - ©1 el :
by ———. D i !
" L e— - it 3
—— H H e 31Edid 4
. — e P H “ ;, Bt F
‘. . -] iz !i H 5
sC = oz S L A =4 gi?‘!:
LABORATORY ——, Nty a L
| or s ~— =S HY
\ — - e L
NSFnet |
SFnet ISSUES RUSSIAN CONNECTIVITY
NSFnet will no longer be “free”
NSF's interests lia mastly in gevelgoing ZIQabi Networks tor The Russian's are ready.......... we arg not!
supercompuler applicatons
® P we DOC ang Cergressional restrictions have not changed with the
The transport of “normal® network tratfic 1s to te times
cemmercialzed,
A sup-commines of the ESnet Steenng Committae wil
The "Internet" May become the *microneat” as indepenaent compieta the management document in July which 1s necessary
groups ot regional networks work out ther own financial and to secure permussion trom DOC
techmcal arrangements,)
The management plan wilt be submitted to DOC in eary August
ESnet has independent Connections 1o Many regional networks,
Dut rouling anag transit tratic becoma Senous 155ues.
SsC
LABORATORY SSC
Lrng Canirane LABORATORY
w93 Guwg Chanrang
&3]

RUSSIAN/CHINA CONNECTIVITY

Stirategy
Sacure permussion to route Aussian/Chinese tratfic on ESnet
Colaborata with NASA and Europeans 1o connect Russian sites

Cilona Russian management document for China

LABORATORY
Grny Charwand
v

VideaCznterence Statist:cal feDort 1gr the month of May 1994

¥CF's 31 Stonenage

VCF's 31 Central Facdiry

Total 3ECL VCF's

Tatai SECL scheduled VCF houry
Total S5CL actual VCF hours

Average $5CL VCF length

Tetal SSCL VCF problems expenenced
Total S5CL No-Shows expanenced

Tatal §5CL canceiiauons expenenced

Stonericge and Central Facility “other” room usage

Of the 118 rotat $5CL vCF

81 each

37 each

118 each

153 hours

89.5 hours

1 hour and 6 min

8 each / or 109
22 each / or 18.6%

15 each /or 12.7%

44 hours - nat mclusive

5 - 31 2ach were petweeen Stoneridge ang Central
Facdity.

SDC/GEM JOINT
PROJECT DEFINITION

CEG
IBM

MEMQ TO: L, Cormell
FROM: J. Burcton

DATED: June 17, 1993
SUBJECT: Identification and Priorirization of Tasks by the
Gamma, Electron and Muon (GEM) Collaboration and the

Soclenoidal Detector Collaboration (SDC) at the Joint Computer
workshop, May 17-19, 1993

REF : Memo on same subject dated May 20, 1993

1.0 INTRODUCTION

Per my previous memo, at the Joint Computing Workshop for the
experimental detector collaborations held 17-19 May, 19%3, a
brainstorming session occurred in which a number of items of
mutual interest/concern were identified. Reference the above
memc for additional details.

Most of these items involved development efforts in which the
Physics Research Division Computing Department (PRCD) would
play a significant role. The Computer Engineering Group
{CEG) has requested additional definition/delineation of the
subject areas from each of the collaborations. In the
meantime, the CEG has developed a consensus definition of
each of the subject areag$ to present to the collaborations.
That definition is enclosed herein.

2.0 MANAGEMEMT ITEMS

2.1 Lisr of Suprortzd Systems

The Off-Line Computing Envircnment 15 nct cisarly def:naed ¢
the Physics Community. There is considerable interesrt in a
highly visible, readily accessible, consensus liscing of ch=
available and/or supported systems. This listing would
logically be availakla in a simple text format on the
network. As a minimum, the following arsas would be

addressed.

L]
v

2.1.1 Hardware Platforms

The hardware environment at the S5CL should be expl:ci-ly
detailed in terms of the various platforms installed. This
should include engineering release information and
compatibility with previous platforms/operating systems.
Additional platforms, not installed on-site, bur compatiblae
with the system should be identified, if possible.

2.1.2 Operating Systems

.

The installed versions, including release numbers of the
various U.IX operating systems supported at the SSCL should
be identified, to include the platforms on which thev are
installed. Their compatibility with previous versions should
be identified as well as compatibility with other cperating
systems and/or versions of UNIX, if possikle. Uniqgue
problems or new features of the release should be noted.
Hardware System dependencies should be noted as well.

2.1.3 Software Compilters

The installed versions, including release numbters of the
various language compilers and pre-compilers supportad a: tha
SSCL should be identified, to include the platforms on whizh
they are installed. Their compatibility with previous
versions should be identified as well as cempatibilisy wi-h
other operating systems and/or versions of UMNIX, if possikl=.
Unique problems or new features of 'the release should be
noted. Hardware/Cperating System dependencies should ke

noted as well.

2.1.4 Urilities

The installed vers:icns, itncluding r
various usiliries suppcrtad at the
to include the platisrms on which they

comparibiliny wirth previous versions shculd be ideatifiad as
well as compatibility with other opesrating systems apd/or
versions of UNMIX, 1f pcssible. Unigue problems or naw
features of the release should be noted. Hardware,/Cperating
Systam dependencies should be noted as well. Third parcy
vendors, licensing agreements, usage limitations and octher
percinent data should be made available as appropriate.

2.1.5 Communications Software

The installed versions, including releass numbers of the
communications sdftware supported at the SSCL should be
identifiad, to include the platforms on which the software is
installed. Compacibility with previous versions should be
identified as well as with other utilities, operating systems
and/or versions of UNIX, if possible. Unigque problems or new
features of the release should be noted. Hardware/Operating
System dependencies should be noted as well. Third party
vendors, licensing agreements, usage limitations and other
pertinent data should be made available as appropriate.

2.1.6 Software Development Tools

The installed versions, Including release numbers of the
varigus Software Development Tools supported at the SSCL
should be identified, to include the platforms on which they
are installed. Their compatibility with previous versions
should be identified as well as compatibility wich other
software development tools, operating systems and/or versions
of UNIX, if possible. tnigque problems or new features of the
release should be noted. Hardware/QOperating System
dependencies or integration dependencies with other tools
should be noted as well. Third party vendors, licensing
agreements, usage limitations and other pertinent data should
be made available as appropriate. Methods of access to
shareware and SSCL develcped software should also be

identcified.

2.1.7 Project Management Tools

The installed versions, including release numbers of the
various Project Management Tools supported at the SSCL Qff-
Line Computing Department should be identified, to include
the platforms on which they are installed. Their
compatibility with previous versions shculd be identified as
well as compatibility with other project management tools,
sofiwarea de»e'ocment tools, operating systems and/or versions
of UNIY, iZ pessible. Unijgue problems or new featuras of the
leags shculd ke ncrad. Hardwarz/Cp2ratcing Svstam
pandencies should te nored as well. Third party vendors,

2

licensing agreamants, u3ag2 limiraguons and sehar geosinan
data should 52 made available as agproprias

- i3 Tt

1.8 Necwork Management;Administracian. 2nalysis

The installed versions, including release numbers of tha
various Network Management Tools supported at the 53CL C
Line Computing Department should be idenzified, to inclu
the platforms on which they are installed. Their
compatibility with previous versions should be identifia
well as compatibility with other utilities, network
management tocols, operating systems and/or versions of UNIX,
if possible. Unique problems or new features of the relaass
should be noted. Hardware/Operating System dependencizs
should be noted as well. Third party vendors, licens:
agreements, usage limitations and other pertinent data should
be made available as appropriate. Methods of access t>
shareware and SSCL developed software should also be

identified.

2.1 9 Other Software

The installed versions, including release numbers of the
various support software-to include SCCSIM, GEMFAST, GEANT
and associated Physicist Applications tocls should be
identified, to include the platforms on which they ar=
installed. Their compatibilicy with previous versions shoull
be identified as well as compatibility with software
development togls, utilities, other operating systems and/cr
versions of UNIX, if possible. Unigue problems or new
features of the release should be noted. Hardware /Cpa-iting
System dependencies should be noted as well. Usage
limitations, known problems and other pertinent daca shcultd
be made available as appropriate. Methods of aczess to
shareware and SSCL developed software should also be

identified.

2.2 Standards

The diversity of the developing communirty in tarms of

- geographical location and skill levels regquires that a c£ogens

set of softrware development projecc management,

communications, testing, documentatiorn and quality standards

be implemented and propagated across all develcpment grcups

As a minimum the following areas are seen as candidatas fcor

standardization.

2.2.1 Sofrtware Development Process.

standards should be escablished for definizion cof rchs

sofrwars devalocment process. The standards shewid gosoois
[] ¢ P 1 ¢

for the flexibility to select among some reasonable subsac of
sofcware development mechodologies, depending on the specific
requlrements of the project. Among the potential subset aof
acceptable standards which should be evaluated/incorporated
are the following.

2.2.1.1 Waterfall

2.2.1.2 Iterative Waterfall

2.2.1.3 Incremental Waterfall

2.2.1.4 Structured Rapid Prototyping

2.2.1.5 4th Generation

2.2.1.6 Spiral

2.2.1.7 Reusable Component Composition

2.2.1.8 Exploratory

2.2.2 Project Management Planning

Guidelines should be developed for the process of project
planning. The areas that should be addressed are identified
in the following subsections.

2.2.2.1 Task Definition and Assignment

2.2.2.2 Task Prioritization

2.2.2.3 Task Sc@eduling

2.2.2.4 Resource Loading

2.2.2.5 Risk Assessment

2.2.2.6 Activities/Milestone Identification

.2.7 Project Scheduling Terms and Symbols

%]
D

2.2.1 Software Development Planning

Guidelines should be developed for the planning of a software
development effort. The areas that should be addressed are
tdentified in the following subparagraphs.

2.2.3.1 Merhed Selection

2.2.3.2 3oftwars Developmenc Environment Selsccion

2.2.3.) Sizing Estimation

2.2.3.4 Risk analysis

2.2.4 Software Analysis

Guidelines should be developed for the selection of an
analysis method appropriate to the type of software
development project and selected software development methed.
A list of appropriate scftware analysis metheds should ks
identified. The list should be a subset of the following

subparagraphs.

2.2.4.1 Structured Analysis
2.2.4.2 Modern Structured Analysis
2.2.4.3 Object Oriented Analysis
2.2.4.3.1 Coad/¥ourdon Mechod
2.2.4.3.2 Schlaer/MelloE

2.2.4.3.3 PRumbaugh et.al.
2.2.4.3.4 Booch . i
2.2.4,3.5 Jacobsen

2.2.4.3.6 Meyer

2.2.4.13.7 Others

2.2.4.4 Jackson Method

2.2,5 Software Design

Guideliiles should be developed for che selection of a
software design method appropriacte to the type of scfrwars
development project and selected software development mechca.
A list of appropriate software analysis methods shouli ba
identified. The.list should be a subset of the following

subparagraphs.

2.2.5.1 Structured Design

crucrurad Design

[

2.2.5.2 Mcdern

,2.5.3 Okject Criencad Design

tJ

2.2.5.3.1 Coad/Yourdon Method
2.2.5.3.2 Schlaer/Mellor
2,2.5.3.3 Rumbaugh et.al.
2.2.5.3.4 Booch

2.2.5.3.5 Jacobsen

2.2.5.3.6 Meyer

2.2.5.3.7 oOthers

2.2.5.4 Jackson Method

2.2.7 Software Programming Languages

A standard set of programming languages should be established
for the SSCL and the collaborations. The set should be a
subset of the languages listed in the following
subparagraphs. Extensions to the associated languages should
be discouraged. For those languages which do not include an
approved standard, an in‘house standard should.be adopted
that is compatible with both the selected compiler{s} and any

proposed standards.
2.2.7.1 FORTRAN 77
2.2.7.2 FORTRAM %0
2.2.7.3 C

2.2.7.4 Cs+
2.2.7.5 Assembler

2.2.7.6 Others

2.2.8 Coding Standards

Coding standards should be adopted for each of the approved
languages. As a minimum these standards should address the
areas identified in the following subparagraphs.

2.2.8.1 Language Extensions

- a

(2
v]

.8.2 Headers

2.2.4.1 (Call Structure

......

2.2.8.4 Interprsc233 Communication
2.2.8.5 Excecrion Hardlirg

2.2.8.6 Interrupt Handling

2.2.8.7 Garbage Collection

2.2.8.8 Process Initiation/Completion
2.2.8.9 Statusing

2.2.8.10 Program Scructure

2.i.a.11 In-Line Documentation
2.2.8.12 Reserved Words
2.2.8.13 Naming Conventions
2.2.8.14 Data Structures
2.2.8.14.1 File Structures

2.2.8.14.2 Classg Structures

2.2.9 Documentation Standards ,
'

A minimum set of documentation should be established for each
type of software development effort, Standards for
establishing the documentation set within the Softwarse
Development Plan should be incorporated.

Guidelines/Templates should be established for all
documentation. The documentation for each projec: should
include, as a minimum, a subset of the documentation
identified in the following subparagraphs. This
documentation requirement should be incorporated in the
software development plan for the project.

2.2.9.1 Functional Specifications

2.2.9.2 System Specifications

2.2.9.3 Software Requirements Specifications
2.2.9.4 Softwaré Design Document

2.2.9.5 Database Design Document

2.2.9.5 Test Plan

2.2.92.8 Tes:t Proceduras

2.2.3.7 Test Reports

2.2.9.8 Software Development Folders

2,2.9.9 User's Manual

2.2.9.10 Operator's Manual

2.2.9.11 Release Description Document
2.2.9.12 Interface Requirements Specification

2.2.9.13 Interface Design Document

2.2.10 Software Review Process Standards

Standards/Guidelines should be established for the software
review process. The standards should identify the software
reviews required for each type of software development
project. They should include guidelines/templates for each
of the software reviews as well as review timelines and
spaecific review goals. As a minimum, each software
development project should include a subset of the reviews
identified in the following paragraphs.

2.2.10.1 System Specification Review
2.2.10.2 System Design Review
2.2.10.3 Software Requirements Review
2,2.10.4 Software Design Review
2.2.10.5 In Progress Reviews

2.2.10.6 Walk-Throughs

2.2.10.7 Test Readiness Review

2.2.10.8 Functional Configuration audit/Physical
Configuratcion Audict.

2.2.11 Testing Standards

A set of standards should be identified for the testing of
saftware. The standards should be tailored to the software
davelacment method selected for the scftware development
Droject.
in the follcwing subparagraphs should be addrsssed. The
cropcsed rasting appraach should be included in any sofewara
development plan.

As a minimum, some subset of the testing idencified

2.2.11.1 Informal Testing
2.2.11.1.1 Unir Level

.1.2 Subsystem Level

(%]
to
[
[

2.2.11.2 Formal Testing

2.2.11.2.1 Test Plans and Procedures
2.2.11.2.2 Test Reports

.2.11.2.3 Test Coverage

.2.11.2.4 Test Team Makeup

.2.11.2.5 Test Responsibility

[S N R ¥

.2.11.2.6 Test Approach/Philosophy

2.2.12 Software Metrics Standards

Software metric standards should be established for ea-h
language used in‘a project and for each project. &as a
minimum, the areas identified in the following subparagracns

should be addressed. '
i

2.2.12.1 Project by Project, Department, Collaboration or
Lab Wide

2.2.12.2 Based on Coding Standards
2.2.12.3 sStandardized Toolset
2.2.12.3 In-Line Documentation
2.2.12.4 McCabes Complexity Metrics
2.2.12.5 Halsceads Complexity Metrics

2.2.12.6 Other Metric Formulas

2.2.1)3 Software Problem Reporting

A set of procedures should be established for ident:
reporting, documenting, pricriticing, evaluacing, &
implementing fixes to problems. The process shcull :
some automated, easy Lo use, tools £o ensure repcr-ing
tracking of the prsoblem to clesure. The procass sk
agplirable to Eorh rthe develogment and mainvt=2ninca pise:
both software and documentation.

a4

:ln

T
i

2.2.14 3Sofrware Development Confiqurarion Management
A set of procedures should be esrablished to manage change to
developmental software systems. Although develoomental
systems do not require as rigorous a configuration control
system, it is important to track changes during the
developmental process that may lead to deviations from
approved system requirements, The procedures should identify
responsibility for configuration management and control.
Responsibility identification should include establishment of
developmental configuration control boards, configuration
management, library management, document and software change
control procedures, etc. An automated tool set should be
identified to support the configuration management and
control procedures. Critical to the process will be the
capability to manage both traditional development effort
software and documentation and Object Oriented development
software and documentation.

2.2.15 Production Software Configuration Management

2 set of procedures should be established to manage change to
production software systems. The procedures should identify
responsibility for configuration management and control.
Responsibility identification should include establishment of
configuration control boards, configuration management,
library management, document and software change control
procedures, etc. An automated tool set should be identified
to support the configuration management and control
procedures. As in the development process, critical teo the
process will be the capability to manage both traditional
development effort software and documentation and Object
Oriented development software and documentation.

2.2.16 Scfrware Certification Process

Standards for certification of Framework software and Physics
Application software must be established to ensure that
inclusion of new software or upgrades to existing sofcware do
not unwittingly result in system failure, The certification
process should be incorporated into formal testing procedures
and Configuration Control functions.

As a minimum, the software certification process will ensure
thar the deliverer of the software: 1) includes the
documentation identified in the Software Develoobment Plan; 2)
has compianad the Formal Review process identified in the
Scfrwarz Cevelopment Plan; 3) has been audived for adherence
=2 =hs Juality Assurance standards and softwarsz metrics
idenriiiad in the 3oftwars Cevelocment Pian; 4) has complarad

...... 2

the Formal! Tzsting identifi=d in the Softwars Tav
Plan; S) has document2d and addressed any liens r
from formal audics, reviews and tescing; 6) has <
Independent Yerification and Yalidation agnivizi
by the Sofrware Development Plan; 7) has adequat=z
the requirements through the design to the deliva
and 8) nés provided an adequace plan for training oi

users/nraiatainers,

2.2.17 CASE Toolset Standardizacion

It is important to establish a standard for
implementation/integration of CASE tools into the Fnysics
Research integrated development environment such as RAN3T [RZS
or IBMS Repository or the Portable Common Tools Interfaca
{PCTE+), AD/Cycle, POSIX or ochers.

2.2.18 Graphics User Interface (GUI) Standards

The GUI software we develop or purchase should conform to
industry standard or de facto standards. For the GUI, <ha<
standard is probably X window and Motif. The standards
should be evaluated and a standard approach should ke choszen.
implemented and propagated.

2.2.19 Distributed Processing Standards '
The distributed processing software we develop or purchas=
should conform to industry standard or de facto standards.

For the distributed processing environment, at least DCE ap<
CORBA should be evaluated.

2.2.19.1 Remote Procedure Calls

Refer to para. 4.5

2.2.19.2 Parallel Programming

Refer to para 4.5
2.2.20 Database Standards

Management Systems (DEMSs} to include botn ralaticn
object oriented databases. Standards musc be ident
SQL utilization as well.

Some standards must be adopted for the use of Data 2as=

2.2.20.1 Relarional 2.3.2.% Consensus on Fielding Schedul=

The selection of the SYBASE Relational Data Base Managemeat
system (RDBMS) implies the necessirty for establishing 2.4 Scaff/User Training
standards for in house development in the RDBMS environment. ’
This should include standards for utilization of SQL A unified approach must be established to ensurzs zhaz 3l
commands, populating the data base, documenting the data base users/developers in the SSCL COff Line computing envirznmen-
structure, etc. can maximize their utilization of the environment. as a
minimum, the following course materials should be addrzssed.
2.2.20.2 Object Oriented
2.4.1 CASE Overview
The Object Databases ODMG-93 standard should be evaluated for
2.4.2 Development Overview

impact on Off Line computing products and the probability of
it being implemented in the commercial markectplace. In

addition, standards should be established for implementing 2.4.3 Methodology Management

C++ commands to the data base for database reads, writes,
queries, populating the data base, documenting the data base 2.4.4 Planning Skills
structure, etc.
2.4.5 Planning Tools (basic and advanced)

2.3 Software Fielding 2.4.6 Data Gathering

Standard procedures must be established for the 2.4.7 pnara Modeling

implementation of new software releases to include commercial
products, in-house softwdre.and Physics Unique software ac

both the Systems and Applications level. As a minimum, the .
activities in the following.subparagraphs should be 2.4.% Analysis Tools (basic and advanced)
'

addressed.
2.4.10 PApplications Design

2,4.8 Function Modeling-

2.3.1 Migration to New Operating System 2.4.11 Database Design

2.3.1.1 Notification of Upgrade 2.4.12 Dpesign Tools {basic and advanced)

2.3.1.2 Tdentification of Upgrade Impacts 2.4.13 application Testing

2.3.1.3 Plan for Transition 2.4.14 verification and validation Tocols

2.1.1.4 Notification of Proposed Fielding Schedule 2.4.15 Construction Tools (basic and advanced)

2.3.1.% Consensus on Fielding Schedule 2.4.16 Documentation Design

2.4.17 Documentation Tools

2.3.2 Software Upgrade Strategy

2.4.18 Project Managemenc
2.1.2.1 Notification of Upgrade

2.4.19 Project Management Toals
2.3.2.2 TIdentification of Upgrade Impacts ;

2.4.20 Process Management Tcols
2.3.2.3 Plan for Transition

2.1.21 Joint Agpplicatians Cevelcpmen:t $233i:ns

3.3.2.4 HNotification of Propesed Fleldin h
) 2.4.22 XnowledgesReposizory Zaordinazi:cn

wQ

2.5 Qualicy Assurance

There is a lab wide requirement to support an integrated
Quality Assurance approach to all efforts. Quality Assurance
efforts must be integrated into all aspects of the project
life cycle, to include establishment of standards, formalized
reviews and feedback procedures, problem reporting, tracking
and process improvement. To the extent possible, the process
of Quality Assurance monitoring must be automated, to ensure
the appropriate level of feedback to the developers and
maintainers. Areas that should be addressed are identified

in the following subparagraphs.

2.5.1 Standards Establishment

2.5.2 Document/Code Reviews

2.5.2 Reguirements Tracing

2.5.3 Problem Reporting Tracking

2.5.4 verification and Validation

2.5.5 Formal Testing

2.5.6 Configuration Management)
2.5.7 Software Metrics

2.5.8 Process Improvement

3.0 USER ENVIRONMENT
3.1 Common UNIX ‘Environment

It is important for the Off Line Software Development
Environment and the eventual Physics Applications Environment
to have a common "Look and Feel® This may be accopmlished by
the Common Open Software Environment (COSE) initiative,
however the success of this effort is not guaranteed. This
implies the establishment of a set of PRCD and/or
collaboration standards for the environment to include items
identified in the following subparagraphs.

3j.2.1 Window Management (x-window, Motif)

3.1.2 GilU Sofzware {EMACS, G++, e%¢.)

S-andarZiced Command Ser (for all! machines)

3.1.5 shared Library, Common Cirentory Tras Strattouis
Incerface Control Documencs

Standardized Scftware Developmen:z Tcols

3.2 Data Modeling

(o

]
[PR T PR TP

s 1
3

There are currently a variety of data mcdels assc
Physics data. Alcthough not formally presentsed as
file structures of the ZEBRA, BOS, YBOS, and Adamo
models such as Cheetah and GIZMO systems may be view
working physics data models. The challenge for the O
computing environment is to present a robust, woerking m
of physics data for the petabytes of raw information to
produced by the individual detectors. The additional

[T
[2 #

T

X
a
1)

Mmoo

L

' L.
th

A
b

b
a
<

[
[Aad |

complexity of making the data available to FORTRMNI 77,
FORTRAL Y0, C and C++ as well as a relarticpal ard,or Ck:
Oriented Data Base Management System increases the chal
In order co reduce the probability of having te reviss
applications code and to ensure system utility and us=r
confidence, it is important that some preliminary daca
modeling efforts be initiated as early as possible within the=
off-line software development effort. Properly employed, |
this methodology can ensure correctly normalized dara,
without redundancies and with only logically correct
dependencies. In addition, data modeling prepares th2 way
for unbinding the data from the process and storing the daca
in dacabases. Thus data modeling makes things simpler for
the applications developers. This must be balanced with tha
potential for tco early an implementation becoming obsolztz
as a result of changes in the on-line environment or acher
unforeseen modifications to requirements and the resultanc
costly modifications to database structures.

The task of data modeling covers both the descripticn =
data and the methods of accessing the data. among the !
to be addressed are: 1) what data shall we store; 2' how
shall we organize the data; 3) how shall we store the 4
4} how shall we provide a uniform, orjanized Agclicar:s
Programmer Interface for user storage, recrieval and
manipulacion of the data,

Generic tasks associated with this effor- are identifizd in
the following subparagrachs.

3.2.1 E

3.2.2 Attribur2 Definition : Ce+ class library one can include many definitizns wi-n ,
single name. yst at the same time ensure thac only cha
minimal number of definitions is included in che resuiting
program. In fact, the greatest possibility for sofriarsz
reuse and subseguUent improvements in software devrelcomenn

3.2.3 Domain and Data Type Definirion

Relationship Identification and Definition

1.2.4
o _ efficiencies is in the early development of Class Liprariecs
3.2.5 Identifiers and Their Use Class libraries must be identified and developed both Eo;-n.
general purpose support tools in the Framework envircnmenc

and physics specific applications support sofcwarae, Armong

;he e?fqrts.required in developing Class Libraries are -a3%s
identified in the following subparagraphs.

1.2.6 Entity/Object Normalizaticn

3.2.7 Entity/Object Model Partitioning Using Subject Areas

3.2.3 Methods associated with the O©Objects
4.1.1 Identify the Concepts/Classes and Their Mosr

1.2.9 Interface -Controls/Applications User/Programmer Fundamental Relationships

Interface
4.1.2 Refine the Classes by Specifying the Secs of
Operations on Them

3.3 Data befinition Language (DDL}
4.1.2.1 <Classify These Operations/ Identify Class Marhods

Conventional data modeling has tended to focus attention on
the fundamencal units of information of a system entities.
The Off-Line computing efforts need to be able to model much
more complex aggregates of information, which may change
their composition over time. This takes us much more towards
the Object Oriented Design concept. Most integrated 4.1.2,1.3 Destruction -*
programming support environments provide both a data
definition language and a data manipulation language,

accessible via a user interface, for the
creation/manipulation of objects in the development database, 4.1.,2.2

So far these languages have tended to be product specific,
and to use non-SQL syntax, making them difficult to use.
is important to identify/establish a data definition
environment in keeping with the open systems concept and in
support of the data modeling effort.

4.1.2.1.1 Construction

4.1.2.1.2 Copying

4.1.2.1.4 Other ;
. 1

Consider Minimalism

It 4,1.2.3 Consider Completeness

4.1.2.4 Consider Convenience

. 4.1.3 Refine the Classes Specifying Their D i e
3.4 Physics Units cther classes oy e yihe spendencies on

Off-Line computing must support a standardized set of physics 4.1.3.1 Inheritance

units for each of the collaborations. For example, all
routines that make use of position variables should use the

same standard (i.e., meters vs, centimeters). This will
support data and code transportability, reduce software 4.1.3.3 Use Dependencies

development and maintenance costs and support the open
systems concept.
4.1.4 Specify the Interfaces for the Classes

4.1.3.2 Aggregation

1.0 COCE BUILDING BLOCKS 4.1.4.1 Separate Functions inco Public and Protecred

Operations
1.1 (lass Libkrariess
) . 4.1.4.2 Specify the Exacet Tvype of Cperaticns on “he T 3333
Tha Savelcement 52 <class librariss zupeerts the goncsgores of - A P
informacion hiding and sof-wara rsuse Through the us2 of a

4.1.5 Identify Commercial Class Libraries such as che I+«
Booch Components or Public Domain/Sharewarz Class
Libraries That Might Support the Class Requiremencs.

4.1.6 Establish In-House Development Projects for
Environment -Unigque Class Libraries.

4.2 Object Pérsistence/Data Management

File handling is the most critical Eunction of a softwarsa
applications program. Unfortunately, the management of data
in the off-line computing environment is complicated by the
use of multiple programming languages and by the dearth of
C+s file handling class libraries. This leads to the
requirement for the development of an approach to ensuring
object persistenge. A persistent object can be stored
outside of a program for later retrieval. Such objects are
considered persistent since their state persists batween
instances of an application. In esseace, persistent objects
are objects that can be stored in files. It is not entirely
accurate to view objects as data structures with associared
functionality. An object is a program component that has an
idencity and a state. The identity and state involves
relationships to other cbjects, static class members, virtual
funcrions and base classes. In storing a persistent object,
the identity and state of the object must be preserved. Only
an object itself can know how to preserve its state; thus
only an object can be responsible for controelling the storage
of its components., When the gbject is retrieved, it should
be able to construct itself based on the data that was
stored. A number of the possible approaches to ensuring
object persistence and issues to address are identified in
the following subparagraphs.

4.2.1 Extended icstreams
4.2.2 Parameterized Types
4.2.3 Inheritance Persistence

4.2.4 Data Blocks and Persistence Classes

Resolving Pointers/References Across Address Space

Y
I
wn

4.2.6 Maintaining Consistent Class Descriptions

4.2.7 Data Basa Management System Storage Mechanisms

4,3 chkiject Transpocri/bata Transcort

The disrributed czmpusing envirorment 2333713723 w

Physics Research J£7 Line computing effors ragul
standardzznd mechncd “ﬂ made avax'a“‘e f:r cackajg:ng

=3 KIlaT 3

S8C envzronment Tha apnroach tc data starag musT 32
both the wide variety of placforms and storage me
variations in Operating Systems versions supporce

4.4 Inter-Process Cocmmunicaticn (IPCl/Communicarian Layer

There is a requirement to provide Inter-Praces
Communications bectween procedures executing on a machine <r
across the network. A standardized approach musz bs s2lz7t=
to support this communications service. The original cincscp:
of IPC, commercialised by Sun Microsystems is a s253ion lay
communications protocol, layer 5 of the Open Systems
Interconnect (0SI) model. It is typically implemented
through a combination of sockets and port mapping. The na-
generation approach is the utilization of the 0SI comgat:ik
transport mechanism based upon streams and accesad by w2y
a Transport LIbrary Interface (TLI). The underlying supper:
protocol would typically be the transpors protoccel, Transgore
Control Protocel (TCP} or UDP, layered on the network
protocol, typically Internet Protocol (IP). The advancages
cited are typically a low protocol overhead, flexibil:icy and
a resulcing higher data transfer rate. The disadvantages
include a lack of buffer contrel, and a lack of eXternal Caza
Representation (XDR) support., Layer 6 of the OSI model. '

et

I
-

T

4.5 Remote Procedure Calls/Process Contro!l

A Remote Procedure Call {(RPC) establishes the ability for a
procedure to call other procedures outside of an
applicarion's current address space. In other words, a lccal
progran can execute a procedure on a remote machine, passing
data to and receiving data from the remote procedurz. Ther=
are currently at least two (2) popular RPC facilicies. Thsy
are: 1) RPC by Sun Microsystems Open Network Computing {(ONC;
group; and 2) RPC defined by OSF DCE. The advantages o RPC
approach are the additions of buffer control and eXternal
Data Representation (ADR) support. The disadvancage is
increased protocol overhead. The alternacives shoulld pe
evaluated and an approach selected.

5.0 TOOLS/UTILITIZS
S.1 Graochic User Interface (GUI}

5.1.1 Standards

Reguirements must be established for the GUI environmant
based on the standards identified for the Physics Reszarch
Integrated Davalopment Environment (PRIDE). Refer to Section
2.1. Once those regquirements are escablished, the reguirad
toolset must be identified/defined, acquired/developed and
propagated/intagraced into the Framework software.

5.1.2 GUI Builder

Foremost among the required GUI toolser is a GUL Interface
Builder. A project must be established to: 1} evaluate the
various public domain and commercially available GUI
Interface Builders for applicability to the PRIDE; 2) acquire
an appropriate GUI Interface Builder; and 3) integrate the
GUI Interface Builder into the Framework environment and
propagate it to member institutions as appropriate.

5.2 3D Graphics
5.2.1 Standards

Requrements must be established for the 3D graphics
environment based on the standards identified for the Physics
Research Integrated Development Environment. Once those
requirements are established, the required toolset must be
identified/defined, acquired/developed and
propagated/integrated into the Framework software.

§.2.2 Event Display

There is a requirement to display experimental data in a 3D
format. Standards, a common approach, and the necessary
toclset for supporcing such displays should be established.

5.3 Job Control Parameters

There is a regquirement to establish a common "Lock and Feel®
process fcr the initialization of run time parameters for
varicus user applications software. This process would allow
the user to set/store run time switches and parameters for
the execution of the program, to include the selecrion of
batch vs. interactive execution and tabular vs. 2D or 3D

graphic output.

5.4 MNon Event Data Base

Thar= 15 a raguirement to provide tha capabilicy o sgors and
ragrieve non-svsnt daca such as Gaomer oy dava, Talipracizn
data, tast results, notes, documentation, corrasgondences,

and ocher miszellan=s2ns ‘daca €or actess 3vros: =37 o
collaboracions.

5.5 Parallel Processing Support

Central to the design of the Physics Derector Simulaczion

Facilicy is the cdoncept of discrere simultan2ous procz23sing

of event data. This implies a unified apprcach to paralial
-

processing. There should be a project to evaluate Qbj
Transport, Inter-Process Communications {(IEC}, RﬂTo:a
Procedure Calls, and Multi-threaded Processing. Evaluat::
should include products such as PVM, Linda. P4, CPS, Express
and others with the objective of establishing a
procedure/process and associated support Cools that ensura
the efficient, transparent parallel execution of softwaras :n
the target environment.

5.6 Detector Geometry Definitions

Each of the experimental collaboratisns rajuires praci3a
information on the detector geometry. This informaticn mus~
also be stored in a format that is easily modified. For
example, the code that will reconstruct tracks in the silic:on
strip detector will need-to know the location of the
individual strips with respect to the rest of the detectar,
An exact, generic geometric description must be made
available to detector simulation developers across each =2 §
the experimental -collaborations,

5.7 Miscellaneous Physics Support Tools

The physics applications software written by the experimencal
collaborations will require a variety of subroucines ro
assist in calculations. Examples inciude the Histogramming®
packages, the Minuir routines and Physics Analysis
Workstation (PAW). Alchough all of these routines are par-
of the CERN Program Library, there are a number of orher
potential sources for similar routines. The sources must b=
identified, routines selected, decumentatcion acquiraed ar
developed and propagated to the collaborations and the
routines themselves must be integrated inco the Framewsrx
environment both in terms of use and maintenance.

6.0 MISCELLANECUS TASKS

6.1 Fast Simulation

in scope for some scudies. It i3 desirabls that simelarions
be executable to salecrive levels of detail.

6.2 Mass Storage

There is a reqguirement to establish a scalable approach to
the on-iine storage of multiple petabytes of data for each of
the experimental collaborations. This requirement implies
the selection/development of a hardware system, a softwars
system and an interface mechod. & plan should be developed

to fulfill this requirement.

7.0 Programming Environment
7.1 Scftware Development Environment

There is a requirement to develop an integrated development
environment for hoth PRCD and the experimental collaborations
for the development of the framework software and migration
to the applications development environment. This
environment has tentatively been titled the Physics Research
Inteqrared Development Environment (PRIDE) The concept for
PPIDE is to provide a uniform project support environment to
include all aspect of automated support tools, project
management, Quality Assurance, Configuration Management and
Control, Document Generation, Data Management, Test, Upper

and Lower CASE.

7.1.1 Computer Aided Software Engineering [(CASE)

In support of the PRIDE project there is a requirement to
establish an integrated CASE environment. Integrated CASE
implies the implementation/interaction of both upper and
lower CASE. That is, in addition to the lower CASE tools
supporting design, code development, i.e. code generators,
data base development, reverse engineering, intelligent
editors, screen gepnerators, etc. the environment will support
upper level CASE tools. These would include tools such as:

1) pProcess Management Tools,

2) Structured and Object Oriented Analysis Tools,
31} Modeling and Prototyping Tools,

4) Documentation Generation.

It would also include the integration of all of those toqls
with cne another as well as the Project M@nagemgnt. Quality
Assurance, Test, Data Management and Configuration Managemenc

tools.
-

7.1.2 Interface Definition Language (IDL)

among the teols reguired for the PRIDE 3 3com= fxrm o2
Interface Definizion Language (ICL). Crza s dard:z a3:
established for Interprocess communicakions T 2
procedar-: calls, there is a regquirament fzar ol
identify and evaluate the alternacive tocls 1
automating the interface definition effort. n

alternatives are OMG IDL and QSF DCE PPC.

7.1.3 Languages

The common suite of developmental or pre2-existing system
supported languages should be identified. In conjunctian
with this effort, standards for code development for each »f
those languages and associated scftware macric standaris
should be identified and propagated to the collaboraticns
PRCD.

w

7.2 Interlanguage Task Force

There is a requirement to ensure the supgort of all <t b
languages approved for deévelopment in the Physics Res=arch
Qff-Line Computing environment. This support extends to: !}
the recommendation of language compilers; 2) ensuring access
to the data repositories for all languages supported; 1) !
ensuring the ability to pass data between or control to
modules written in different languages. This project shcu
provide proofs of concepts and recommendations of mathods
such language interactions.

7.3 Version Control

Version control is among the primary functions of
Configuration Management and Configuration Ccntzsl, It
ensures that all released versions of software and

documentation may be identified, that software versicns may
be recreated, and that modifications to software or croblam
reports for software can be properly traced. Standards f:3r
version control and requirements for the same should ke

established on a near term basis for both 0 and trazd:g:-nal

SA/SD development efforts. any such standards shculd includa
a requirement for and template of a Release or Versi:
Control Decument that includes, as a minimum: 1) a
all Hardware versions reguired by the system; 23 a liszi
all Sofrware program versions reguirsd by the systam;
build or make software r2quired by the system; 4
System and support software versions requirad Luoox

5) a l.sc of ail documentacion generared for rtha 3
list of a:l knowrt problems and their starcus as =

of the current version of the system. once standards have
been established for software and documentation version
contrcl, tools should he evaluated and acquired to automate
the casks. .

7.4 Code Distribution

Once standards have been established for sofcware and
documentatrion version control, procedures should be written
and cools should be evaluated and acquired to automate the
task of distributing new releases of sofcware.

7.5 Code Organization/Management

There 1s considerable advantage in establishing a unified
approach to repository services for the collaboracions and
PRCD. The establishment of automated repository capabilitcy
supports and reinforces the concept of code reuse, It is
important that the repository approach selected support both
the traditional file storage methodology and the 00 software
development apprdach. Requirements must be established and
support tools selected early in the overall development

efforc.

7.6 Program Builder/Make

There is a requirement to establish a standard method for the
compilation and linking of software source code. As a
minimum, an automated support tool will provide the
capability té combine the appropriate modules, as requested
by the user, assemble those modules, select the appropriace
compile time switches and then compile and link the modules,
ensuring that all references in the modules are satisfied.

7.7 Parallel Processing Support

Refer to paragraph 5.5

7.8 verificaticn and Validacion

There is a requirement to establish a standard approach to
idencifying the level of Independent Verification and
Validation (IV&V) required for software development efforts.
Once that approach is established, tools should be acquired
to support IV&V efforts. The process of validation is used
to ensure that each end item produce functions and contains
the features as prescribed by its requirements and
specificacions at the corresponding level. The verificaci
activity ensures rhat =ach steg af rhe develcpment grocess
corrsccly echces rhe incentiops cf the immediatsly praceding
step. ach of these =2fforts supports the subsegquent

SDC + GEM Common Projectis Dellnitions

SDC + GEM Comman Projecis Doalanlilons

SDC/GEM Common Projects Definitions

IBM FSC High Performance Solutions Integration
Glenn Kubena

Alicia Harvey
Larry Roberis

Juny 1993

Management

1. List of supported hardware, operating systems and software.

Definition:

The list of vendor hardware platforms and operating systems that are
fully supported by the SDC Framework and GEM (Framework
equivatent) sofiware. Fully supported means that Framework software
is (ully tested on all the platforms and can interoperate on all the
platforms. The Framework software must at least be source code
portable which means it requires only one source code mod for all
platforms and interfaces with a standard source code operating sysiem
services API such as POSIX. Mulii-platform interoperability means
that there is a standard way of passing messages or brokering objects
and/or remolte procedure calls plus a standard data interchange method

such as XDR.

There should also be a standard user interface ook and feel, sich as
MOTIF/X and possibly a standard GUI builder. ‘

In addition to the common list, there might be a list of hardware
piatforms, operating systems and software that are only suppored by
one of the collaborations (SDC or GEM).

2. Migration.

Definition;

The migration of sofiware to higher and more stringent levels of
configuration control, e.g., a communily tooi migrating lo a commen
tool. Before migration the software must comply with the centitication

a
Page 1. Jure e, 1993
Garo Kooena (713) 282 7615 WWTERNE T sudena@nouwnyce wigl bm com, FAX (1) 202 7439
184 F 5C Hgh Peclotmarce Soiusans inlegraton, 3700 Bay Arez Bivd Houswon, Teaax 11058

u
Page 2 Jure "4 391
{Fern €, oara17v]) 282 7615 INTERKE T ngur s G..micca-ot pm com Fha 1431782 "412
IBM FSC Hgn Prirmarcy Sa'uor Wiegai on 1790 Bag 400 0.9 Houtor eaks 77T

S50C / GEM Comman Prolects Delniticsns

SDC ¢+ GEM Comman Projecis Delinitions

process for the new level, e.g., higher level of documentation, tesling
and reviews.

3.Software upgrade strategy

Definition:
The sirategy for upgrading new capabilities of the Framework

software, which may include new releases of commercial software.
This strategy would include such things as regression testing for
backwards compatibility with existing data, operational notes to users
and scheduling of upgraded releases, perhaps involving multiple types

of platforms.
4, User training

Definition;
There is training for two types of “users”, defined as follows:

Users, defined as developers of the SDC Core/ GEM Core. Since there
will hopefully be a lot of commonality both in commercial and newly
developed software between the “Framework” of SDC and GEM and
since both have tentatively baseline C++ for new development, this
training would include such things as Object Oriented Design Methods
and use of Integrated Tool Kits, C++ Programming, GUI development,
communications software use (e.g. RPCs, message passing,...), and
interlangage interface guidelines. While all Framework developers
should be trained in Object Oriented design, integrated tool kits and
C++ programming, only specialists need be trained in such things as
GU1 development/builders. The specialists can then serve as

consultants as needed.

Users, defined as physics analysis tool developers or users of the
Framework, need to be provided with a Framework Users Guide
(document) and receive basic “how to use the Framework™ training by

the Framework developers.

5.Quality Assurance

Definition: The process which assures the fewesl software defects
which can be tolerated based on the criticality of the software. The QA
process definition‘inciudes such things as the design, code and tesi
inspections and approvals required, the level of design, code and test
documentation required and the percentage of time allocated 1o design,
code and test. The QA process also would specify the level of

integration and regression testing required. ,
[

Finally, the QA process would be tailored to different broad caicgon'cs
of software (e.g. Core vs. Community tools). The QA process may also
involve centifying the receipt and conformance of delivered hardware.

n
Page 1 hre 16 '590
G o7n Kudara (71) 282- 7635, INTEANE T a.benag@rouwr3CC.uret bm @m FAX(113) 202- 7439
1BM F SC Hgn Pariormance Saiuions Integraton, 3700 Bay Area Biva Housion. Tesas 77054

»
Pagu 4 Jure 10 893
Garn Kobwra 1783 282 7635 NTERRET auoersdirouvmact vna: bm o FAX 23 302 1438
IBI T SC Pgn Pevtance Solukors rtpgeatan 3700 Bay Avs 8 Iowwon Teags P10

SDC / GEM Common ProjJectls Definftians

SDC /! GEM Ceommon Pralecis Definlslions

User Environment

1. Common UNIX environment

Definition:

The UNIX environment which serves as a common platform for the
SDC/GEM core and application software. This environment would
provide for source code portability, such as in the case of POSIX, data
interoperability, such as in the case of XDR, and a common user
interface, such as in the case of X/Motif.

2.Data modeling; Data Definition Language (DDL)

Definition:
Data modeling refers to a standard method and notation for modeling

the data objects in the system. For example, the James Rumbaugh, et.
al., method and notation from the General Electric Research and
Development Center provides for modeling classes, classes attributes
{plus class operations) and different types of refationships between
classes. By reviewing and refining the data model it is possible lo come
up with a better software design without coding any prototypes (e.g.,
normalization or removing of duplicate data),

Where the target language is C++, there is a direct translation between
the object model (which can include member functions) and actual

code.

Data Definition Language is a language which enumerates ail the
names and definitions of the data items in the system.

Many tools exist which provide some automatic generation of target
language data definition statements from the data model or DDL.

3.Interface Definition Language

Definition:

A high level language for specifying the interface between two
program units possibly written in different languages, in a language
independent manner. For example, a common IDL would be used to
specify the APIs with the Framework services to support calling
languages in both Fortran 90 and C or C++.

4. Physics Units
Definition:

Establishment of the standard scientific units {e.g. feet vs. mclers} to be
used by all the physics application software.

-
Page 5. Jure ta, 1997
G o1 Kuoap Tt 282 TB2S INTERNE T wtie sfro.mice voal o com FAX (213) 202.709
WM F SC H g Partorma- g So uionn integraton, 3700 Bay Area Bivg Houalon, Teaas 77054

[]
Page & Jura '8 9@
Gienn K bana (113 J17- 755 WTERNET WO O AT ECC oral B e FAX TN} 02 PadG
BMFSC H gn Foc'ormance So4L00Y Integedlion 1700 Bay Ares B¢, Hoctrn “aay 084

e e e ema

SDBC r GEM Common Prtojecte Definitions

$0C ¢+ GEM Common Projecls Datinltlions

Programming Environment

I. Software Development Environment

Definition:
The environment in which the software development team designs,

develops, tests, modifies, debugs, documents and integrates software,
Optionally, the environment may include process automation.

IDE - An integrated development environment where the various tools
(design, code, test, debug, documentation,...) are plugged into a
standard communicalions platform and hence, instead of running
stand-alone, can provide inputs to downstream tocls to alleviale the
manual transfer of information and control of which tools run at what

point in time,

CASE - Computer Aided Software Engineering is often used to refer to
any environment which automates one or more parts of the software
development/analysis process. Typically, there are “upper” CASE tools
such as analysis/design tools and “lower” CASE tools such as
development, test and debug tools.

Languages - The standard programming languages basediined for use
for development of the Framework (e.g. C++, C) and physics
applications (e.g. C++, Fortran 90,...).

Inter-language communication - The interface between two different
programming languages, such as C++ and Fortran via direct calls,
reniote procedure calls and the rules for making such interfaces
compatible.

2. Version Control

Definition:

The configuration control of collections of software components in
integrated software baselines and releases. This includes versioning of
software products (source, object and load), accounting of changes
made (description of change, date of change, discrepancy closed or
change request satisfied,...} and security (change authorization,
traceability....).

3. Code Distribution

Definition:
Distribution of anintegrated software release 10 a local or remote uset.

Included are instalation procedures, tools, instructions, operational
noles, discrepancies closed,... Distribution may occur electronically or
via media. In case of commercial software distributed license '
accounting may be involved (e.g check out, tokens, etc.).

4,Code Organization/Management

Definition;

The organization of code libraries and how the libraries are maintained.
Code management includes change management and version control
(see the definition above for version control).

5.Program builder/make

Definition:

The automated procedure, directed by a script, which compiles and
links software into executable code, following all the rules established
for including components of the Core as applicable.

[}
Page 2, June 13, 1900
Glern k_bera (7131 2027 785 WTERNET aubsna@houvmice viat b com FAX (F13) 2877439
MM FSC Hign Partorer ance Soiubony ingianes, 1700 Bay Ares Bivd , Howrlon, Texas 77054

L}
Page 8 Jre 18 1913
Gl Kyberia (1131 27 7635 HTERNE [s bana@ruvmsce sr et o com (AT 11 3 242 1a1)
BMF SC g Parlormance Soneors iniegiaton. 1700 Bay Ares B Houtor “ssat 71018

SDC /{ GEM Common Projeclts Dellnitions

S$0C { GEM Common Projescts Delinttiana

6. Parailel Programming Support

Definition: ‘
There are two basic types of parallel programming styles, process

parallel and data parallel,

Process parallel, more appropriate for coarse grain applications,
includes message passing libraries such as PVM, parallel debuggers,
simulators,... and typically runs on distributed memory parallel

processors or clusters.

Dala parallel style, typified by High Performance Fortran, is more
appropriate for fine grain data decomposition of arrays or templates
and can run on shared or distributed memory parailel processors. Data
parallel style compilers, e.g. HPF, assist in generaling parallel code
from the compiler directives supplied by the developer. Other tools,
under design/development, include parallel debuggers, performance
visualization tools and workstation-based simulators.

Given the coarse grain “embarrassingly parallel” nature of event
processing, process parallel is more applicable to the SDC or GEM.

7. Verification/Validation

Definition:
Verification/Validation is often used to refer to the (sometimes

independent) testing phases of sofiware development. However, other
methods contribute significantly to error-free code, including:

Design inspections and code inspections, which are a proven cost
effective method of eliminating errors early in the software

development process.
Compilers and code analyzers and interpreters, which catch many

errors and assist in highlighting location of errors.

Unit testing, which is a stand-alone method of removing bugs without
tieing up integrated compuier resources.

Integration testing, which catches errors which might interfere with

overall system operations.

Other forms of system testing include simulations and certification or
acceptance testing.

L
Page 9 Jurs 14, :993 .
Gienn Kubera t713) 287 7635, INTERAME T kubena@iroywr scc vrel om com. FAX (713} 2427430
1BM FSC Hagn Pertgrmance Salukong integ:aton. 1700 Bay Area Bivd., Hoution, Teaay 77028

[]
) Page 0. kre 16, 1950
Garm Kooena 1713) 202- 7638 INTERME T benaghouvrses yrret bm aom FAX 17°3) 281 1430
BMFSC Hon Perkrancs Sotutons tnlegraton, 3700 Bay Arda Bt . Houlwon, faas 779548

S0C / GEM Common Projecis Deflniitons

S0C + GEM Commaon Projecis Dellaltliaonys

Tools/Utilities

1.GUI

Definition: A graphical user interface which facilitates ease of use of
the Framework services and applications. In order to avoid user re-
training and confusion, a standard GUI should be adopted such as X/
Motif, which has the same look and feel on all supported platforms.

2.3-D Graphics

Definition: An added capability to the GUI which allows for 3-D
viewing of objec(s. Examples are PEX and GL.

3.Job Control Parameters

Definition: User supplied parameters which control execution of an
application, e.g., physics analysis. These parameters may be
interpreted by a shell or GUI and provide job execution inputs and
control.

4,Data Base (Non-Event)

Definition: A data base of non-event information, such as calibration
data, which does not require the level of performance and volume that
the event data base will require. Also, the non-event data base may
require a more random access pattern, making it possibly more suitable
to a relational approach.

5. Parallet Processing Support

Definition: See definition given under Programming Environment

6. Detector Geometry Definition

Definition:
The processes leading to the creation of a data base of detector

geometry.
7. Docurnent Preparation & Distribution

Definition: Document publication, storage and retrieval tools which
support a world wide network of users. Retrieval might include such
things as lookup by subject and author, hypertext, eic. Such tools could
include multimedia, as well.

8. Miscellaneous chpls

Definition: Assorted tools, such as histogramming, which are part of an
application toolkit.

]
Paga v1, Jura '8, " 993
Glern Huoena (73] 182 7635, INTERNET ki bsna@@houvr scc.wnet..bm com. FAK (11 3) 282-7439
MBM FSC Hgn Peumance Solukony inmgranon, 3100 Say Ares Biwd . Housnon, Te tay 77058

]
Page 12, hre 4 002
Grarn Hupera (7131 252 7035 WTERNE T asnanouwnice erer pmeom FAZEN 'Y M7 1410
1BMF SC Hgn Perlomancs Sowsons iegaion. 1700 Bay Ases Bvg . Howaon, rag 27058

50C ¢+ GEM Common Projects Daefinlitions

SDC + GEM Cammon Projecis Dalknltlang

Code Building Blocks

1.Class libraries

Definition: Common re-usable components of software, such as C++
classes, which are contained in a library. Use of such libraries greatly
increases productivity and commonality.

2.Object Persistence (data management)

Definition: An object’s data which is retained across executions of a
program. The dala is typically retained on non-volatile media such as
disk or tape so that it can be re-accessed at some future time. Object
persistence is typically associated with the use of a data base. In the
C++ world, Object Oriented Data Base managers handle object
persistence by retaining object data associated with C4+- classes.

3. Object transport (data transport)

Definition: The transport of an object’s data, typically across a
network, from one process to another.

4. Inter-Process Communication (IPC)

Definition: The communications mechanism between Unix processes.
This includes such things as message queues, semaphores, shared
memory, BSD sockets and MENTAT streams. Of these, only sockets

and streams may be used across networks.

5.Remote procedure calls

Definition: The mechanism for calling a procedure (under UNIX}
which is not resident on the same host as the caller.

L
Page 12, June 16. 1950
Grern Kubena (713} 202-7635. INTERNE T aubena@houvmece vl om corm. FAX {713) 202-7479
WM FSC Hgn Pastormanca Sohusons Inisgraton, 1700 Bay Ased Bivd., Housion, Texas 77958

n
Page 14, Jura '8 1950
Glenn Kubens (711) 282-7835. NTEANE T bsradpnoyvmice wat &0 com FAX {113 287 2028
M F SC Hgn Partmancs Soiulons imegraton, 3700 Bay Ases B, Mouson, Terss 7705

90C ¢+ QEM Common Projectsy Delintilons

Miscellaneous

1. Fast Simulation

Definition: The execution of a simulation in fast time, which normally
means that system wait time in the simulation is set to zero.

2. Mass storage

Definition: Storage capable of handling massive amounl of data in the
Giga, Tera or Petabyte range. Usually some form of storage hierarchy
is used (disk arrays and tape libraries) in order to provide the most cost

effective solution,,

n
Page 15, Jurs '8, 1950
Ginsn Nupana (7400 2827838, INTEANET swoena@Proyvnace vnat b com. FAX {71 702- 1438
BM F 5C Hign Paviosmance Sotubons isgaation, 3700 Bay Area Biwd . Hoution Tenas 17058

COMPUTER TRAINING
PLANS

CEG

1.0 INTRODUCTION

The Physics Research Division (PRD) Computing Department
(PRCD) Computer Engineering Group (CEG) published a memo on
June 17, 1993 providing preliminary details on the definition
of joint computing tasks identified by the Experimental
Detector Collaborations at a joint computing workshop at
Rice University on May 17-19, 1993. Among the definitions of
tasks was a requirement for training of personnel. A number
of areas were identified as necessary for training of both
the user and developer community. The purpose of this paper
13 to further delineate perceived training requirements. It
should be noted that the course strategy is based on and
borrows extensively from training strategies developed by
John Parkinson, Director of Methods Engineering at Earnst and
Young Management Consulting Services.

As previously indicated in the June 17 memo, it is believed
hat a unified approach must be established to ensure that
111 users/developers in the SSCL Off Line computing
anvironment can maximize their utilization of that
:nvironment. The following course areas have been
dentified.

CASE Overview

Development Overview

Methodology Management

Planning Skills

Planning Tools (basic and advanced)
Data Gathering

Data Modeling

Function Modeling

Analysis Tools (basic and advanced)
Applications Design

Database Design

Design Tools (basic and advanced)
Construction Skills

Application Testing

Verification and Validation Tools
Construction Tools (basic and advanced)
Documentation Design

Documentation Tools

Project Management

Project Management Tools

Process Management Tools

Joint Applications Development Sessions
Knowledge/Repository Coordination

1w selection of course areas has been chosen from the
ivspecrive of the requirements cf the user/developer
mmunizy to undersctand the environment, maximize effective
& of the toolset, and speak in some common terminoclogy. It
i further anticipated that the courses should preoceed with

the goal of providing both education and training. Educar -
will be necessary because many in the physics comnunity are
unfamiliar with the approaches required to make effective use
of modern software development tools and processes, It i:
important that the physics community be shown the reasoning
behind the way the selected software development process
and/or tool works and the assumptions made about how tha
selected methods and/or tools would be used. Training
courses are also required in that there are new skills to be
acquired both for the software developers and the physics
community as users, requirements generators, and or
developers. These skills require both demonstraricn and
practice. Given the size of the problem, a long term
training plan is considered essential. The amount of the
training needed is not yet clear, as a survey of currenr
skill levels is still required, however, this document does
propose a full scale, in depth plan for training of alil
personnel/organizations involved in the software life cycle
of off-line computing.

In addition to basic skills acquisition courses for
techniques and tools, project teams may need to work together
on skills exercise courses at the start of major projects.

It is proposed that week long workshop classes based on
prepared case studies be used to reinforce or focus basic

skills,

The level of training identified within this paper may seem
excessive, however it is believed that it reflects the
minimum amount of training necessary to establish an
integrated development environment in a joint applications
framework. It is not necessary to embark on a training
schedule that completes all course work as soon as possible,
but it is probably not a good idea to try to reduce the scope
of the training. It is believed to be cheaper to establish a
qualified staff and an informed community of users than 1t 1is
rectify the problems caused by inefficient tool utilizarion
or miscommunication between the user and the developers. It
should be noted that CASE tools do not reduce the skill
levels required for good analysis and design. They do maks
it easier for skilled staff to employ their skills and carch
routine errors of detail. Note that a badly analyzed problenm
can he modeled perfectly on a CASE tool, but there is litrle
doubt that the solution modeled will not be the sclution
required.

The detailed contents and the training program will! depend on
the choices in development approaches and CASE toals. The
intent within this document is to identify the general
principles applied to the design of the program in suppore -
the development of the Physics Fesearch Integrarsd
Development Environment (PRIDE) Fach of the course avess 1:
further described below. UHNote that although the course
descriptions are presented according to development phases,

the skills acquisitrion classes are relevant to more than one
phase of the development life cycle. Alsc note that specific
training outside the development toolset, specialized
training such as quality management and interpersonal skillsg,
and redevelopment engineering training are not addressed.

2.0 CLASS DESCRIPTIONS
2.1 CASE Overview

The purpose of this course is to introduce the physics
communlity, project managers and development staff to: 1) the
concepts of CASE; 2) how it will be used; and 3} what
benefits may be expected. The concepts of central repository
based development and the use of tool based models will be
included. The overview will be short and structured in a way
such that key components can be given to a non computer
technical audience. This overview will be considered a pre-
reguisite for all other tool classes.

A modular presentation with a 1-2 hour executive introduction
and additional 1-2 hour technical modules will be developed.

2.2 Development Overview

The purpose of this course is to cover all aspects of the off
line computing systems development effectiveness issue.

Again an executive overview followed by optional technical
issues modules will be developed. This overview will be
considered a pre-reguisite for all other technical classes.

One (1} to two (2) hours will be spent on introductory issues
and an additional two hours on technical issues. .

2.3 Methodology Management

This course is aimed at the Experimental Computing Management
Committee {(ECMC) and project managers who will have to
structure and plan projects within selected develcopment
approaches. It will consist of up to four (4) hour sessions
for the ECMC members accompanied by up to twenty (20} hours
of methodology basics for project managers and team members.

2.4 Planning Skills

This will be a workshop based class oriented towards training
ceains for specific PRIDE strategy planning projects. It is
anticipated that such projects will be infrequent and will
involve a limited subset of the software developers and the
axperimental detector collaboration user community. The

workshops will be tailored to the phase of the PRIDE
development effort to be undertaken. Techniques will b2
selected to meet the scope, time scale and organizartinnal
culture of the planning project.

A class of approximately 40 hours is anticipated.

2.5 Planning Tools (basic and advanced)

Note: These course will probably require customization.

2.5.1 Basic Planning Tools

The basic tools class will be incorporated into the skills

course, It will cover the following items:

o Essential Enterprise Modeling.

o Planning Object Representation and the recording of
unstructured object properties, required by most tocls
to some degree.

o The use of appropriate object associations.

o Using the selected planning tool.

Between eight (8) and sixteen {16) hours will be required f:

this effort.

2.5.2 Advance Planning Tools

This course will cover:

0 Objective Priority Assessment.
o Development Project Identification.
(o} System Architecture Definition.

The Basic Tools class is a pre-requisite. Sixteen {16) hoir-
of instruction will be reguired for this effort.

2.6 Data Gathering

This course will -identify the options available =2 gplanns:.s
and requirements analysts who will be using the ga H
information to develop system models. To some exten'., the
class will be tool independent. The emphasis will ks on

principles rather than details. The class will include

instructions in the following:

o Interviewing using structured data collection
techniques.

o The use of activity sampling and surveys.

[Document analysis,

o Group Sessions.

A minimum of twenty (20) hours of instruction is anticipated.

2.7 Data Modeling

This course is considered essential. The topics will

include:

o Entity identification and definition, including the use
of subtypes and supertypes.

o Attribute definition.

o Domain and data type definition.

o Relationship identification and definition.

© Idéntifiers and their use.

o Entity normalization.

o Entity model partitioning using subject areas.

The course will consist of technique explanation and practice
The participants will include system planners, requirements
analysts and designers. Designers who take part in
prototyping as tHe main development activity will also be
included.

A minimum of forty (40) hours is required for this course.

2.8 Function Modeling
This course will include the following areas of instruction:

o] Use of decomposition and data flow diagramming
technigques where leveling is carried out automatically

by the tools.

o Identification and definition of elementary processas
using event driven techniques.

o The role of data stores in models,

o Approaches to the definition of processing logic.

o The integrafion of data models and process model in an

overall requirements model for the project.

The intent of this class is to re-orient existing skills to
the use of CASE. As such, it will contain a significant
amount of case study and practice material.

A minimum of forty (40) hours is required for this course.

2.9 Analysis Tools (basic and advanced)

2.9.1 Basic Analysis Tools

The basic class will introduce the facilities that suppor-
data capture and representation for both the data and
functional modeling efforts. The course will include use cf
reporting and inquiry facilities. It will provide guidelirne:z
on:

o The level of detail to be used.

o Management of scope and partitioning of models.

o The optimum order of work when both data and funcricn
are to be modeled.

General tool management topics will also be covered. Thess
include backup and restore of models, recovery facilities anl
error handling, etc.

A minimum of sixteen (16) hours of instruction and pracr:izs
is required for this course.

2.9.2 Badvanced Analysis Tools
This course will cover the use of model analysis facilitiss

and model transformation functions. As a minimum, the tepi-z
will include the following:

(e} The use of completeness and consistency and analysic
checks and reports.

o Process model to procedural model conversion facilities,
including the conversion of process specifications to
processing logic.

o ER model to data structure model conversion facilities,
including the generation of first cut data base designs.

Model integration and the use of knowledge coordination
facilities may also be covered in this course.

A minimum of sixteen (16} hours of instruction will be
required for this course.

2,10 Applications Design

The purpose of this course will be to present methods for the
design and construction of balanced designs that make use of
the Applications Programming Interface (API) for high
reliability and reusability of design components. The course
will include modules on both internal and external design

2.10.1 External Design Module

This module will concentrate on user interface design and the
requirements of efficient manual procedures. The course will
he formatted such that it can be used for both developers and
users. It will be directed towards development projects
modules for both conventicnal form based and GUI work space
based designs.

The module will require approximately twenty four (24} hours
of instruction.

2.10.2 Internal Design Module

This course will concentrate con efficient data access
modeling and application structuring based on common or
reusable components. Modules for both centralized and
distributed designs will be made available. The methods for
supporting cooperative design efforts will be highlighted.

This module will require approximately sixteen (16} hours of
instruction.

Mote: Approximately eight (8} hours of additional material
will be included as an introduction to user interface design
for physics community developers.

2.1l Database Design

The contents of this course will be oriented around the
specific data base architecture and/or Data Base Managsmenr
Systemis}, and/or API selected for the PRIDE. The course
will identify and teach the key differences between the
implementations of similar products as well as general design
and design optimization principles.

2,12 Design Tools (basic and advanced)

2.12.1 Basic Design Tools
This course will cover the use of selected design tools for

the basic internal and external design tasks. Topics will
include:

o Screen and report design and screen data structure
specification and processing, including the use of the
data structures transformed from the reguirements model.

o Dialogue design for interactive systems.

o Batch procedure design for batch systems.

c Modularization and structure design for modules and

programs.
0 Module logic specification.
o] Data structure design.
o] Access modef design and performance enhancing.

The complexity of design tools is sufficient to warrant a
considerable emphasis.

A minimum of twenty (20) hours of instruction may be expectad
for each basic design tool course, however up to forty (49}
hours may be required for more sophisticated tools.

2.12.2 Advance Design Tools

The advanced design tool course will extend the basic design
tool class to include topics on:

o Data bhase design and Pata Definition Language gensvati-n
for a selected DBMSs, including access model
optimization and the use of a dava API.

)))))
o Interfaces to target code generation environments and
the .
use of target specific procedural specification
languages and syntax directed editors.
o Design verification and exception analysis facilities.

A minimum of forty (40} hours will be required to cover these
topics in sufficient depth.

2.13 Construction Skills

The construction skills class will be developed as a
framework of common principles extended by target environment
specific modules. New modules will be added as new
environments are introduced to the PRIDE. The basic
construction skills class will highlight the use of code
generation tools and the organization, as templates, macros,
or skeletons, of design information required to drive the
code generators. It will include the basics of the PRCD
selected software configuration management and version
control systems, It will also cover the use of basic
elements of the selected code management and testing
environment to include compilers, linkers, editors,

libraries, etc.

The construction skills class will require forty (40) hours
of instruction plus a variable amount of environment specific
material estimated to be between sixteen (16) and eighty {80)
hours, This would include training in a procedurail
specification language.

2.14 application Testing

This course will present a structured approach to the testing
As a minimum, the course will include the following

process.
topics:

o Test plan design and development.

o Test coverage and closure issues.

o Test case design and generation.

o The structure of the application testing process (unit,

system and integration tests).
o Scress and performance tescing ropics.

o Documenting the testing process and test audits.

[} Acceptance testing and user trials.

This course will require approximately twenty {20) hours of
instruction.

2.15 Verification and Validation Tools

This course will cover the application of the selected &'/
tools and the interpretation of the results. Support for
incremental testing and the development of reusable
components will also be covered.

This course will require a approximately forty (8) to include
approximately eight (8) hours as an introduction to
validation, verification, and testing.

2.16 Construction Tools {(basic and advanced)

2.16.1 Basic Construction Tools

This course is specific to the selected coed generation tonls
and deals with the use of the tools to create application
components. It may be integrated with the construction
skills class. The content of the class(es) will depend on
the nature of t@e selected tools.

2.16.2 Advanced Construction Tools

This course will depend on the range and sophistication of
the selected development tools.

Between twenty (20) and two hundred (200) hours may be
required to explore the full range of capabilities and giin
experience in the effective use of the tool set. Much of
this additional training will be concentrated in a relative!y
small group of development support staff specialists.

2.17 Documentation Design

This course will introduce the following topics:

o Usability and the identification of what should ke
documented.

o} Structuring documentation for ease of acce3s and =i~ -t
use.

o The range of documentation that should he generated and
how each element should be customized for its intended
audienca.

This course is intended as a specialty course for the
documentat ion support group.

Approximately twenty {(20) hours of instruction will be
required.

2.18 Documentation Tools

The contents of this course will depend on the range and
sophistication of the selected documentation tools.

Between twenty {20} and eighty (80} hours may be required to
explore the full range of capabilities and gain experience in
the effective use of the tool set. Much of this additional

training will again be concentrated in decumentation support

group.

2.1% Project Management

This course will concentrate on development effectiveness.
The course will include the following topics:

o Establishing achievable gcals.

o Determining the appropriate scope of work.

o Planning a project to deliver the required results with
available resources.

o Constructing a suitable workplan.

0 Establishing realistic estimates of the effort and
resources reguired.

o Selecting the appropriate skill mix in the project team.

o Assignment of team roles and responsibilities.

G Implementing appropriate monitoring and control
procedures.

o Using effective diagnostics to identify issues and
concerns.

o’ Providing accurate and useful reports on progress,

current status and activity remaining.

o Explaining variances from expected task schedule.

o} Managing the process of change during a project.

o Working with effective steering and problem resolution
mechanisms.

o Learning from the experience of past projects.

This class will require approximately forty (40} hours of
instruction., Additional advanced topics may be scheduled as
the need arises or automated support tools are acquired.

2.20 Project Management Tools

A course in the use of planning, estimating, and schedule
management tools will be integrated with the project
management training. The class will cover the recording of
actual project activity and the generation of progress and
status reports,

This training will require approximately twenty (20} hours of
instruction.

2.21 Process Management Tocls

Training in the use of process management tools will be
tailored to the capability of the selected tools and the
PRIDE.

Extensive training (forty (40) hours) will be required for
the project manager who will use the process manager tools .,
create project structures and work plans in conjunction with
project management toocls. Project teams will require less
detailed training (sixteen {16} hours) to make use of the
process manager tools once a project has been established.

2.22 Joint Applications Development Sessions

CASE tools encourage the use of rapid development appraaches
based on group sessions or workshops. It is advisable to
provide a short familiarization class for both the
development staff and physics community who will take parr i
workshop based development projects.

This introductory training will require approximately zigh-
(8) hours.

2.23 Knowledge/Repository Coordination

It is anticipated that, with the development of the PRIDE,
the software repository will become the central resource for
off line computing development efforts, This course will
concentrate on the tools/methods for managing repository
usage in an effective fashion. This course will address the
use of conventional data administration approaches, but will
highlight the fact that repository based development
environments have additional requirements and capabilities
that must be understood 1f they are to be used to the fullest
efficiency. The course will be directed towards repository
managers and developers who will use the repository
facilities.

The training will require approximately eight (8} hours.

3.0 TARGET OF TRAINING

The following subparagraphs provide preliminary
recommendations for training class attendees.

3.1 Physics Research Division and Experimental Detector
Collaboration Management

The Physics Research Division and Experimental Detector
Collaboration management will be presented with one {1) or
two (2} short briefings, explaining the issues to be _
addressed and the approaches to bhe taken. The material to be
presented will be limited to two {2} to four (4) hours. This
is seen as an essential part of the expectation setting and

commitment process.

3.2 PRCD Management

PRCD management will receive the full} version of the overview
classes as basic education. Specific PRCD managers will
receive specialist training in key areas where they will be
directly involved in working with the development approach or
the CASE tool set. {12-20 hours of material)

3.3 Experimental Detector Collaboration Computing
Subsystem Group Management

The comput1ng subgroup managers will receive the executive
overview classes plus specific training for those who will be
involved in actual projects either as project team members or
as liaisens. In general, they will receive shortened and
simplified versions of skills classes (4-8 hours of
material). Project and process management tool training is

considered desirable but optional.

1.4 Project Managers

The project manager will be required to be familiar with the
techniques and tools used on the projects being managed, as
well as the techniques and tools appropriate to the
management process. {typically 100 hours of core materials
and up to 300 hours of additional specialized training).

3.5 PRCD Planners Including the Experimental Computing
Management Committee (ECMC) and (PCCC}.

The PRCD planners will be required to attend the general
education classes and the planning phase skills and tools
courses {40 to 60 hours). 1In addition, planning project
teams must have training in data gathering and in dara and
functiconal modeling {up to 100 hours).

3.6 Requirements Analysts

Requirements Analysts will receive the data gathering and
joint sessions training in addition to the techniques and
tocls classes appropriate to the analysis phase (120 to 200

hours) .

3.7 applications Designers

Applications designers will receive general education c¢lasses
(16 hours} plus the applications and data hase design skills
and tools classes (120 hours). Those that will be involved
in joint applications design workshops will be required to
attend the joint sessions class (8 hours}). Selected
designers will be required to attend the applications skills
training. All designers will be required to be at leasr
familiar with the construction environment that will Le wusead
to build their design. Where prototype development project:
are initiated, "development teams" will be required in be
trained in both design and construction activities.

3.8 Constructors

Constructors will be required to attend the general education
classes (16 hours) plus training in construction skills (47
hours}) and appropriate tools (80 - 240 hours), depending on
the PRIDE subsets being used. Some constructors will alsz k=
required to attend training on the testing apprsach and =::1-
selected for the specific projectis].

3.9 Testers

Testers will be required to attend the general education
classes (16 hours) plus training in the testing approach and
tools (60 hours). Testers will also be required to have
familiarity with the construction environment in which the
tools will be used (40 hours).

1.10 Implementors

Implementors will be reguired to attend the general education
classes {16 hours) and should be familiar with the general
approach to delivery of applications into the physics
cammunity .

3.11 IS Operations Staff

The IS5 Operations staff will receive the general education
classes (16 hours) and some specialized training in the
management of a repository-based environment (16 hours}.

3.12 1I5 Support Statf

The IS support staff will receive the general education
classes (16 hours} plus additional training in the management
and use of a repository based development and support
environment (16 - 40 hours).

3.13 Physics Usér Community

The Physics User community that will be involved in any role
with the applications development will receive the general
education classes (16 hours) and specific training in their
roles in the project teams. This will vary by role, but will
be within the range of 8 - 40 hours.

CHEETAH DATA
MANAGEMENT SYSTEM

G. WORD

w r —
Cheetah Data Structures

We think we use FORTRAN...
Paul F. Kunz

.+ but we use FORTRAN + X!
Stanford Linear Accelerator Center

Examples.,,

* FORTRAN + ADAMO
and
« FORTRAN + BOS
Gary B. Word * MORTRAN + FORTRAN + Jazelle
= FORTRAN + ZEBRA
Superconducting Super Collider Laboratory

* FORTRAN + <nonamez
A data structure management system based on C

Reasons:
Qutline

* we need to handle data as structured entities
« Maotivation

* wedlways need 10 move data in memory, whether
« C structures

they are in formal “banks” or not. to disk/tape storage
and back. =
» Cheenah Lists
* Inpuy/Output But in doing so
« How Cheetah 1/O Works ! * we may lose access to data by name
* Summary : * We may lose portability of code
: * we may limit usability of a debugger
J * wemay invent and need to leam 2 big system
N—— .
Ut] Faul huss ol Gors Wonnd vish -
= Pagd Kuns amd Goew Woam
a8 =
Data Structures in C W Cheetah
Goals:
struct irack (/% Track structure '’ N N
iloar px; * Do the dara structure input/output in a general way
& . i X
:,{::t g‘.';'. » Preserve rype information
b (needed to be able to do general 1/O)
ztruct crack **mesrack: /* track poincers v) . .
_ « Provide convenience utilities for C programmers
’* allocace array of poincerz *¢ ..
metrack 3 malloc! numbertrk*sizecf(veid =@ * Suppon for general purpose applications
/* aillocate a track structure *’ * Support for C++ object persisience
mesrack(icrk) s malloct sizeof(sTrTust Tracx:

..

iill scruccure */

Support for abstract data types of Fortran 90
metragkiinTr] - -px = px;:

Suppor for transition from FORTRAN 77
Advantages.,.

= access of variable by full name
allows re-use of variable name space.

+ Jynamic memory allocation is pan of language and
operating sysiem.

» the debugger knows structures.

Conclusion: C clearly wins over FORTRAN '77 + X,

o
.,
P miwn B

RV Y S PR VEPRE IR A]

R)

[P R

Cheetah Lists

Lists are important enities

For exampie, in an event one has.,,
« a list of tracks

« a list calorimeter clusters
+ alistof vertices

- el

In fact, an ¢vent can be thought of as a list of lists

A Cheetah list is u C structure and a set of fuctions

to use the strucrure

A Cheetah list can contain
« C structures
» Cheetah lists

-

more compiex ilems. ¢.g. linked lists. b-lrees, ere.
simpler items. ¢.g. arrays of floats
+ Fortran Common block

J

1 bnvnue

Pl bown?) Giy Woied

Creating Cheetah Lists

Some other attributes of 2 Cheetah list
« A name

» The type information of the contents

Create a new Cheetah list and add something to it...

sholist *vercexLisc;

ArTex CTmy_verLEX)

verTaxlist » chMew: “Verrices®, vertax_T!i
chAdd -ertzexfList. my_ rercex '

vercex_T() is a function that returns the type
information of sexruct vercex

Type information is used for...
+ Inpur and Qutpwt
+ General purpose applications

» Checks in the program

J

R SY Y 1k Byt el 4 s W

e e iy R p— S

Referencing a Cheetah list

(Given an existing Cheerah list...

~h_list czracklisc:
SLTUCt Irack "*my_cracks:

my_ " rack3 = chPtrs{ =racklisg)

<ount s chCoune(trackLisc ' ;

tar . L= 0: i o« count; ise) |
PX = my_cracks(i]-»px:

wweLl, vy

These functions could be C macros for fast access

¢/

-

Lo

ol Ky e Lrds Wamsi

Type Information Creation

The data description language, *.ch” file,,.
/* luparc.ch

* Deiines Lund partizle structure

L ¥

struct Lupart |
float charge;
float mass;
filoac PX;
- r@CC.

‘wezharge”*’
‘**masg in [(gevwscTliTv
ceex component 3f momenzumT”

Format is subset of standard C with a few extensions, very

similar to Sun’s xdr-language.

Processed by chgen command...
+ generates " for C program

* generates .0 cONMAINING lupars 71 SOuUrce

chgen is normally invoked by /make

v

W am s welde s Wi

e e ———

e e

e
e b
e raa—

Complete Example

IMLLAZE TlinAVYees | zh_list ctrackLisc
.

~nolizt cvercexlisz:

SLTUCE Lupart **Lracks;

SCEUCD J/Arnax *aversax:

wnt 1. fountc:

‘. lchIsLiscnf:. trackList, luparc_Ti{t i
fprintil stdery, ~iindvartices: bad izpys.n-';
recuTh HULL:

xLi3CL » chNew: “Vertices”,
nzacki = chPtrsi trackList !

vercax_ T} i:
2eunT 2

1i
chCount: crackList ';
2r Loa 0 i count=i; les 1 |
Ear NEE TS

3« counz: dee) |
aveziex » goodVaei tracks{il, cracks(j, 1;
if averzaex !a NULL : {

chAdd. vertaxLisc, avertax }:
)

Tarurn rertaxbiss;

chIsLiscof() tests type information

[Ch T

ok Kums sud Cionn % oni

Cheetah++ I/O

C++ example:

simoly

A0S

de - ostream.h>
sinciude *=haeetan’ cheetcah.n®
aingluce “vyector.n”

axearn *T°

rinclude *vector_X.h”

LT UL S SRR W]

= vl =—reate a In_iz=m

Téam cul_IiTeanm; v, sngdacaT, Twett
gam. wWril@:QuT__Ltam’:

;o Wrine Tn_uTem
ITraam.WriIsdivliie

write Jiractly

mp_IiTraam nEtream:i Tty

. znhgZagat, trot

_/

J

P Wy ol Ve

Cheetah I/O

Example

maini)

i
ch_list c*eventlisgs:
ch_List ‘*tracklist:
=h_Llisc

"vertexbListc:
ch_scream -sp;

3p = ch_streamfileCpen(-suc.hdara®, “wh" ' ;
evenclist = chNew: “Evenc” zh_ lisc_T{(! i;

crackList a lundCetEvent(}:

chadd(aventLissz, trackList
vertaxlist = f{indvertices(crackLiac
i { vertaxList && chCount(
chadd! evanclLisz,

vertexLlst
vartexLise)

PR
H
ch_screazWrice,

sp. eventligt ';
return J:

Cun also open streams for network /O

Chuoctah

EL Puanad Koty Aol Uit Wy

How CheetahWorks

Cheetah works in a fashion which is very similur to how
Sun's xdr package works.

Sun’s xdr package works by having code which can
transmits specific data, For exampie. a function called

xdr_crack{XDR *,scruct crack *)
wouid be cailed to transport a track structure.

Cheetah works by having both a pointer 1o the data and
adescription of the data. It follows, ina par:_xllci fashion.
the data 1o be transported and the description of the
Jata. Intemnally. a © ack structure would be transporied
by cailing the general f unction

=n_rypelODacacch_type *. am_gtream *, vozd_"

whete the first argumen wouid be a pointer 10 3

on_~spe structure which would describe the ~zacx
struclure.

A cn_izem of whichacn_liszisone example.

contains both the powier o the data and 1 pointer to
= _crepe structure Jdescribing the data.

L Te Lt

[LT TR

N (’_
Cheetah I/Q Features Summary
Cheetah 1/O Features Features...
. Does 1/O of contents of a ch_icem, (ach_listis = Does C data structure input/output in a general way
one type of ch_icem). . .
* Preserves 7ype information
+ Cheetah file has the full type information. .

) Provide convenience utilities for C programmers
« General purpose applications can read and display

the type information and data, * Support for general purpose applications
. « 5 fi 3 . . ,
- Binary format uses industry standard XDR upport for C++ object persistence (in development)
‘ thus portable to all platforms.

Support for Fortran 90 (in planning)
« 1/O 10 disk or siream over network is transparent. Support for transition from FORTRAN 77

* written in portable ANS1 C
\ * use industry standard XDR binary format
‘ + follows an object oriented paradigm et
_ | Availability
\ * in beta now
\ * anonymous ftp from heplib.slac.stazszzd.adu

* SLAC-PUB-3930 is also in heplib

| |
N J) U

1ph Ko o Gty Won)

Chaxth

sl Kz iunud (iare Wonit

SLAC-PUB-5930
September 1992
(EN)

The Cheetah Data Management System

Paul F. Kunz

Stanford Linsar Accelerator Canter

Sianford University, S

tanford, CA 94309, USA

Gary B. Word

Departmant of Physics and Astronomy
Rulgers University, Plscataway, NJ 08355-0849, USA

Chectat 18 4 dats managemens sysiem based on the C programming fanguage, with suppon for other
languages. s mun goal i 10 wansler dao becween memory dnd YO swecams in a gencral way. The
swreams g uher assoqucd with disk files o¢ are ncework dawa sireams. Cheetah provides opuional

o Cs Cheetah are self-describing

CONvEMCILE [uNCLIONS Lo asSist 1 Lhe Mmanuf

30 that general purposc applicauons can (ully undersiand an incomiag sueam. This information can be
wscd ty display UK daty in an inceming steeam 10 the user ol an ingractive gencral application, compleie

wwikh variabbs namcs Jald oplional comments.

1. The Goal of the Cheetah System

The basic entiics managed by Cheetah are structures
45 denined an the C programeing language. To quote the
wnroduciory paragraph in the chapier on siruciures in Fhe
C Pmgramaung Lunguute by Kemighan and Ritctie]1)

i siructuse 18 cotleciina of une or mose v
ubles. sy of e fent ivpes. crimpeid -
gether under o vingle nume fm’ voaveeti
hundhing (Structures dre culted “recann o
whne fangiuger amanh Paal]] Strue-
tured Nt o argum e oaphedted Jutd, pueric-
ardriy o dee g rany e atne oHoAaay
VUit s Jhey permet o e of reddied var
ubles tir he treated 45 o wnn inaleid of 45 e
rale enfiniey

The design of Chee1sh o based 3a 1ine oremisc that ihe
wructures of the C languass sie aleslly agued BIERHINS
131 oumn verh o eners s, HEP araurumi, WeA

SHeals U e aainucien 0t ey v tat selunlia

sysiems. C structures are clearly the equivalent of the
“banks™ referred 10 by many HEP developed daia
management sysiems based on FORTRAN. These
FORTRAN-based sysiems 2l suffer, 1o a greater or lesser
degree. in poor intcgration with the compiler, the cperating
svslem. andfor the symbolic debugger. The goal of the
Cheetan system 15 10 explou the features of the C language
+mile adding Ja1a managemens (ools such as input and
Juipud ilfeams (o siorage of 1o a client-server network
connecuon. Cheetan is designed 10 allow the code writer 10
use native C language construcis, with only a few required
Cheeiah function ails and 3 number of optianal Cheetah
vanvenience funcnions. Cheetah maintains symbol able
information about the user's dala. which is used 10 provide
maching -independent 3nd self-describing daia sireams.
Cheetan also provides suppart for data structures of other
ianguages such as C-+ and FORTRAN,

Iniroduction to C Structures

-
z1an. 2 vaert zod simplified 1aimdustion o C
- itz -Zafaidae the soddosang (C jtruciure

TWalUIZE o JfSISHITUL L

BT

The Cheatah Data Managemeal System

definmtion which mught be used to aescribe a track in a
Monte Carlo program:
FTIUCT track |
2lcas i3
1]

o

The keyword siruct introduces a sicucture declaration
which is a list of declarations encloscd in braces. The sym-
bol rrack. calied the structure tag. becomes 2 new data 1ype
in the C language. The standard C declaraions within the
braces name the variables thal are members of a struciure of
type track. Members of a C situcture can be of any C data
type including poinicrs 10 other structures.

The structure declaration does not allocate any mem-
ory storage. Rather stornge is allocated with 3 statement
like

scruct track mycrack;

More frequenily, one declares a vaniable which is a pointer
10 storage which is allocated st execution time by calling
the C library function malfoc. A code fragment that does
this looks like:

SCruct TZack “BYCrack;
mycrack s malloc{ sizeofISZyucs crack | i:

where sizeof is a compiler operator which in 1his case re-
turmns the number of byies needed for the track structure.

In many cases, one handies a collection of structures of
the same type. There are many ways o handle this struation
in C, such as a linked list or an array of structures. One
convenient way is 1o allocate each siruciure individually as
needed and 10 allocaie an array of poiniers o these
struciures. In the following code fragmeny:

SLLUCE Crack *-tracks:
Crachs = mallocinumtrks® (32740f{sStiucs Lracx 1))
tracksii]l = malloct sizeolistzuct tracki);

numirks is 3 variable containing the number of pointers
desired and rracks{i] is a pointer to the i-th structurc. These
statements may look comples 10 the beginning C
programmer, but they are commonly used and wish more
experience they become quite familiar. One should also
note that compared 1o FORTRAN-based dala management
systems, these few lines replace a very large amount of
complea code 1hat 15 not any easier. and irequently much
harder. to understand. This method has the advanage of
making more efficient use of virtual memary space by ot
requinng thal the SIruciures be 20Nt gUOUS 1N Memorn

Having aliocated s10age for siruciures o this w 3y, onc
can access members of the siructure 35 iluswaled n ihe
tollowing code lragment:

S22 = tracksi}le-speaz:

The striag iracksfiJ->piot ¢an be used in an capression
anywhere a variable can be used. That us. 1 ¢an appear
cither on ihe lefi of nght side of Inc equal sign. used as an
wgument of 3 funcuon call, erc. Thus. one has cleas and
concise MNEMONIC 236cEss 1o datd in the siructures. An
important advaniage, compared to FORTRAN-based
sysiems. 15 that the symbolic debugger can be used very
effectively since the sysiax 15 2 pan of the C language

3. The Cheetah List

It is usually the case that 3 program will contain many
ditferzm structure sypes and for cach type many structures
of that type. For example, a program may wani to
manipulate a list of racks, a list of venices and a tisi of
calarimeter clusiers. For ease of handling. the collecuon of
lisis may themselves be callecied into a list. Lists ase
therefore imponant entinies. Cheewh defines 3 list struciure
called a chList which one can use for dara managemens and
that Cheelah uses 10 manage inpur and oulpul streams.

A chlisi is creued by calling chAWew with 2 list pame.
3 comment sicing. and information on (he type of dawa
being mainiained in the list. For example, in the following
code fragment:

chiList "iracklisc:
CrachklisSl 3 ChiNew | TracKs™ . "HOIrac«s” I24Cx_T.ii

trackLiss is declared (0 be a poincer 1o a Cheetan hist which
Msely is crealed by the caVew funchon call The hast
argument, fruck_T(). 45 3 funciion (har relums ihe iy pe
mformation. It and 3 unlity 10 creaie st awiomancally will
be described in the neat sechion.

A siuciure is added 10 3 chliss by using the funcuon
chAdd. Thus. if myirack s a paiaier 10 3 suuciute of 1ype
track, then it 85 added 10 the tracklist by:

SNAQdY IreckLisi. aycrack .

The vanable trackLisi becomes a convenient handle = hien
manipulanng colleciions of structures. it coblects iz 1ype
information and the poiniers (o the Structurss 1022ihes
which is needed tor Chez1an inpur and Juipu

A Jompler2 2aampi2 OF (02 Lie o Chetan hiuis Jnd
Jiner Cheztah AZHONRS 5 500w A N Fig | with Ine Chezian
fUnNZNoAs MERiigAIzE 1A poid 2352 The axample funciion

2 SLAC.APUB-3320

“{swNnsks XINN vo 533ed
UTW O3 3%} "p 10104y ropveIs vonoiuasaday
oIRg JoWTY Y@ ¢ vt swasksony ung {5}

(swasds XN uo $33cd vew ote 33t} *apinny
hvewnrdou g va3ods 0] “swasksony vng (7]

(8261 UMD
pooma1Iug ey 2nwagt 25rnSury Siwwnslo g
2 2y gy g peeueybiusy mog (1)

E=EDETETTES

nDecpaLsurar VT E Aﬂn-ﬂGi:
JPA128 211 DU WICHE €11 SNOWALOUT €14 JIATHTAT 3pTi
2¢ (pra YCIFYDY IO HONTIUAMNDOP M3 dines put Jpns
22IR0S 2y Y SUSN vt WAPEAEAP- S Oh Yirw sazuod
Apgdig 5 yoiaay?y s1ppdwod <. Kustn papdsos g ved
INQ ') PITPUCIT [SNY LN U2 M S12uaY yT1aay D) W]
‘eiep 2y a3cucw diay or sawres3or]
sy AQ pasn 2g Apcuonde wed put Qg A1 1330p &
Pasn $11IISUOD 1S5 TSI Y “SWITINS CIEP IOMIU 1!
10 "S13J3n AIOWAY ‘S| SIP Yiim PATIDOTST T SHITING
2] "$5300C TITP JO SPOWIFU FAITY Y1 Yia Id0AAPNN
Suiziunuiw siym SWEINS (O] PUT KIOW I BITMINY
TITp 0 J31suth Y1 s:Enjiorg 1) safenBuey 1o Jof
voddng ynm afenSur) Sunvwealosd o Ay vo paseq WA
wawfcucw eIep 3|Q1Ys) pue [niasn € SEUTINA)

Arewuing 9

“SHIALIWOD BIAI PUT *$AUWTU N3] *SANEINIIS D Jo Saaquantt
30) vottirvwopn adAL A SapNEIUI BONTLIONUY ST "pEAs
ST 10Ym UD UONEWICINY PAIRISP J35N Sy 01 yuataad 0t
swimSod aanaviau ssodind [ra3vas Aq pasn 2q oS UeI ¥
“(uonduny { fopurysiyr sg ynm 821 2df paaades ag) Jo
$1 EIEP 541 1T ¥3242 OF PISA 3q Y3 uonTuUcjur 3d4 T,
‘uoncwoput 3d4y wp osje g Lowaw vy paysIgeIsa-3t
TIcp Y1 $1 AJUo 10U SNYL LINUM FU0 I O eodas e M
Yo1ga 151| YTIANYD) © SILINIAI BOTIDUAY PT) YT1aay) AL

wouaunf indian yopoys fuea spwery ¢ Ry

‘“Inoud PeATINYD
1

O ACTIRDIIDA CILTTIUBAD 1 PPARD
] 10 « IITYTINSASIHAIIUNCIND T ITTINSIIBA) JY
T OTIMONIY TIASTIIUAAR | PONEY
T4 OIETINDEIY JEEDTIIIAPUL) = IFTHOAIZIA
S1URAZDR ¢ XFITHORNY

AT TUY

11 IETTINEAR

LUBAZ D%, L IUSASDW. lasNgD @ 1ETIIVEAR
ceome, L rargun inddrs, (eprauedond ¢ hoyd>
1Inous, BTN
T=waALrAL, CICITEICII. CICTIIVBAS, ETTUD

] Nutew

waishs iwewsbeueyy vre0 yeiedyD M)

»)

—

o CLEE Bl

228N,
i : MU R HTET
IS UTIRAGTY T €1 10245 10 SIUDIUCT DU RIL T 0 puaad
DA||TS 154} YTISLD) € IC SISIUCT A sAlus wssold uiow
2yt adwiex? Y1 U] JLIITASUCH RIOVISY £1 Q] UTIAAYD)
syl CPasn Suag 1 wedNns K¢ puty ITua. Uc PIPIAU
1 UOHDUNSIP DY “IS1} UCIZaYD) € S PUO3DS 1) Puc wrans
241 01 29104 a1 519530 2y 7 51 U umoys ST siuawalne
Om1 IAEI SUOLIIUNY J1Um PUT PTII YOIBAYD) Y)Y

23)1nq Aowal
T 01 J0 UOID3UU0D YIom1au JiidD L T wansds 2 03 daynd
Pauado aq ULD WCANS ¥ F|U AJTUIG 21 Ut PASR JEeL0)
Y JO UONUTISLTR 1DANP T §1 Yym “iewdo) jnjyic)-Aewg
t U] 10 CUONETI[EIW 2|A1S-T) O) JT{HANS JTW10]
€ Ul 3q JaYN3 UTI SWEAIS 1% Y| ieuno pIxacd-sapd
T JO "ITWIO) FARITU § 220133119316 1 [)iewaop
UAX PITPUTIS-ANSnpm dy1 25N Jayna veo swreans Amurg
4y I ureid 10 ASEUIg 3G W Ay SwTINS ¢
JO SpUTY [TI3A3s 20T 233U) witais pauado) o Jawiod T
WNRI YNy “weans t uado o1 suotdung 35T x| wsks
OfF D 201 321t patspow 51 ndino pue indut yTisay))

suT L otunc:

nding pue induj yeizagy g

T PUT NYHLIH0S toq
woy 4201 VOWNI) NYE 04 VI Tiep 01 $3330¢ paurty
UDIIRLOI ANYIT O P56 2q e 3TenTur] vondudsIp eiep
Yt Jo yasqns y “sadA) Tiep paswsp g vervod Joj voddns
ST {fom 5T "1owrdo)aasp Uy 51 3suMsisad 19500 44D

“An3aues papuey osie
21T ‘S151] PALL-A|QNOP U1 INII0 ST YINS "TIEP PINUNIY
Adnjngy (sza1utod 135550 prom aaniegas) sizuiod,
ofhis [{ NVYYI¥04 pur "s1atviod 31415-3 *suolun
PV IWLIIEIP *stonCIAUNUS ‘shear Y1Zudg-a|qriaea
*SI0192A *$23m15008 Buipn|sus sadAs eiep Jo JudwpossE goU
€ Joj smore s3endur) vondussap wep yuaayy gy

2pO3 1n0s
NYH.LE0 Ul papn[au) 3q Of 35e 1t 21y 2onposd 01 pasn
2q uaA2 ued ANnn uaSyd yriaayn) Ay put saInNIs oich
NY¥LH0J 10) uoddns aptaoad ved grissys) ey sugaw
SI Aq 1 3] "2IMINNS T T 23391)1 ST aay) £q pr|puty
0q U “X20|q VOURIOD oYM Y UIAI JO "Y0[q LOWWo
NYULE0S ¢ UIgiim paurivos viep *spdurers 104 yeiasy)
0} paqi3asap 2q ued ‘ssiendur) Juiwwcslord sagio ol
2500 UIAS 'SAMISNAS BICP Pash A[UOUALIOD [S0JY *SIMIHIS
D 01 paNWILG Jou 1 wsioeyasw $wdh yoiayy sy)
‘vondun) a4 31 3o 2pos 3008 2 sUTHILOD
219 2 2y ‘wondung adkr Buipuodsatroa s puc antanns
241 JO SUOHTIT{IIP SUTTIVOD My §~ 2y 2|y 320008 D € put

MUdapooy e toan AR nannf PRI TTH alg u!n..u:u.n a
e o] ATIYAY UDUCITIZNT MU D DiToutly o1 d50q;
§1 531U 352y UL PSR HECNSUT] UOHIULRD TITH 2 JC XTIUS:
YL SIS YN FO WoULIELIar syt Stuitiue: saqy
sassed o) FrlAmnn valads ¢ ung 2anC PI[SPOW S1 UM
Anjun u2iya a1 Ag pamiaua$ 3q vt syoudun) adh asay)
*2a0qC t3|dWCKD Y1) 1 SUfIEN 25 gim SUOIDUN) 3yt
21 eonun MAL YTy £ AQ pAURI SI VONTULIGIUY SIg}
“BoNI25 snotard 2y v PACIE &y weans g v adh uxd
101 TICp 2yt 1o vontuuotus 344 spazu p Tich o suone txdo
wndino put Indut wuBIAd O yT19ay 10) J3pIe Y|

venzulioje) 3urdi) mieg Junwas) r

SUDIEIUNS 3R 10 ITIFSUL SOOLLL ST
pRiuaaapdun 3q ATt A3y1 1oyt 15t 34 10 pau A spdwe at
Suonoung 2634 moy suiour o uwe ford 0 pasuads
e JO) T ID 10U 81 1| 42411233530 ATLT) JO 3115 31 pue
sa3uiod Jo AT UT §T 151) SY1 BO SIUFIUOD 2T WINII YIIYm
(Puno YD PUT { WISMINGYD 3T SUQTIZUN] IJUIILIAUOT Yt
23y 20 pAraaded 2d4Kr 3y 1o s sy utiaay?) ndu sg
JO $IL31U0D Y1 ITYI $XIAY 1] “SUDIIIUN] IIITUIANGD § UT)
-23Y7} JO 200 $1 UONIUN { YOPrIy T3 Ayl saduzs Suoud
om) pood it 2uivieinod 151 YT133Y) € SWINI put $3am
-3nnt yach Fuiureieos 19y yeiazyD) © wawnldre vr soosam

YOI ptm apo3 Jo spdwmns nadwry By

M1 ARtl) THRISLALY]
i

L EBIIGAT CASTIHERLIBA | PPYYD
)L TINN & Ye2zeae | gt
SLiExRII [T)EADEII | FBAPOOE ¢ XBIIBAW
F ot «ef '30n02 » ['t-t « [} JC)
} L «st 1-3UMQD » T I = Tt) IO
*{ ASTINDE3Y 1 3whO5gd = Juho:
T ITTINDEIT (1 XIEVIOUD 4 EUDET)
BERNE Pt | 1 1Y
‘LoBunzd [, CL¥EDTI3EA, 1ARRGY ¢ D2ETUNRIINA
N L
TR uinlaes
Ixepal b aV12E2
13009T8RIYY. 1

Pl.uvandut pRe cEeBpADUT].
04 4117 w0e33 CIRTTNOER)

unes 1 bIth)
E8IIWA DRI
LELEREE LS 1]

LI

"MALIWAE,
i 3 =1 -
CRETIYRIIGL,

¥

(36T TXDEI, IFTIUS 1#83ADULS . JETUC

washg wewabruey eteg utiasyd sul

WWW FOR
GEM & SDC

J. HILGART

WWW tor GEM and SDC

-~

gefm

The Players

Tour of the current implementatian

What we need for a proper WWW
implementation at SSCL

WWW and documentation

Tips for getting started

Jonn Wigan - 33C Lan Juna 20, 1983 Proe 1

e peavi - . P AL

Dosument hie; [SSC Wor td Wrde Web Informat 10n

Uocument LIRL: Ihup £ Pwater 53 Qv |

SSC World Wide Web Information

follow powsers from ot item to oY retared itamms, and (s to acoess the information Whey need i asimpie
ntuitive marver. Information is accessed using the TCPAP network and can actunlly reside anywhere in the
world. atthough the user does mot need 1o know whers the information comes (rom.

Enformation peared Lo the SSC visitor, new employer, of cuesider,
information specific 10 SSC experiments.

Other HEP Information

MO

C

Seaveh Keywnrd: [

Back Forwwd Home Relasd Open. Seve As. Clone New Window Close Wirddow

-
gem,
The Players N

o ivan Chow: database whiz

o Minick Rushton: SDC collaborator from ASD. CF contact.
o Kevin Dunn: Library's interests.

o Another group from accelerator controls group

o David Liu: general expert on everything

o JH: chief WWW expert

John Hilgan - $2C Lab June 30, 1993 fage 7

fhe Nevigere Opticas 4 2o .
o

Thte: [0 Datanase

Document URL: | WELD //20¢5. 53¢, Qinv /wee/ SYDRER. NEM]

User's Guide for Document Database System
Introduction

datai

Tius is n very prel Y & server for bibliogruphuc referencess to the 35 s o
(Mcummmlmm.M:n:n-GEMwSDc notes e b ©

How to Make Queries to the Datahase

Search keywords. wmually (oliowmd by FIFINGS. &F comDIned With boolean speralors e and , of) to
FERTICE the 3asrch. The result s & briet Ukle-page RYle :sting of all articies (or nates. e1a) matchung the
regquest,

Both shortened ard (ull version of each kevword 1 woepted, Thise wrv:

» fthor] (e.g., mefarizne)

® e g collaborsion SDC. GEM)

® [date] beforauiter (e.2., after 1597)

* docirum} ey, SGT)

® xlevword) (¢ §.. Clorimtern)

® tifkle] (e.p., techrucan

® tyipe| (e.2., note. drawnng. memo. model. Sresertanion
® {ind (this s a dummy keyword for SPIRES aidicrs:

Boolean coeratars cothe 1n 1w forms:

» ani (&)
® or [

Example queries:

find au Siegrist and en apC

Search Keyword: I find v comaur,

Sacr Forward Home Pecad Qoen Save as Cigte New Wingew C.31e #.- 20w

Cpwsorts A L s M

tiocumend Hibte [‘lhlnlnn, WL http [/0adY 480 gravrmmmrayaane niasl Y irden ¢ omput

Fe Mepate

Dotument A1 . Fu F400¢S nae g fwman/yyDane htwl ' indin g amput

Searchn Reauivse
Jun 30 %)

Dats
Hep 10 1991

L2 nusder Title

CEM-TN-91-14

GO COMPUTING NELTING AT ASCL

Authors: Hot Avallable
GEM-TN-%1 -4 GEM COMPUTING MEETING 83CL Jul 19 1M
AULhOrS: HOU Avsilsble

GEM-TN-92-104 [EEE Btw ed 754 snd Tou: What the GIN
cosputar User Neasda to Rnow About 1EIL
Fisoting-Point Arithestlic

Mey 72 1992

Authors: LEE ROOERNTY

Jen 20 19N

CIM-TH=-92-59 GBM Computing/Simiistion Mesting - S3CL

Authors: Mot Avsilable

GEN-TH-31-246 GEN Detector Computing Study: Itudy of
compined On=Line (Level)} wnd Off-Line
Faclliey

IEN MCTARLANE, LAIRD CORMELL

Fop 18 1992

Authogy:

GIM-TN-33-1%6 GEM 3oftware Users Guide Mar
TRWIN SHEIR, KEN MCFARLAKE

1 192

AUChOrs:

(L]

0

C

Search Keyward: r
Haex orwn: Home Retosd Open. Save As. Clone New Window Close Window

Marioaly

Lie Naovigae Oprions Annotate Documents M

Document THie: | CEN Inforsation

Document URL: | nttp //wee. $3¢C. gov/gemmmn jgem. hinl
f

GEM Information
The following information is provaded for GEM collaborators.

A duta base of GEM lechnical rotes.

News articles relevint 1o GEM, ie.. pomtedt by GEM collabor mery,

GEM news
Here we some REzestions if Fou wre having trouble reading or pesting to amy of those grest GEM
newigroups Jou W heard sbout

Leach Keywory: I—

Bach . rop:, Home PAeosd Open. Save As. Clons New Window Clase Window

PSS . e
LN 34
-
HEer-tTag_s3r.rz. gl T
she-LLsawnoida. becoos oy avasdIITAT ”
The L. aOwing AALICTaAtLOR L3 sroevigesy 1z 3T, -, @b AT L
vdj .
<AL s<p+5D0 Detwetor. ba
“dd - <a nu»l-'au:‘_:l-uec:cr.alz'ﬂurew-- 13 4 Irawind er sp. ==
] + ehe SO -3
<dlerg ATELaNtEp:. /3354 gg=
H e BEC. GOV Wews Iy DaSe Nty 5T s uan -
:du- A dacs pDase ©i SCT cecnnical noces . RIS At W
«Q.;‘-ia nre(-.."St‘:_n'nsuraupa.ntmlssx NEw3 Arcups. . 4.
-g‘ + News arcicies reievan: to SDC. 1.e.. postesy by 0. o=
3 r;.;;q hrc!-:d:_ae:cun:.ntmL,SL‘: Computer aAcsduncs. :..- TeasETan
- Inacruciions en now o 9% an SOC compute:r acssun: - « £r2
) ‘Only available to mempers of the 5C0 ==“..ltro. 115 R
<83 -¢a NrefesdosSi tregcsas) Fazin
<dgs A nypertex
erta L Drowser of the SDC solcware directory
<hl=Heip</hl>
<dl - -
<QL2SDC news
<d0.<a nrefa. .. news _toin
B e WLErs . nom 3
vy e ros:l?:-:; e l=Heze are some dUQaeciisng: a4 o ooz
BOsting to any ai those H z
oo grea: 5TI newsgroups yau've ears sogu: .
</body
-
-
Hie Nevigare Options Annolate M; Manwrals
Documeni Titte: 'GEII Information -

Daocument URL: ,nuu P Sy r———

GEM Information

The loliowing information O provided for GEM collsborators.

GEM technical rotes,

A databass of GEM technieal notes bt

GEM to

Here are s0me uggestions If you are having trouble reading of posting o ey of those grew GEM
DEWIETOUCE Fou ve heard about. -

Personal Annotations

Leanch Keyword: I

Back Forwsrd Home Reload Open. Seve As. Clone New wingdow Ciose Window

e Novapie Upraaes Awistae Loe v - ! il 1er Narerdr (Baaert Arunsiatt Lemciemesy Alaetaidy
e
Ussrumeed Lare. Ia. laatdhandy ‘f._' (hecument luie IuSIIll At Oug §8] gee TALENTem
e
Liwcwamgrd UL . Inu’ Jrmwe bt Qo fCAN rrmygrinps ntel — (hotument Lillt I"""‘ et e tesTmea R
G EM newsgroups Al available ardctes ln sc.gon.testbaam
T il wing mevsgioups ae speiie tc GEM ® DAQ {of test beama (fuall - ary Boow Vord
® Totoeam DAQ e 7 - Gy Briw Nord
& prmone ® Test Beam mesrirg apenia = him Duni=y
< frm comp
= grm ol -
= Soaieh heyward: l Seanch Keywaid- l
32> Forwwd Homs Amoad Open. Smweds. Clong New Winadow Ciose Window Bacr o.c . Home Reasd Open. Saveds. Clone MNew Window Close Window
~~ .
tde Navwgae Oplions Annotste Documents Manwals Hety))
fde Niwvigate Options Annorate Documents Maruais
Document Fitle: JUSENET srticlie MOn7ealcpr@frnews. fnal. j——
pre il /. Document Titie:]soc Informtion
Deocuneent UNL: lnm Wnlnatepr®forme . fuat . gov g
- Documeit UHL: | nttp //www s8¢ . gov/sdcmme/sde his -
unira@ynmwel faal. gov (Jum Ouajes)
Test Beam meeting agenda
33 Jun 1993 16,4914 GMT Univaryily of Rochesrer
NewSQroups: §35.qY8. Fethen
_—
Thers will be 2 test beam DAQ meeting on July lst. Currwitly we plan
t3 mest in Stone Ridge 4 stacting at 10:10 AM. the sgenda wil] bae:
Intoductory Remarks Paul Slatrery
Zcope of this l“t:m nysell :ndlw Botlo
Aequirements wvrr. future GIM DAQ Can Marlowe i
!:T.l of detactor subsytas requiremants all SOIenOIda’ Delector Collnborauon (SDC)
Lunch
Raview of genera! requirasents all The fotiowing information 500
Plans for the hest ::ung L 8 provided for collaborstors.
—~ 21m Dunles 700-840-2262 SDC Detector
Heve s ndrewing of the SDC Detector.
SRC technical notes
A database of SOC technical noces.
$DC newa proves
Hena articles relevant 10 SDC. Le.. posted by SDC collaborators
F0E compuer, anounts
Instructions on how to get an SDC computer accoun & the SSCL {Onty svailadle o members of (he
5DC collabor aiony
EDC ey
Al exr trowser i
- ypert of the SDC software directory
Help

Seangh Aeyswarg:
¥ r Searvh Keyward: l

3as L., Home Reigad Open. Seve As. Clons New Winoow Close Window
Bagr uaa i Mome Reload Open. Smveds. Clone New Window Close Window

P Mavgate Uptasd Aneedl st e id s Aasnadl) torn far Mempatr Uptasr Nuwiate LA imeints Ada,
Hedumerd Inie l:f arrectary /—‘f‘_ LDecument Inie ,‘5(PrT—
Document UML. [nito simme s8¢ gow/ter minas — Decumemn UKL [nu. Fremme AAC grestate mim)
sde S5C phane book -
Lo slewww This unl-c maton u provised (o the exci -
LRI SNl M o6 of 53T empilowees
LR Direciions
» sheyl. i
® poeas Frexe provide ome ai the taltonnryg
. oot
. g * nrname
. car {3t name
o phone extension -
& Subicie
® mulsep
lhrnhuRETuRN.ormmm b
em tequires
FMChES will be returned. Smy.m"’?:“m:‘ ’“‘lom the query Partial entrics we woeptavie Al
-
Seaich Reyward: l Search Keyword: l lohe, et
Bacx .o, Home Reload Open, SaveAs. Clone New Winoow Clase Winoow Bas. Fovad home Felosd Open. Saveas Clone New
Window Clase Window
-»
tile Navigatw Options Annolafc Locuments Marwaly Heip tue Navigace Dions Armotare Documents ad.
D . -
Doctiment Tute: Iunuuu. URL WD /jemee $2¢.00v/te) ntml?lohn F/‘;"‘" acument Tie: | S5C COPMER server -
Document UAL: I:up / fowen. 35 Qov 101 & html?)ohn '=-—é Document unL: lmr 7/ nfa 53¢ e Top
Name Phen Bull Cubic matl n
mmmm ames smmew wm = Select one of
ANDERION. JOHN J620 CF POMA 401D
BALLAM. JOun J 3545 CF €344 4002 . Abo
BEACH, JOWN E 5919 TRI? Dka 6010 About the S5CL Gopher
BIRC, JOHN W 094 $X1 10SCD 21190 ® SSCL L ibtary Information
FLANTON, JOUN 6654 PRIK PEa 2011 SCL Job Bulletin Poss
100000, JomH UNE R/A 2011 _a?——ﬂ————‘“
BOLBEX R, JOHN porx 2011 ® Infrmation sd T -
BUSH, JOHN lrus :og . L.Mﬂi'?.go
BUSH, JORN G ar 21 FIDEi0 Jther | ibvaries and Retererce Worrs
CARNEY, JOHN 520 2100 ® Mews and Informarion Reterarce Worrs
CHEW, JOHN - _I,glm!’ - W
CLARK. JOHN
CLINTON, JOHN W szzr 210 : g"’:rm ile server (f1p) sites
COGAN . JOHN Qiper Gopher and Information Servers
COTHE, N I Ds4N 3000 mallon Servers
DASSONVILLE, JOMN A c2iza 1011
DENN1S, JOHR P €167 1073
DILLCK, JOHN 7 €134 1073
DOUB, JOHN M F021 010
DUONG, JOHN D L667a 4002
TOWARDS, JOHN D24 2120 -
EISMAN, JOHN 000
FLEMING, JOHM M A044 1014
GABBIRT. JONN
GARLAND , JOHN 2120
GEIS, JOHN 7011
GILOWSK], JOHN P DZEN 2004
GRAN, JOUN D NONE 6000
GUERRERQ, JOHN V 1042
HALINSK{, JOHN i 4009
HARRALSON, JOKN W 5212 4002
HAYCCON, JORN A 155 1004
RILSART, JOHN M D256 200) -
HITSOS, JOMN 201
HOPPLE., JONN 2011
JANUSKEY JR,JOHN 7 MEZZ 4004
JENSEN, JCHN 140 1017
IOHMSON. BREVCA A »on 1030 u
Search Reyward: !

Srach Neyward: I
Ba io) Home Aelosg Open .

Batk .a: Home Felosd Open. Seveds. Clone New Wingow Close Window Save a3_ Clone New Wingow Close wa

LY

—-——
. . . em
Wish List for a Proper WWW Service _ %::.—-U
Nk - at the SSCL
- i1) -
R § 5 . J1E iill B! i : o A dedicated machine. www.s3sc.gov = my workstation
g:,; :".5 i !:i] % | H {!.‘_ o Dedicated manpower >= .3FTE
éf:f_ R E s'il TN B;l o A coltaborator directory tor GEM ang SDC
35 ‘
-gg E | o Intertace to PhD {eletronic phone book program)
O F H :
= E E. i ! st ! i ! H | H . .
£5 - o 3| 18, ! » ; o Electronic technical note browser
= o H 2 ; ey 1| f l_ 1 ‘ s
- §3 35,5; 1188 Tt tir'f. i"'
8% Ll L) [0 [sstal sty o LANL preprint browser
]

_] o PRD seminars for the coming week

o Working usenet service

toc_stbviey

i

HIN .ii-i.fi_%;;iii‘

=y
vacoud W

g
r

)
Ei“ L 1

iu o xmosaic on VAX

Outside of PRD:

| .

H ! ! i . o front-end to databases of interests to engineers

SHELE i i 1
-~ el 5.5' . ra M &, g'l‘g"i 1] | o Tria! of xmosaic on MAC and PC in September

pes ghaarifblitnavetyl |¥le,y LBlelE
L s E!ii I o front-end to PARIS - for purchase regs
3 \ 'i § John Wigan - SEC Lab Sune 301993 Prge 3
3 i

} i"1v1 5’-"-!. b I i { H

- R R LR A LI T .y s i
SRR R s
. em WWW and Test Bea eft
~ WWW and Documentation g m g.g ‘s
WWW should b d h
) : o should be considered as the presentation layer
ol dodnut endorse straight WWW for all your documentation of an electronic run log
needs.
) . n o WWW could even be used as a GUI buiider to make
o WWW's strength is its presentation of information control panels. Itis

simple to associate an action with a hypertext link. But there
o Currentnr:ar;::r:‘::tci’:? }:::;l't:-at_s:s imple but very limitad are much better GUI builders out there, e.g., TK/TCL
ps a;;::,::‘;:‘::::‘;:“ client machine, o GEM will use WWW for test-beam documentation, at a
minimum
gif, titt, ipeg ~ xv is default viewer _
dvi - xdvi is default

- mpeg {for movies) - mpeg_play is default
o Futyre extensions will allow any presentation the client

can handle using a negotiation algorithm.

o The organization of information is not addressed

o UNIX filesystem plus a clever file~naming scheme
is no substitute for a database

o Continue to use and refine your document databases

. 0 Plug WWW into the filename attribute

John Miairn - 558 Lan

s R daan

Inilial requiremenis
Later developmenis

Geometry Builder

+ CAD modai {IGES tile —compatible with AuloCAD and lntergraph)

« Exisling GEANT model (GSAVE RZ lie)
+ ASCI filg dascribing the geomatry In some well-delinad, human readable lormal.

* Interactive gsomelry crastion on the screen with a GUI and mouse

« Modification and positioning of volurnes Inleraclively on the screen with GUI

« Polnt-and-click selection ol volumes on the screen, with display
o:‘garama&m):slﬂonm materats, medis and rotations,

‘Harge. "mﬁ wmlous so?:rcu {e.g. lo add a CAD modsl of a support

* Merge geomelries Irom var
structure, inpul from an IGES fie, lo a previously created GEANT modal)

I .1:-.:;;10'« ita 4
m + In 2D, with slhices arid projections
+ In 3D, rotatable, hidden line removal deskable

@ + GEANT geometry In a GSAVE RZ lla
* Forlran code {calls o GSVOLU and GSPOS) list o paramelers available as an ascil
file, must include creation of malerials, racking media and rotation malrix calis.
— willy oplimization of GEANT geomelry irae

RS e B e input

* KGES file tor re-export ko a CAD system

+ CALORAY volumas
* MCNP volumes
+ GISMO objects (formal to ba determined) E:@

1 Viuerdiibey SSCL

Additional specifications

RTINS N W] RIS T
The geometry builder may be, bul nged not be, a customization of AutoCAD.

SSC unix Havors {DECslation, HP, Sun, 1BM and SGI) under X

] LR |
There is no requirament as lo what language e 1ool should be wrilten in.

g g
The producl and its use will be sullicieatly documented

The source code will becoma the property ol the SSCL with full rights 1o use and modily

¥ Ll

There will be adequala implemeniation support provided

GEM and SDC need a working release version by 1/94 lor tesl beam geomelry
An evalualion version should ba avaitable by 9/92.

These specifications have been agreed joinlly belween GEM and SDC

¢ '). %4

ST 035 - b wor

£881 "0 sunp

y ey

Paueig Buyen

- uo -
ONNeSIwdy woy Aeuq qesB ‘8813 o

:abed swoy inek abed awoy 9SS axew o

OB O8E mmmyy day
‘luswndogawoy,sjesowy Synejapy: u
[AOE‘DSS'MMM{[‘:duI.{ SWOH MMM IeA "Aus

SWwioned xun e vo O!EBDI.UX]U!q;gsg,qsn’ 9SS v ©

Wwab

{ous dy snowAuoue) npa

SSC Wor)d Wide Web |nformation
SSC WORLO WIDE WEB LNFORMATIOH

deWeb (W) service[1] provides access to a uide range of
:::nfgflvi‘:-‘;me? vaglet’ of sources Goth at $S5C and elsewhers. Informilion
is provided in the form n? hgperteutli] which allows users ta follow
pointers from one item to other related fiems, and Lhus 10 access the s
information they need in a simple intultive manner. Information is ar.:e::e
using the TEP/IE[H network and £an actually reside anyuhere In the ‘;or .
although the user doss not need to know whers the Information comes From.

n & beta varsion, and your comments are welcoms by the

fidboshd Yl I:a have umbashedig bor?owld from SLAC[S) for such of this

csh) v

developers[4].
material,

SSC Information

t 55C Information[6)
General S5 Information geared to the S5C visitor,
or outsider.

neu emp toyee,

GEM{7], SoC(8] Information specific to S5C experiments.

1-22, Up, <RETURN) for more, Quit, or Hetp: [}

Possible collaborators

« GEM (John Womersley el al.)
University ol Washington {Toby Burnell)
+~ SDC (Marc Turcolte et al.)

« 8§SC Labogratary PRCD {?)
+ intelimation Inc, {Commercial software operation) (?)

3 Womssey SSCL

—_ thwww

fle E&L Qpion Siylas testary Pookmarks Annotata Documents Manuals
Documaent Address: mn1amalhsna.mnttdw'courulnmerf:nsuwmunwmnoul mml
Oocument, Tila: wWeicome lo TkWWW

:World Wide Web System Main Menu

)

Mot Sama vernons of KWWY are not configured to dicplay graphics hgures. 11 this is the casa
'with your vernen, you wall get somrce code m place of those figures.

1

i

tenet Ung -~ New N 3 v
‘CopeyaneitE incsnen w bIT

‘Brses hesete sec shemezages of cheda,

Hl2

cmdtool bangkak

‘Bregs here to lipk vo the new MIT WWW Server
* Wy W
® This bok descbes what WWWW i and ic"s relaxionsbip o the
WoddWideWep
Information
. T om0 ___ S e e
by Joseph Wang {Jos@athensmit edu)

Copyright © 1332-1393 Joseph e
UM#&IMBMWGNUHMWZ.U

The lk-w'ww uﬂig lﬂ-ls “‘-mﬁmmﬂm "

Sand bugs 1o tk-www-bugs:

Send subrscription reguasts ta t-www- mut@aﬂmm!u&:
Sathenamit.edu

into

T % Tous link contains a shenn of ol operating Techinfe servers cnding the
; smeaMI

teg

* Hersis o 3ampie ODE application mnder development

i
|'P om Dracesses

S s
-':. i - l-——l GQ'O.J ' & .-;l i I : "'..._'i":‘.' a:j .zé;tl
Message:

[7Has Annotations (Tis index |

k3| Unidag Controi

IHt’-GlN‘ RESUME PAUSE! ENB!

?Plnvaiid command
fto» quit
221 Goodbys.
chuvlsﬂcﬁ 56} visgh
vish: source pdaq.text
couldn’t read flle “pdag.text™:
vish: source pdaq.test
wish: cat pdaq.test
wa ainsize . 1 1
s naxsize . 500 500
wa gagmetry . J00x300
wva title . “Unidag Contrat”
set butcoler ?run
frass .contro
lace .contrel -width 50& -height 20
utton .exit -text “Exit” -coamand “destroy .-

Na such f1le or directory

button .contral .begin -text "BEGIN® -foreground green -state)
noreal -command \

*.controi.begin <onfig -relief sunken -state dicabled; \
~{l .control.resuse config -relief raised -state normal;\
.<ontrol.end confi ?1-r|1uf raissd -state norsal;)

.control.pause config -relief raised -state norsal®

button .control.rasuae -text "RESUME” -foreground Sbutcoior A\
-stats disabied -relief sunken ~command *

~control.resune config -ralief sunken -state disabled®

button .control.osuse -text "PAUSE” -fareground green \
-stata disablad -relief sunken -cosmand *\
; .control,.rasume config -ralief raised -state normal”

button .control.end -texe “END" -foreground graen \
-state disabisd -relief sunken -cossand ~ \

GEM C++
PILOT PROJECT

I. SHEER

C++ Pilot Project

- Proiect Goals
Status —

. « evaluate C++ language
* Project Goals
. . B « evaluate QOP methodology
« Project Overview
« produce a useful HEP tool
» Current Status

* Future Plans

J L

Irwin Sheer lrwin Sheer =
Z1perconducung Zuper ollider Laboratory em Zuperconducting Super Callider Laboratory em-
.. MS 2000, 2550 Becklevmeade Avenue . MS 2000, 1350 Beckleymeade Avenue g
Uallas. Texas T51§5-3007 Dallas, Texas 75115-3997 w
1ok 12144 TOR-10307 fax: 1214 T08-6354 el 1214 TO8-1050: fax: (2141 TOR-G354
- Hwin Sheer sse o cImsan, Sheer® Ssc.aov -
f 1 p—
Project Overview
e SSCgen
» SSCgen:
“A Monte Carlo Generator Package * Unify several different Monte Carlo
for the SSC* interaction generators into a
coherent package.
* resgen:
* Merge interactions into events in order
“A Code Generator for Application to simulate minimum bias pileup.
Resources" . NPT
* Merge events into a pipeline in order
to realistically simulate pileup from
out of time bunch crossings.
t ’ \
lrwin Sheer I'win Sheer -
Zuperconducting Zuper Zollider Laburatory emj Zuperconducting § ~~ e z
N rm = Leernis sedes n . < g Super Collider Laboratory
E‘,?Jl;(:o'?c\-a??su!cf:l;:):‘f‘m' Avends . MS 2000, 2550 Becklevmeade Avenue e m
tek: (214 TOR-1050 ax: (214 7080354

Dullas. Texas 73115.4997

tel: (214) TOR-10350: fax: 12141 THA-6354
Alewan_Sheere sse.ogm-.

- irwan_ Sheers sse.gov-

Prerequisites

- HERWIG

- ISAJET

* PYTHIA / JETSET
- CERNLIB

- STOHEP

» CLHEP (HepRandom class only)
* libg++ (String class only)
* g++/gce

* gmake

\ * gdb

Obiject Model

Irwin Sheer

Zuperconducung Cuper Sollider Laboratery
MS 2000, 2550 Becklevmeade Avenue 7
Dallas, Texas 73115-3997

tel: (2143 T08-1050: fax: (2141 TOR-01334
«lrwan_sheera sse 2o

Persistent Classes
SimParticle: Tl-.ulated = 172! s

Particle kinematics, creation and
decay.

Siminteract: Iirzulated Jr%&rau>lion

List of simulated particies that
correspond to one interaction.

SimEvent: 3l -ulated Evant

=3 2=

List of simulated interactions that
correspond to one bunch crossing.

SimPline: Z:7-ulated Event Fipelinz

List of simulated events that

correspond to the sensitive time
of the detector.

rek: {2141 708-1050: fax: (214 TOR-G354
<Erwan,, Sheer sse.povs

rm—

-w
* Persistent classes
* XDRstream classes =
* Generator classes
¢ Other classes
-
-
W
Irwin Sheer
Superconducting Super Zollider Labaratory =
MS 2000, 2550 Beckleymeade .-\\'cnuen o gem s
Dallas, Texas 75115-3997

.2

Persistent Classes

Irwin Sheer

Zuperconduciing Zuper Zollider Laboratory
" MS 2000, 2550 Becklevmeade Avenue

Daglas. Texas 73113-3907

ted (214 THR-LGA0: tax: 1 213, TO&-G354

Cimwan_Sagert s e -

(/gem

74

-
| SimPartictle |
-»
[Simlnteract]
[SimEvent] *
1 SimPline [
-
Irwin Sheer
Superconducting Super Collider Labo : =
MS 2000, 2550 Beckle_\‘mea.(‘icc:venu; aon ,.gem >
Dallas, Texas F5115-3997 '

tek: (214} POA-1050: tax: (2141 TOR-6334
~drwin_Sheern ssc oo

XDRstream Classes \

XDRsiream Classes

XDRstream: . = TR0
Base ciass for all XDR streams. | XDRstream |
XDRistream: 2= lile &iTELT #
Base class for alt XDR file streams. \XDRfstream j
XDRifstream: 2% ‘nput Jile 7w T
XDR input file stream. L 1
I XDRifstreanﬂ [XDHcfstrearn}
XDRofstream: =T cutput ile-uInIl
XDR output file stream.
J
l_-rwiﬂ e = Zuper Zallider Laboratory [rma Sheer
Ao ke e P2 L) R s o oron gem=
rol: 13141 TOR-1050; {A%: (2141 TOS-0354 D T 1080, fae. (2141 ~08-635 L@’/
- IPWInL_Shoer™ 482w - L Sheerasse.govs ~o334 N
Generator Classes 1
| Generato
SimGen: =:—.ulated Interaction %= .erator alor Clg"-srse—g’-
Base class for MC generators.
HerwigGen: HEZWiG Zaerator e
en
HERWIG MC interaction generator.
IsajetGen: 'Ti.ET Fsnerator l_ il
HerwigGen ﬁsaietGenJ (PythiaGen—\ |SP_Ger
ISAJET MC interaction generator. , =
PythiaGen: 77X 3 Fslerator
PYTHIA MC interaction generator.
SP_Gen: “ingie Tarticle :zTerator
JETSET based single particle / jet
MC generator. |

lrwin Sheer

Cuperconducting Super Zollider Laboratory ems\
AM$ 2000. 1550 HBevkleymeade Avenue)
[altas, Texas 73115-3997 v
feb (214 TN8-1050: 1ax: {2140 TORGE3S
L owan Mheer ssC e

pa—

Irwvin Sheer o

Zuperconducung Zuper Collider Laboratory
\S 2000. 2550 Backlevmeade Aveniue
Dallas, Texas T3115-3997

tel: (214 TOR-1050: fax: i 14 706454
Simsan sheer s oo

Other Classes

SimGenApp: .I..uiated Interaction

jmrverator 7 lication

Application which generates
simulated interactions.

SimFltreclass T>: 2iI7= Ziie class

Sim{Interact,Event,Pline} fliters.

.

Irwin Sheer

{
Other Classes
| SimGenApp

SimFlitr<ciass T>]

(SimFltr<Siminteract>) | (SimFltr<SimPline>

@mFltk‘SimEvenbj

Zuperconaucuns Tuper oilider Laborarary
NS 2000, 1550 Becklevmeade Avenue
Daltas. Tuexas 73115-3997

el 12141 T08-1050: 1ax: 1214 TOR-G354
~rwan Shoers s3C.om-

gem™,

o -

Mocuie: S5Cgen Sheet 1: Object Madet Panet: {0.0) Time: Fri Jun 25 14:28:51 1993

Paraiuat Clasass
h——cq——"-__—ql m&
] A

Irwin Sheer

Zuperconducting Super Zollider Labaratory
MS 2000, 2550 Becklvmeade Avenue
Dallas, Texas 73113-3997

tel: (214) TOB-1050: fax: 12141 TO8/-6354
~Irar_Sheoersse.gove

gem-=

<@

Moguie: 55Cgen Sheel: 2. Persistent classes Panel: (000 Tume. Fridun 25 12 28:51 18¢

Waduie SSCoen Sneet 3 Generalor ciassas Pane (G0 Tuma Feogun 25 32 228 -
Mogue 35Cqen Sneer) XDRAstream cuasies Paned (0C) Tune Friodun 251428 St 1993

IONVIFsam ¢ Besey

» ADPm s am | YT T P—
- KDL il | wn ROt Witind
J +Oparal

Module: SSC Sheet: 6. SimFir classes Panel: (0.0) Time: FriJun 25 14.28.51 1992
Mocuit: SSCgan Sheet: §: SmGenApp ciass Panei: (001 Time: Frijun 25 14:28:51 1993 gen

Fillar siagpas

Functional Model

* Interaction Level Generator Study

* Event Level Generator Study

* Pipeline Level Generator Study

* Full Detector Simulation Front End

L

lt'wvan Sheer

Zuperconducting Super Zollider Laboratory
MS 2000. 2550 Beckloymeade Avenue
Dadlas, Texas 751155997

tel: (214 TOR-1050: fax: 1 214) TDR-6354
+lvan_Sheersse.eme

o

Intetraction Level
Generator Study

SimGenApp

CSiminteractFit>

lrwan Sheer

Zuperconducting Zuper Zollider Liboratory
MS 2000, 2350 Becklevmeade Avenue (
Dallas. Texas T5113-3907 4
tef: 12141 TOR-1030: fae (214 TON-0a 5+

Imaan_ Sheere 85e.ny -

{ Processes

| * interaction Generators

IsajetGenApp
HerwigGenApp
PythiaGenApp
SP_GenApp

} SimGenApp

+ Builders

SimEventBldr
SimPIBldr

» Filters
SiminteractFltr b
SimEventFlir
SimPlineFltr

* Translator

SimToKine v

L

irwin Sheer

Zuperconducting Super Collide” Labr.atory ’
A5 2000, 2330 Beckleymeade Avenue
Dallas, Texas 73115-3997

telr 12143 TOR-1030: fax: (214 TOR-6354
-Irwirt _Shoers ssc.aom>

Event Level
Generator Study -

SimGenApp

SimGenApp

SimEventBldr

’gem:

(8

irwin Sheer

Zuperconducung Super Collider Laboratory
AS 2000, 2330 Becklesmeade Avenue
Daitas. Texas 73113-3997

tel: 12141 TO&-1050: fax: (114, 7O8-N354
«[wan_Shicerasic ooy

Pipeline Level
Generator Study

SimGenApp

SimGenApp

SimGenApp

SimEventBldr
SimEventBldr

SimP!Bldr

\

Full Detector Simulation

- Front End

SimGenApp SimGenApp

hd

e

SimEventBldr

SimEventBidr

SimPiBldr

h 4

lrwin Sheer

Zuperconducting Zuper Collider Laboratory
MS 2000, 2530 Becklevymoeade Avenue
Daltas, Texas 73115-5997

tel: {214 TOR-1050: fax: (214 TOR-G354
= lrwan, Sheers ase,gon -

o

Module: SSCgen Sheet 7: Funcnonal Meded Panel: (0.0) Twma: FriJun 25 14:28:51 1993

=

o i :

R —

@ e mpreaty
T ST

Irwin Sheer

Superconducting Super Collider Laboratory:
AS 2000. 2550 Beckievmeade Avenue
Dallas. Texas 75115-3997

tel: {2141 TO8-1050: fax: (2141 TOR-G354
wlrwan_ Shuoers ssg movs

gem-

@&

Moduie: S5Coen Sheet: B: Functional Model 2 Paner {0.0) Time: Fn Jyn 251428:51 1993

Gannd Frard Ens

Mogue 5SCoen Sneet 9 isaeiGonApe Panes (G.0' Time FooJyun 25 1628 31 1993

Moguw SSCoen Sneet 10 HerwaGenans Panel (0.0¢ Tune 0 jun 28 12 29 51 rga-
—— — -
——— Varegiiee —_——
——— — rumy Cavw
—aaern ’ ——ry v -
iyt Marlre ————
SuEnag T = -
v =
: S ey
Gt sy S vy
i g
oy wy "'uitﬁq
i) vpm wvey -‘“: _
w— r
Seondansre e drnsns
sl et 5
T ey
s ord we
IO Sy e
e]
S bt Gt ean
—_—_——
e e
-
-w

Moduie: SSCgen Sheet 11: PythaGenApg Panel (0.0) Time: Fri Jun 25 14:28:51 1993

——— — -w
—— —
3P Res —— =
Pyhia Candig ——— —r————
——— it Candiy
masioncd mankvrewy
vy :
Lrvinied
maiforce
- priaraitd e
ety
Purm—.
Ja v T ypay
miletumwy
e Tveamrrg =
e] i
wrivaing iy
POAMSS vy
-:".""" PO el ose
Pion i hdaxvartpst
haasPrered
[
| stahlitat o
- ahaaaVaiton
Sunieran Lranm e bl minrg
bt
Brahhicn vl e
——
L iminiad
= -w
———
—
$imirarnct Swream
———
-

Moduie SSCoen Sneset 1) SmEwBlar Panel (0.0 Tume Frjun 29 14 2851 1993

e e
Sonaaracy Suwm

!

e —————

Syl vieie R
-

Module: SSCoen Sneet: 15. SmFwr apphcavons Panet: (0.0) Time: FroJun 25 14:28:51 1993

|
|
i

i

|
z

l

SnE vard Baam-
SonFiurflas
manPandd
rumn b
Ay
L ik 4
Snvers Saryam

il
IO

Mooue S5Coen Snedl 14 SmPiBlar Paner (00 Trme Frodun 7% '3249 %" '333

%i

u
!

A

l?

Module: SSCgen Shest 16 SimToKme Panet: (0,0) Time: FriJun 25 14.28:5% 1993

resgen

Appiicaﬁon T« ‘ource code - erator

Resgen is a simple tool which

soives the problem of passing

initialization information to an
application.

y

Irwvin Sheer

! Resgen Example

» resource definition file (.rdf)

* C header {.h) -
» C source (.¢)

» example resource file (.res)

L -

Superconducung Super Jollider Laboratory
NS 2000, 2550 Becklievmeade Avenue
Dalilas, Texas 75115-3997

tel: (2141 7O8-1050; fax: 1214 TOR-0334
clrwan_Shoeressc.oovs

test.rdf

!
! example resource definition file
1

!type name default description
| —— —
int myint 77

iong mylLong 123456789
float myFloat 99.9

double myDouble 3.1415926
string myString

example long res...
exampie float res...

This is a string. example string res...
! end of resource definition file

L%

example integer res...

exampie double res...

rwin Sheer
Zuperconducting cuper Zotlider Laboratory

A8 2000, 2550 Beckievmeade As enue gem
Daitas. Texas 75115-3997 (/

el 12130 TOR- 105Kk Lax: (214 TN8-GaR2 =

BT RIS T WA TAT o R THRT 4 1N '

LUwin Sheer
Superconducung Super Zollider Laboratory

MS 2000, 2550 Beckieymeade Avenue g
Dallas. Texas 75113-3997
retr (1141 7O8-1050: fax: (214) T08-0354
<lrwin_ Sheersssc.aov> -w
r
test.h
>

/* This file was created by resgen. */
typedef char* string;

/* Test resourcge structure */ -
struct Test {

/* example integer resource */

int myint; /*<77>*

/* example long resource */

long mylLong; /*<123456783> */

/* example float resource */

float myFloat; /* <99.9>*/

/* example double resource */

double myDouble; /* <3.1415926> */

/* example string resource */

string myString; /* <This is a string.> */

I ‘

.

Irwin Skeer

fuperconducting Zuper Zoitider Laboratory
MS 2000, 2550 Beckleyvmreade Avenue
Dallas. Texas 73115-3997

tel: (214 FOR-1050 fax: (2143 708-6354
~dpwin_Sheertsse.oo-

test.c R '

| test.res
| 1* This tile was created by resgen. */ -
- static Testr = {

123456789,

99.9, ! This tile was created by resgen.

3.1415926,

y “This is a string.”,

!
| Example Test resource file.
. 1 {change Test resource by medifying vaiue tield and
- int , ! un-commenting line)
TestSet(string name, string dval) { !
<code deleted>
'myint: e ! example integer resource
imyLong: 123456789 ! example long resource
Test®) ImyFloat: 99.9 1 example float resource
TestLoad(int arge, string argv(], FILE *tp) { ImyDouble: 3.1415926 ! example double resource
} <code deleted> ImyString: This is a string. | example string resource
- ! end of Test resource file
void
TestDump(FILE *fp) {

<code deleted>

"L

)
rwin Sheer _—
<uperconducting Super Collider Zaboratory q" 1.:’ wn e P =
MS 2000. 2530 Becklevmeade Avenue €m -'-“Pg"m‘“‘:‘_‘;‘{;‘i;ﬁ“'. *‘°“;“°: Laboratory . em
Dallas, Texas 73115-5997 MS 2000, 213 o eymeade Avenue
tek: (2143 TOA-1050: fax: (114) TOR-6354 Dallas. Texas 75115-3997
- ~lrwan_Sheers sse_gon:.

tel: 12141 TOR-1050: fax: (2134) TOR-6354
winan Sheers sse.povs

Example Application Future Plans

/* resgen test program */

* physics study
zmg:‘dgz ftsggt'."h‘,tb « container classes, etc.
static Test* res: * improved object persistence solution
main(int arge, char* argv(l) { » transport object via sockets.

res = TestLoad(argc,argv,stdin);
TestDump(stdout);

» process control
I* do something that requires resources */
}

L

Irwin Sheer Irwin Sheer

Superconducung Zuper Zollider Laboratory em Superconducting Super Collider Laboratory gem
15 2000, 2550 Becklevmeade Avenue M5 2000, 2550 Becklevmeade Avenue

Dallas. Texas 753113-3997 Dallas. Texas 75115-3997

tek: (2514 TOR-1050: fax: (214 YOR-G354 S—

Clrwan_Sheer s g on--

tel: (2143 TOR-1050: fax: (2141 TOR-G3I54 Q\._.—_:@
<irwan_Sheeregse gcovs

SURVEY OF C++
CLASS LIBRARIES

A. HARVEY
J. PAN

Gual of the Survey

A Survey of C++ Class Libraries

The goal of this version of the survey is to identify and describe a
vanety of C++ class libraries. running on UNIX platforms. in a

format that supparts easy identification of potentially useful
libranes,

Information is provided in two different formats:

Alicie E. Harvey

1. Tabular form grouped by application domain.
IBA! I'SC iligh Performance Solutions Integration Includes:
« library name
s vendor
Jing Pan » brief description of library
Computer Enincering. PRCD. SSC Lab

2. Aiphabetical listing of more detailed descriptions.
Includes:

« library name

« application dom:in
+ vendor

+ price

* suppon

* descripiion

Note: Detailed supplicr information is also provided.

Appiication Domains
Criteria for Choosing Class Libraries
1. General and Coilection Classes
Chouosing 3 C+~ library requires careful consideration, * Booch Component
priontizaion. and cvaluation of many cniena. . COOL
A number of possible concemns are: = Classix
« price « Extended C++ Standard Component 1.0
» execution speed) * libgr+
* compiiation speed * Meijin++
» understandability / 2ase of use « Meijins+ Pro
» functionality * MemSL
= extensibility * NIHCL
* memory usage « OATH
* support + Platformyt
« panabitity - + Tools.h++

« 15 full source provided or is the library compiler specitic * USL C++ Standard Component
« on what platforms is the library available

» Upes the library have dependencies on any other software
« parallelizability

» compatiaiity with olher products

* many. many more

Applicativn Dumains...

Application Domains...
2. Math Libraries

= Linpack.h++ 4. Daabase Libraries
. M4+ . + CommonBase
+ Math.h++

+ Marrix.h++

5. Communications Libraries

« NetClasses
3. GUI Libraries
. c Vi 3
ommon View 6. Miscellaneous Libraries

» Fresco
» LEDA

» InterViews ObjectkitVC++
. i

« Motf C++ Bindings TeJ:cM ment L.ib
- X ANaLe! 241 1

« OINB : ™

* StarView

+ View.h++

PO INIOAUCHON ..ottt em et e rea s eh et -
20 InfOrmation SUMITIATY ..ot oo iniseveras e rerass s sssmris s came s

30 Descriptions of C++ Class Libraries..........

il Booch Components C++ Class Library

32 C++ Object Oriented Library (COOL.)

13 Classix,...........

14 CommonBase

35 Common Yiew 3.......comerrcmmncsreanneees vt et

16 Extended C+ Standard Companents 1.0......vvvooncrcscensssms i .

37 Fresco " P

)8 InterVigws 3.1

. . 319 libgrs

A SU]‘V@Y of C++ Class Libraries 310 Libry of Efficient Data types and Algorithms (LEDA)
- 31 Linpackhe+

UL M st e e et e e

) 313 Mahhee

314 Mamix.he+

JUS M e s s s s snr e ree o

306 MENt PYO - oonrereesesemrsos e

11T MEMSL it et ares

308 Motif C++ Binding

3.19 National Institute of Health (NTH) Class Librarycvvomeenimemsmmisrescsnicseiniscrcrec e kH

320 NeiClasses iy 4.

321 Object Interface Library o scsrismsenasserseonins ervommresenerene et

3.22 The Object-oriented Abstract Type Hierarchy (OATH)cmnmissnncrccene .23

Alicia E. Harvey 32) ObjectkitC++ 28

IBM FSC High Performance Solutions Integration 325 SEUVIEW.....ooovvcerrismrre s eessscemmsnissssen s sss e sassese e e (IO UPOUO. .

326 Text Management Library .26

B B 1 O SO S SO B .
328 USL C+ 51andard COMPONENLS ...ouuscmsiniusssimsensstemeseicsensimsse s st mesnscevsans s riron- &y
329 Viewht+ ... SO U OPOTRORRO. ||

Jing Pan
Computer Engineering, PRCD, S5C Laboratory

40 Supplier IfOrMation............cooorrice e e 3

Acknowledgments

TABLE 1. Libraries of General and Collection Classes......cooevccveierecreeeerceessereen e
TABLE 2, Math LIBramies. ...cocevomeivrreireccreseseserrnrrsssssrersirsssnssresssrsssnaeseesesesessessanssssesnsdh . ; . . , .
TABLE 1. Graphical User Interface (GUT) LIbraries. ..o ecoenrierereurersineeeee s s 4 This survey relies very h.e wily on mformn}non suRplicd o the authors. thr; vomments
TABLE 4 Database Librari or opinions arc founded in the direct experience of one of the authors, that will be indi-
. asc- i 'r €S 5 cated. Otherwise, we cannot vouch for the accuracy of the comments given.
TABLE 5. Communications Libraries.........o....t SOTOU RO, |
TABLE6. Miscellaneous LIbranies ..o rovcvvvecesenssvnn s cnsinassssssssesens We ry 10 give our experience in using some of the libraries listed in this documentation. 1t

is only based on limited and sometimes bricf personal experience. and is by no mean com-
plete and unbiased.

Sources of information for this document include. but are not limited to the followineg:

A great deal of the information on the public domain libraries came from an anicle

posted to hepnet.lang.c++ by Leif Locnnblad which included an Evatuarion and

Comparison of C++ Class Libraries (Draft, March 1992) by Marco Pace.

mpace@esoc.bitnet

A good deal more information on both public domain and commercially available

libraries was obtained as the result of people sending “'swiff they found on the net

somewhere...” in response to private correspondences. bt is impossible to properly

acknowledge the original sources of this information. But, we give them the best

recognition we are able in this forum, Special thanks to Dr. fra Pohl of the University of

. California, Stanta Cruz and Gary Word with GEM/SSC Lab for providing this type of

g informaton.

The C++ Booch Components Class Catalog, Version 1.4.7, copytight 1990-1992 by

Rational. '

The C++ Object-Oriented Library User's Manual, copytight 1990, 1991 by Texas

Instruments Incorporated.

The INFO file included with the LEDA package.

Information on the maintenance of LEDA was gained via private carrespondence with

Stefan MNaeher of Max-Planck-Instirut fuer Informatik.

Consumer Report o C++ Class Libraries, Version 1.0, June 1993, The Object-Oxi-

ented Technology Center, copyright 1993 by IBM Corp. (Unpublished)

A drafu of the NIH Class Library Reference Manual, Revision 3.10. April 1990, by

Keith E. Gorlen, National Institutes of Health, Bethesda, Maryland.

C++ Products Lists and Description, June 1992, by Saumen K. Duua.
Tutorial notes on Fresca by Dr. Mark Linton.
Documentation on libg++ contained in the libg++ distribution.

Light weight technical and pricing information that Rogue Wave was good enough to
furnish us with upon our request.

fune 20 1503 1

¢ ¢ 4 ¢ { " ¢ Y 1 § 'l

1.0 Introduction

This document identifies and describes a large number and variety of C++ class libraries.
Our focus, in this initial version of the document, is on libraries that are available for at
least one Hlavor of UNLX. While some may be available for multiple Ravors of UNIX or
other operating systems, they were targeted for this document because they were available
under UNDX. Also, this list of librarics makes no pretension of being complete. There arc
a siaggering number of C++ class libraries available and the list presented here has been
bounded by available research time not by available products.

The information is provided in two different formats. First, the libraries are provided in
tabular form grouped by application domain. The library name, vendor, and 2 brief
description of each library are given. it is hoped that this will allow the reader to home in
easily on libraries of the appropriate lype that may be patentially useful.

The section following that provides more detailed information (where more information
was available). In most cases, the information provided in this section consists of: the
library name, the name of the company that produccs the library (or an indicadon of Pub-
lic Domain where that is appropriate), the site from which the library may be obtained, in
the case of public domain software, and whether it is available in source and / or object
format, price, whether the library is supported and, if so, how, and finally, a detailed

description of the Library.

It should be noted that not al} ibraries are covered in the same amount detail. Noz, are all
categories of information available for each library. Each is covered as completely and in
as much detail as was available to the authors and this varied greatly from library to

library.

Choosing a C++ library requires the careful consideration, prioritization, and evaluation of
many criteria. This document docs not attempt to address many of these concems. Itis

important, however, that the reader determine which of these criteria are most imporant to
her and keep these concems in mind when she is choosing a library. So, a number of pos-

sible concems are listed below:

= price

» ecxecution speed

» compilation speed

« understandability / ease of use
« funcrionality

= exiensibility

+ memory usage

+ suppon

« poriability

« is full source available or is the library compiler specific

Jang 20 1R

« on what plarforms is the library available

« does the library have dependencies on any other software
« parallelizability

= compatibility with other products

= many, many more

2.0 Information Summary

. The libraries are listed below in tabular form grouped by application domain. A very

short overview of each of the libraries is given.

TABLE L. Libraries of General and Collection Classes

Library Company Abstract
Booch Components Rational Inc. | Eawasive collection of domain independent daws soructures
and algorithms,

C++ Object Oriented Public Exiension 10 the C++ language made up of a collccliun ot

Library (COQL) Damain classes, objects, templates, and macros. Basic data iypes arg
provided.
Classix Empathy, Basic data types, snath classes, and classes simitar 10 Smail-
Inc. wlk,
Extended C++ Standard | Siemens USL Siandard Componeats 2.0 plus improved collecton |
Components 1.0 classes. 1
libg++ Pubiic General purpose abstract data types, coilection ¢lasses. and
Domain coniainer classes.)
Meijins+ Newwork Supparts modeling and sunulaton: discrete event sunula-
Integrated tion, queuing systems, eic.
Services,
Inc.
Meijin++ Pro .| Nework A superset of Meijine+. Suppons modelling and simulation:
Integrated discrete event simulation. queueing systems. cic,
Services,
Inc.
MemSL Windbase Collection of data structures,
Sofiware

Collection of abstraet data types similar 1o the Senalledk $1)
cotiection classes,

Nauonal Instituse of Public
Health Class Library Domain
(NIHCL)}

The Object-riented Public Cullection of abstract heierogencous container classes.
Abstract Type Hierar- Domain,

chy (OATH)

Platform/1 Object Man- | includes collection classes plus classes tor conumiling wii-
agement WS PIOCEsSEs, Managing persistent uhyects. and supporuay
Laboratory § distnbuted processing.

June 9|9

TABLE 1. Libraries of (ieneral and Collection Clusses

Library Company Abstract
Toots.h++ Rogue General classes including collections modetled on Smal)-
Wave, Inc. talk. includes support for persistency and includes multiple
implementations for abstract classes.
USL Cy+ Standard UNTX Sys- | Container and commonly used utlity classes. Includes com.
Components tems Labo- | mon UNIX functions such as regular eapressions, path
ey name handling, ¢tc.

TABLE 2. Math Libraries

Library Company Abstract

Linpack h++ Rogue Object-oriented C++ wersion of the Formn Linpack Library,
Wave, [nc.

M+ Dryad Soft- | Suppons matrices, arrays. and numeric data types.
ware or
Qasis

Math b+ Rogue Suppons amays {inchuding those of higher dimeasions).
Wave, Inc. | marrices. vectors, statistics, and numeric data types.

Marix.h++ Rogue A superset of Math.h++. Additionally, specialized matrix
Wave, Inc. | classes such as banded. symmeic, elc,

TABLE 3. Graphical User lnterface (GUI} Libraries

Library Company Abstract

Common View 3 ImageScft, | Suppon for building GUT's un wp of Presentation Manager,
Inc. Windows, HP NewWave. and OSF / Motif (plus the Mac).

Fresco Public AP! extending tnierViews i provide the functionality of
Domain Xlib and Xt in a distributed object-oriented environment.

[nterViews 3.1 Public Suppties abstraciions for building and using interactive sofi-
Domain ware. Runs on top of X Windows.

Motif C++ Bindings Pubtic A wrapper library that encapsulaies Motif widgets in C++
Domain. classes,

Object Interface Parc Place Classes for buslding GUT applications under X11, Allows

Libeary Systems, for ruptime swilching between Openlouk and Motif,
Inc.

StarView Star Divi- Multiplatform GUI programming toul providing classes that
sion, Inc, work without change on Windows, 0872, NT. Macintosh,

and Modif systems,

Viewh Rogue Classes which encapsulate (00% of the funciionality of

Wave, Inc. both OSF/vlotif and the X-Inurinsics.

TABLE 4. Database Libraries

Library Company Abstrace
CommonBase ImageSoft. | Classes to support SQL and ISAM.
lnc.
TABLE 3. Communicatioos Libraries
Library Company Abstract
NeiClasses PostModern Class library for distnbuted ebject-onieated cominunia-
Computing tions. -
Technologies,
Inc.

TABLE 6. Miscellancous Libracies

Library Company Absmract

Library of Efficient Max-Planc- { Daca types and algorithms for combinaworial computing.

Data Types and Algo- | Instiu

rithms (LEDA)

ObjectkitC++ ParcPlace Collection of class libraries. Includes NIHCL and [nier- |
Systems. Views libraries. :
inc.

Texi Management Hewlent Suppens buitding interaclive teat onented applivauuns

Libruy Packard Co.

i. LEDA is not public domain but, you can use it and distnibute it {reely for seseisch and waching.

3.0 Descriptions of C++ Class Libraries

3.1 Booch Components C++ Class Library

Domain:

Collecrions.

Company:
Rational Inc.!

Availabil*tv

The Booch Components are distributed in source format.

1. Ratonal is a regisicred oademark of Rational,

fune 29, 1491 1
“«o ¢ (]

huae 29 1903
4 ¢ {

Licensing:

Licensed product. -

Price:
$695 (workstations)
$2,500 (server license)

Support/ Maintenance:
Yes.

Description’:
The C++ Booch Componen|s3 are a carefully designed collection of domain-indepen-
dent data structures and algorithms. This class library was designed with several goals
in mind:
Compleweness: the library provides classes for many of the basic data structures and
algorithms required in production quality software; additionally, for each kind of sauc-
ture. the fibrary offers a family of classes. united by a shared interface but employing a
different representation. so that a developer can select the one with the time and space
scmantics most appropriate to a given application.
Adaptabiliry: the library’s envirenment-specific aspects are clearly identified and are
isolated using template arguments, so that local substitutions may be made; in particu-
lar, a developer has conwrol over the storage management policy used by each structure,
as well as the semantics of process synchronization, for those forms of a class designed
for use in the presence of more than one thread of control (such as with the AT&T? ask
library). ’
Efficiency: our goal was to provide easily assembled components (efficient in compila-
tion resources) that impose minimal run time and memory overhead (efficient in execu-
nion resources) and that are more reliable than hand-built mechanisms (efficient in
developer resources).
Safery: each class is designed to be type-safe, so that static assumptions about the
behavior of a class may be enforced by the compilation system; additionally, excep-
tions are used to identify conditions under which a class's dynamic semantics are vio-
lated, bur without corrupting the state of the object that threw the exception.
Ease of use: a clear and consistent organization makes it easy to identfy and select
appropriate forms of each swructure and toal.

Extensibiliry: it is possible for developers to independently add new data structures and
algorithms. yet at the same time preserve the design integrity of the library.

2. This is taken trom the Introduciion 1o The C ++ Bouch Companents Version 1 3.7 Class Caralog. Copy-
right 1990-1992 by Ranonal.

3. Booch Componeats is a registered wrademirk of Grady Booch.

4. AT&T is a registered rademark of AT&T.

Jane 2190 L]

The C++ Booch Components represent an application of Booch's object-oriented
design (OOD) method, which was used to both design and document the library
This library is carcfully organized and precisely defined; as a result, there is an opportu-
nity to formally specify the behavior of all classes in the library.

The C++ Booch Components are a mature library, having evolved from an Ada version
first released in 1984, and now in use in over 300 different organizations in the U S..
Europe, and the Pacific Rim. The C++ version is more than a simple port of the Ada
version, but rather was designed to 1ake advantage of C++’s unique fearures. including
classes, multiple inheritance, polymorphism, templates, and exceptions. The C++
Booch Components have undergone over a year of intemal use since their hirst public
exposure at the 1990 COPSLA/ECOOF conference, and in so doing have evolved to
take advantage of £xperiences gained in using Baoch’s OOD method on several large
commercial C++ projects.

Our Experience:
Executables incorporating this library require a very big swap space {we ordered 2 ¢val-
uation copy, but couldn’t find a machine with enough swap space 1o run it). In addition,
it has a long start up time.

3.2 C++ Object Oriented Library (COOL)

Domain:
General, Collections. !

Company:
Public domain available from Texas Instruments Inc.

Availabilicy:
Available via anonymous FTP from csc.ti.com in file /pub/COOL 1ar.Z.

COOL is provided in source format.

Licensing:
None.

Price:

Free.

Support/ Maintenance:
The main README file distributed with the package offers the following warning:

No active development has been done on COOL since carly 1990 and none is planned
The authors have all moved on 1o new projects so even if they tind time 10 answer ques-
tions they may not remember enough to be of much help.

Description:

lane Bt

COOL is an extension of the C++ language. This means that programs written using
COOL are not compiled using a standard C++ compiler but, using the COOL C++
Cantrol Program, which is an extension of the standard C++ compiler. It is made up of
a cotlection of classes, objects, templates, and macros for use by C++ programmers
writing complex applications.

A wide variety of classes is provided including: Pair, Range, Rational, Complex,
Generic, Vector, List, Date_time, Timer, Bit_Sct, Exception, Hash_Table, Marrix,
Queue, Random, Stack, Symbol, Binary and AVL wee.

The COOL class library hierarchy irnplements a rather flat inheritance wee. All com-
plex classes are derived from the Generic class, 1o facilitate run-time type checking
and object query. Simple classes are not derived from the Generic class due to space
etficiency concerns. The parameterized container classes inherit from a base class that
results in shared type-independent code. This reduces replication when a particular type
of container is parameterized several times for different objects in an application.
COOL provides exception handling in the form of a raise, handle, and preceed mecha-
nism. The exception handling facility provides an exception class, an exception handler
class, a set of predefined subclasses of the exception class, and a set of predefined
exception handler functions.

COOL does not seem to provide multiple inheritance.

3.3 Classix

Domagin:

General,

Company:

Empathy, Inc.

Description:

Basic data types, math classes, and classes simitar to Smalltatk.

1.4 CommuonBase

Domain:

Database.

Company:

ImageSoft, Inc.

Descripton:

Classes to support SQL and 1SAM.

luni 29,1903 3

3.5 Common View 3

Domain:

GuUl

Company:

ImageSoft, [nc.

Description:
Support for building GUY's on top of Presentation Manager, Windows, HP NewWave,
and OSF / Moudf (plus the Macintosh).

3.6 Exteirded C++ Standard Components 1.0

Domaio:
General, Collections.

Company:

Siemens

Description;
USL SC 2.0 plus improved collection classes.
3.7 Fresco

Domaia:

GUL.

Company:
Public Domain to be available with the standard disgibution of X11R6.

Availability:
Not currently available.

Licensing:
None.

Price:
Free.

Support/ Maintenance:
Unknown.

Description:

hine 1% 1991

Fresco is an object-orienied application programming interface {API) for graphical user
interfaces, covering the funcdanality in Xlib and Xt, and adding structured graphics
and application enibedding.

Fresco is under development by the X Consortium as an open, multi-vendor standard.
Fresca is built on three fundamental concepts:

- Standard object model

- Resolution independence

- Graphical embedding

The standard object mode! is based on OMG's CORBA. It utilizes CORBA's [DL for

defining object interfaces which altaws a choice of implementation {anguages. By vir-
tuc of it's CORBA base Fresco provides suppon for distribution of objects.

Resolution independence allows a device-independent graphics state.

Graphical embedding provides sauctured graphics, application object embedding,
glyphs (objects that draw), viewers (objects that interact with uscr), and frames (top-

level viewer).

3.8 [nter_Views5 3.1

Domain:

GUL

Company:
Public Domain available from Sianford University
Commercial versions available from HP {InterViews Plus) and Quest (ObjectViews).

Availabitity:
Anonymous FTP from interviews.stanford.edu in /pub/3. L.tarZ.

Licensing:
None.

Price:
Free,

Support / Maintenance®:

i. Copyright 1990 Suanford University.
i. From copyrighted unpublished document (IBM IUQ) -- Consumer Report on C ++ Class Libraries. Ver-
ion 1 0, Qbject-Oniented Technology Center, 1993.

June 23,1991 tn

Interviews is a research project with participation from both Stanford and $ilicon
Graphics. The researchers fix bugs, gencrate new releases, write documentation, give
tutorials, and wy to answer questions as best they can.
There is an [niernet newsgroup devoted to InterViews catled
comp.windows.interviews, It is "dual ported™ with a mailing list; the alias is
“interviews@interviews.standord.edu”. An archive of messages is peniodically made
_ available via FTP from interviews.stanford.edu in file /pub/mailing.Z. Mailing list
drop/add requests should be sent o interviews-requests@interviews. sianford.edu.

Bescriptlon7:
InterViews is a system for building and using intcractive software. Written in C++,
InterViews provides a sct of C++ class libraries with high-ievel abswactions for imple-
menting interactive programs. InterViews includes specific support for resolution-inde-
pendent graphics, sophisticated document formarting, and graphical connectivity.
InterViews currently runs on top of the X window system.

Key InterViews fzatures:

Native C++

Glyphs - lightweight, shareable objects

Sophisticated layout objects

Resolution-independent graphics‘ printing, overlays

Incremental update, double-buffering ,
Applications: class browser, drawing editor, WYSIWYG document editor, '
interface builder

Graphical editing framework {Unidraw)

Unidraw is a class library that sits on top of Inter Views and provides a framework {or
creating object-oriented graphical editors in domains such as technical and artisiic
drawing, music composition, and circuit design. Unidraw defines four basic abstrac-
tions: components encapsulate the appearance and semantics of objects in a domain,
tools support direct manipulation of components. commands define operations on
components and other objects, and external representations detine the mapping
between components and the file format generated by the edisor. Unidraw lso suppurs
multiple views, graphical connectivity and confinement, and daraflow between compo-
nents.

There are also commercial implementation and extension of Iniervicws,

Please see the section on Fresco, an object-oriented API based on Interviews under
development by the X Consortium as an open standard.

7. From copyrighted unpublished document {IBM TUQ) - Consumer Reporton C+ + Class Lidrgries \Ver-
sien | 0. Object-Oniented Technoiogy Center. 1993,)

8. This is taken from the Absiract of Generalized Uirephical Object Editng. John M. Viissides, Tech
Report: CSL-TR-90-427, 1990, Stanford University.

Tune 29 1" '

Our Experience.:
Interviews/Unidraw is a very powerful and cleganty designed class library that offers a
true object-oriented way of constructing GUIs. However, it has a steep learning curve,
and is not well documented.

The examples provided are not adequate (either too small or too big).

Although there is a news group that discuss various issues and problems, there is no
real suppor.

3.9 libg++

Domain:
Genernal.

Company:
Public domain.

Availability:
Available via anonymous FTP from prep.ai.mit.edu in file _
/pub/gnu/libg++-<version>.tar.gz. (Note that this filc was compressed using gnu's
version of compress; hence the “.gz" extension.)

Provided in source format.

Price;
Free.

Support/ Maintenance:
Yes, The FSF may reply to bug reports. Also, commercial support is available from
Cygnus Suppert, Hupdred Acre Consulting, xprt Computer, and others.

Description’:
C++ supports two, pantially incompatible, styles of abject-oriented programming -- The
“forest™ approach, involving a collection of free-standing classes that can be mixed and
matched, versus the completely hierarchical (smalitalk style) approach, in which ali
classes are derived from a commen ancestor. Of course, both styles have advantages
and disadvantages. So far, libg++ has adopted the “forest” approach.
Currently (and/or in the near future) libg++ provides support for a few basic kinds of
classes:
The first kind of support provides an interface between C++ programs and C libraries.

This includes basic header tiles (like @file|sidio.h}) as well as things like the File and
stream classes. Other classes that inerface to other aspects of C libraries (like those that

9. This information was taken from the 1extinfo files that are disinibuied with the library.

' ‘ Il' 29,199 ‘ ‘ 12

maintain environmental information) are in various stages of development; all will
undergo implementation modifications when the forthcoming GNU libe tibrary is
released.

The second kind of support contains general-purpose basic classes that ransparenty
manage variable-sized objects on the freestore. This includes Obstacks, multiple-preci-
sion Integers and Rationals, arbitrary length Strings, BitSets, and BitSmings.

Third. several classes and utilities of common interest (e.g.. Complex numbers) are pro-
vided.

Fourth, a set of pscudo-generic prototype files are available as a mechanism for gener-
ating common container classes. These are described in more detail in the inooduction
to container prototypes. Cunrenly, only a texmal substitution mechanism is available
for generic class cfeation.

3.10 Library of Efficient Data types and Algorithms {LEDA)

Domaln:
Miscellaneous.

Company:
Max-Planck-Institut fuer Informank

Availability:
Available via anonymous FTP from fip.uni-sb.de in the directory /pub/LLEDA or from
fip.th-darmstadt.de in the directory /pub/programmingflanguages/C++/class-libraries/
LEDA.

The files ace:

LEDA-<version>.tar.Z template version

LEDA-N-<version>.1ar.Z non-template version

Licensing:
LEDA is not in the public domain, but you can use it and disuibute it freely for research
and teaching. A commercial license is available from the author:

Stefan Nacher
Max-Planck-Institut fuer Informatik
[m Stadtwald, 6600 Saarbruecken, FRG
(stefan@mpi-sb.mpg.de)

Price;
A commercial license is available for 2000} DM,

Support/ Maintenance:

fung 2390 1
¢ 4 $

There is no real support. However, there are iwo mailing !ists established by Andy Fin-
gerhut (jaf@wusc.wusil.edu) 1o deal with LEDA issues. Excerpts from Andy Finger-
hut's announcement of the lists follow.

The first is called LEDA, and will be unmoderated, at least untl waffic warranis
otherwise. [t will be for anyone who wants to discuss any and all of the topics
below (this is not meant to be an exhaustive list):

Hints on using LEDA effectively.

New data type implementations.

New algorithm implementations.

Low level details of the “built-in" types and algorithms.
Mistakes in the software, preferably with corrections.

The other is calted LEDA-ANNOUNCE, and it will contain “major” announce-
mexnts, such as when a new version of LEDA comes out. LEDA-ANNOUNCE will

be moderated by Andy Fingerhut.

As soon as | determine how, I will set up the mailing list software (listserv version
5.5) so that all messages which appear en LEDA-ANNOUNCE will automatically
appear on LEDA as well. Therefore, those who only want major announcements
need only join LEDA-ANNOUNCE, and those who want every message need

only join LEDA.
To join the mailing lists, send an electronic message to:

listserv@dworkin. wustl.edu
with an arbimary subject and one of the following lines as the bedy of the message.

subscribe LEDA login_name@host
OR
subscribe LEDA-ANNOUNCE login_name@host

You should receive confirmation that you have been added to the appropniate list
not long afterwards.

1 plan 10 collect additional data type and algorithm implementations and make
them available on either an FTP site. a mail server, or both,

Description:
LEDA is a library of data types and algorithms of combinatorial computing.
The following description comes in large part from the INFO file distributed with the
package. .
LEDA provides a sizable collection of daia types and algorithms. In the current version,
this collection includes mast of the data types and algorithms described in the text
books of the area -- stacks. queues, lists. sets, dictionaries, ordered sequences, parti-
tions, priority queues, directed. undirected, and planar graphs, lines, points, planes, and
basic algorithms in graph and network theory and computational geomerry.

June 293, 191

LEDA gives a precise and readable specification for each of the daw types and algo-
rithms mentioned above.The specifications are short (typically, not more than a pager,
general (50 as o allow several implementations), and absmact (so as 0 hide all details
of the irnplementarion).

For many efficient dzta swuctures access by position is imponant. [n LEDA, we use an
itern concept to cast positions into an abstract form. We mention that most of the speci-
fications given in the LEDA manual use this concept, i.¢., the concept is adequate for
the description of many data rypes.

LEDA conains cfficient implementations for cach of the data types. ¢.g.. Fibonacci
heaps for priority queues, red-black trees and dynamic perfect hashing for dictionarics,
etc.

LEDA contains a gomfortable data type graph. [t offers the standard iterations such as
“for all nodes v of a graph G do” or “for all neighbors w of v do™, it allows to add and
delete vertices and edges and it offers arrays and marices indexed by nodes and edges.
etc. The data type graph allows to write programs for graph problems in a form close to
the typical text book presentation.

LEDA is implemented by a C++ class library. It can be used with almost any C++ com-
piler (cfroni2.1, cfront3.0, g++, borland, zonech).

3.11 Linpack.h++

Domain: r

Math.

Company:
Rogue Wave Software Inc.

Availabitity:
Provided in source format. (Includes Matrix.h++ and Math.h++.)

Price: .
$595 “per seat” (Includes Matrix.h++ and Math.h++.)

Support/ Maintenance:

Yes. 90 days of free support and updates arc included with each purchase. Optional
continuing custorner support is also available.

Description:
Linpack.h++ is an object-oriented C++ version of the Forwan Linpack library which
includes 100% of the functionality of the Fortran version. The C++ version is not. how -
ever, a swaight port of the Fortran version. It takes full advantage of C++'s capabilities
of operator-overloading, object-orientation, and speed to produce libraries of highly-
optimized low-level assembly routines that are equally as fast as and frequemly fastes
than the equivalent Fortran.

lune 19 (91 1<

Linpack.h++ inctudes all of Matrix.h++ and Math.h++ and is compatible with Rogue
Wave's other class libraries.

312 M4+

Domain:
Math.

Company:
Dryad Software or
Qasis

Description:
Supports matrices, arrays, and numeric data types.

3.13 Math.h++

Domain:

Math.

Company:
Rogue Wave Software Inc.

Availability:
Provided in source format.

Price:
$395 “per seat”

Support / Maintenance: .
Yes. 90 days of free support and updates are included with each purchase. Optional
cononuing customer suppott is also available,

Description:
The Math.h++ library includes the basic numerical vector, matrix, and array types. It
will also work with 3 and higher dimension arrays and their data-view paradigm allows
you to access any plane of a 3 (or more) dimensional array and meat it as a matrix.
Deuails of dimensions and dope veciors are completely encapsulaied.

Their linear algebra classes are based on the BLAS.

Also included are signal processing -- DComplexFFTServer, DComplecFFT2DServer.
DoubelFFTServer, etc. and statistics classes -- Histogram, LeasiSqFit. RandExp, Rand-
Gamma, RandPoisson, etc.

Junc 29, 1993 T

3.14 Matrix.h++10
Domain:

Math.
Company:

Rogue Wave Software Inc,
Availability:

Provided in source format.

" Price:

$495 “per seat”

Support / Maintenance:
Yes. 90 days of free support and updates are included with each purchase. Optional
continuing customer support is also available,

Description: '
Matrix.h++ includes al! the functionality of Math.h++, for example, general mamces.
vectors, statistics, complex numbers, Fast Forier Transforms, etc. Addidonally,
Matix.h++ provides specialized mawix classes such as banded, symmemic, posilive-
definite, Hermitian, tridiagonal, etc. ,
i

3.15 Meijin++

Domain:
General.

Company:
Network Integrated Services, Inc.

Description:
Supports modeling and simulation: discrete event simulation. queuing sysiems. e
3.16 Meijin++ Pro

Domain:

Generul.

Company:

). While information is provided here as though Matris h++ is & stand alune peoduct, it is aot clear sha
this is true. The Linpack.h++ package is a wio uf librarics: Math.he+, Mawit h++, and Lingack hes Ttimay
be that Matrix h++ is available only as part of tha wio.

fupe 2% 19900 ‘

Newwork [ntegrated Services, Inc.

Descriprion;
A superset of Mcljln++ Supports modelling and simulation: discrete ¢vent simulation,

queueing systems, etc.

3.17 MemSL

Domain:

General.

Company:
Windbase Software

Availability:
Source code is included.

Price:
$190

Description;
Library for programming data structures such as queues, hash tables, linked lists,
binary mrees, AVL balanced and threaded wees, circular lists, dynamic arrays, eic.
Inciudes aver 60 functons.

3.18 Motif C++ Binding

Domain:

GUL

Cuompany:
Public domain. Developed at The University of Lowell. (This is an antiquated and
buggy version.) Latest (and much improved) release by Ronaid van Loon, Urreche.

Availability:
The Ronald van Loon version is available via anonymous FTP from decuac.dec.com in
file /pub/X 1 1/motif ++.07.apr.93.tar.Z.

Licensing:
None.

Price:
Free.

Support{ Maintenance:

luna 29, 1993 13

As donated by author.

Description:

A wrapper library which encapsulates Motf in C++ classes. All resources of these wid-

gets can now be set through member functions, while objects can be used in callback-

funcdons.

The foilowing is the announcement for the R. van Loan version of the bindings and

includes a history of Lowell’s and his involvement with themn. Please note that the musit

recent version referenced in this aniicle is not the cuirenr most recent version available.
Announcement of the new (21-jul-92) gamma-release of the Motif++ bindings.

HISTORY

The University of Lowell, supported by a grant of the Open Software Foundation,
has developed a wrapper-libcary. that encapsulates Motif widgets in C++ classes.
All resources of these Widgets can now be set through member-functions, white
objects can be used in callback-functions. The library was made available for frec
or norninal cost for anonymous fip at 129.63.1.1. However, the library contained 2
large number of bugs and oversights, and only worked under X1IR3. Due 10 lack
of subseguent fundings, the bindings are no longer actively supponed by the Uni-
versity of Lowell.

1, Ronald van Loon, at a certain point last year, have taken the Lowell bindings, .
fixing the bugs I came across, adding missing member-functions, and enhancing
functionality and made the bug-fixed library available for the general public fo;
anonymous ftp (made possible by Rick Murphy at DEC).

NEW RELEASE

I am now pleased to announce a new and updated release of the Motif++ bindings.
This release offers:

- Full Motif1.1 and X 1R4 support

- Support for Xbae widget set

- Two additional widgets. written by myself, that can be used 1o indicate progress
in an application.

- Imake support. NB: this release relies heavily on the existenve of imake and s
config files on your site. | have iricd to provide the bindings with a standard Muke-
file, tweakable for those unforrunates without imake. [have not severely tested the
standard Makefile though. Contact me if you have problems. The reasen for cail-
ing this a gamma release lies in the fact that [do not have a multitude of platforms
to iest the [make-files on.

- Lots of test files (even somewhat useful programs)

- An article | wrote on the usage of Motif. X and C++, previously posted on
Usenet.

WHERE TO GET THE NEW MOTIF BINDINGS
Eup:

Juae 2 it T

Anonymous fip at decuac.dec.com (192.5.214.1), directory fpub/X11, file
motif++.21.jul.92.:ar.Z (855293 bytes).

Note:

Please be patient as the network link is quite slow. Please do not FTP large files
during working hours.

Also note that there is also a motif++ 31.jan.92.1ar.Z file at this site; this is an old
version of the bindings.

E-mail;

Those who don't have fip can send me e-mail, and [will send the bindings by e-
mail.

REQUEST

Those who use the bindings and find bugs, or sec room for improvemen:, please
contact me, and I will try to incorporate them in a future release (in case of bugs, a

bug-fix of course ;-}
MORE INFORMATION

Contact me at “rvioon@cv.cuu.nl”, “ricon@cs.ruu.nf” or “rvanloon@nyx.cs.d-
u.edu”™. If you are desperate, then you can call me at +31 30 5067 (that is Utre-
cht, the Netherlands; those within the Netherlands call 030-506711).

Enjoy!

3.19 National Institute of Health (NIH) Class Library

Domain: i
Collections.

Company:
Public Domain

Availability:
Available via 2nonymous FTP from alw.nih.gov in file pub/nibcl.tar. Z.

A madification te work with the ObjectStore OODBMS is also available via anony-
mous FTP from alw.nih gov in file MartinNihe|3-101.tar.Z.

Source code is provided.

Licensiog:

None.

Price:

Free.

Suppurt/ Maiatenance:

|‘ an ' ‘ n

MNone.

Descripticn:
The NTH Class Library is a portable coilection of classes similar to those of Smallulk-
80 that has been developed using the C++ programming language under the UNIX
operating system. The NIH Class Library includes generally useful data types such as
String, Date, and Time, and most of the Smalltalk-80 container classes such as
OrderedClin (indexed amays), LinkedList (singly-linked lists), Set (hash tables), and
Dictionary {associative arTays). Arbitrarily complex data structures comprised of NIH
Librar: and user-defined objects can be stored on disk tiles or moved between UNIX
proczsses by means of an object O facility. Classes Process, Scheduler, Semaphore.
and SharedQucue provide multiprogramming with coroutines.
The set of Vector classes and a handful of others such as Random (random number gen-
erator) and Range (range of integers) assist in varigus kinds of arithmetic and mathe-
matcal problems.
The hicrarchy provided by NTHCL is that of a tree.
Muttiple inheritance is optionally supported.

No templates are provided, although they can be implemented using macros.

OQur Experience:

Because NTHCL uses a completely hierarchical (Smaltiatk style) approach, in which all
classes are derived from a common ancestor, any class derived from the NTH classgs
tends to be heavily weighted. The programmer carries the entire library around on her
back.

3.20 NetClasses

Domain:
Communications. Distributed Processing.

Company:
PostModem Computing Technologics.

Descriptionu:

The focus of the NetClasses architecture has been to provide the tools nevessury for
programmers to develop complex distributed applications without having 1o deal with
the esoteric details of low-level communications.

11, This is from the Inuoduction 1 2 Dralt of the NI# Cluss Library Reperence Muauat, Revision PN
April 1990, by Keith E. Gorlen. Nation Institutes of Health, Bethesda, Maryiud.

12, This information is laken trom the Inroduction to C++ Products List and Descriptivn comnpiled v S.ay-
men K. Duna. June 1992.(skduia@cs.tamu.cdu). The original informauon was provided by Thane E. Plun
beck (plambeck@cs.sanford.cdu).

4 ¢ [{

NetClasses is a set of C++ class libraries thar is organized as a software toolkit. The

typical user of the NetClasses libraries will be a distributed systems application devel-

oper who requires an object-oriented framework for distributed, message-passing based
programming. By linking the appropriate NetClasses libraries, application program-
mers are then able‘to:

+ Transport objects over a network.

Currently, there are threc object varieties that NetClasses can ransport:

L. Arbitrary C++ objecis---once derived from PostModem's TransObject class

2. arbitrary N1H-derived objects; and provide an object-oriented data wransport in
which the structure and organization of network mansporiable objects is specified
externally in configurable Ales using a simple, programming language independent
abstract syntax notation, the NetClasses Abstract Syntax Notation (NASN),

+ Perform remote method invecations (RMI). Using RMI, an application on machine B
can invoke a method on machine A. RMI insulates distributed applications from the
complexity inherent in traditional, RPC-based distributed systems development tools
such as protocol compilets, TCPAP code writing, and detailed socket handling. RMI
makes fault tolerance and connection management ransparent to the application pro-
grammer. The RMI layer is built on top of the distributed services package thatis -
described below.

+ Build complex informarion distribution systems on top of Disuibuted Services, Post-
Modern Computing’s object-oniented approach to client-server connection manage-
ment and fault tplerance.

+ Usc the NetClasses application programmer interface in order to create, manipulaie,
and desuoy typed objects given NetClasses Typed Object data type definitions.
(NIH-derived and native C++ objects are created, manipulated and destroyed from

C+ itself).

+ Read and write all three varicties of NetClasses ransportable objects on streams
using machine-independent external representations. All three varicties of objects
can be stored to and read from files.

3.21 Object Interface Library

Domain:
GUIL.

Company:
Parc Place Systems, Inc.

Support/ Maintenance:
Yes.)
Email and phone support are available,

Description’;

June 29 1l ”

Set of classes for building GUI applications using C++. Developed by Sourbourne.
now sold by Parc Place. Allows runtime switching between OpenLaok & Motif. Runs
under X!1 and has a Motif *‘look and feel” (does not include Motif widgets). Features

include:

[6 bit internationalization (NLS)
Built-in context sensitive hpyertext help
Allows objects to overlap their parents
Stores text in X resource files

Also, allows runtime switching between OpenLook and Motif.
Additionally, a graphical GUI builder called UIB is provided to simplify the process of
development using the OI library.

3.22 The Object-oriented Abstract Type Hierarchy (QATH)

Domaia:
Collections.
Company:

Public domain. (Developed by Brian M. Kennedy, Computer Systems Laboratory
Computer Science Center, Texas Insouments.)

Availability;
Available via anonymous FTP from ¢sc.ti.com in the file /pub/oath.uar.Z.
OATH is provided in source format.

Licensing:
None.

Price:
Free.

Support / Maintenzace:
None.

Description'?;

13. From copyrighted unpublished document (IBM [UQ) -- Consumer Reporton C+ + Cluss Libraries Ver-
sion 1.0, Objecr-Oniented Technology Cenier, 1993,)

14. This information is 1aken from an Evaluation und Compurison of C++ Class Libraries (Deage. March
1992) by Marco Pace,

[P LT

OATH instantiates an approach to C++ class hierarchy design that exploits subtyping
polymorphism, provides greater implementation independence, and supports implicit
memory management of its objects,

It is implemented via parallel hierarchies of intemal types and accessors (a concept
simifar to that of the “smart pointers”, but improved compared to them).

The internal types contain the object representation (the data members) and the virtual
functions.

The accessor types contain alk of the externally accessible functions of the abstract
types.

Two were the main design goals of OATH:

-- to provide a meaningful absiract rype hicrarchy that is consistent with the concepis
being modelled by utilizing a strict subtyping approach to hicrarchy design.

Starting from the idea that a type hicrarchy should be designed to reflect the behavior of
the objects being modelled and not to reflect the most convenient computer representa-
tion of objects, the designer of OATH gave priority to the subryping (inheriting func-
tionality) aspect over the code reuse {inheriting implementation) aspect.

Given a consistent abstract type hierarchy, implementation classes can be added at the
leaves of the hierarchy (sce figure later on) to implement the behavior of the abswact
types. Code reuse can be exploited at this phase, but should not enter into the design of

the abstract type hierarchy.

-- to provide robust garbage collection (GC) of OATH objects, fully implemented
within a portable C++ class library.

The garbage collection mechanism is a hybrid reference counting and marking algo-
rithm capable of collecting all garbage (including circular references).

The programmer can select ane of four garbage collection modes at compile time:

no GC
incremental GC
stop-and-collect
combined

OATH’s main features are the following:

- it provides heterogencous container classes

- it provides dynamic type determination in the form of “safe casts”

- it provides accessors to access OATH objects. '

For exch OATH type there is a corresponding accessor class {an accessor lies between a
C++ pointer and a C++ reference).

The accessors can-be initialized and assigned OATH objects to access. However, any
other operation on an accessor is applied directly to the absiract object it accesses.

—g - = B — 1 R B

OATH does not provide:
- parameterized types (templates)

3.23 Objectkit\C++

Domaiv:
Miscellancous.

Company:
ParcPlace Systems, Inc.

Descriplion's:
ObjectkifC++ Ol is based on technology licensed from Solbourne. Ol is a C++ class
library for rapid development of graphical user-interfaces that allow runtime s¢lection
of OSF/Motif or OPENLOOK look-and-feel.

it features the AT&T standard Library Extensions:

- variable length bit strings

- adjustable 1-d vectors of parameterized rype (implemented via macros)
- classes for date, time-of-day, dmezone and time duration arithmetic

- finit= rate machine classes

- simiple exception handling using Objection classes \
- paramcterized linked lists (parametcrization via macros)

- associative arrays (i.e., keys/value associations)

- fast mnemory altocation class: Pool

- program execution time measurement class: Stopwatch

- String class and specializations of iostream and streambuf for Swing

As a convenience for purchasers, ObjectkinG ++ 1.0 also includes the NIHCL and
Inter Views class libraries as unsupported free software.

3.24 Platform/1

Domain:
Collections, Distributed Processing.

Compm‘a.y:
Object Management Laboratory

Description:

15. Information vriginally provided by Mike Khaw tkhaw@ parcplace.cuin). [received it via a comespon-
dence with [ra Pohi.

Includes collection classes plus classes for controlling sofiware processes, managing
persistent objects, and supporting dismributed processing.

3.25 StarView

Domain:

GUL

Company:
Star Division, Inc.

Availability:
Standard product is in object format. Source format can be purchased for an additional
fee of $30,000.

Price:
$ 1495 (workstation)
$2000 per platform + $250 per programmer (site)

Description:
Multiplatform GUI programming tool providing classes that work without change on
Windows, OS/2, NT, Macintosh and Motif systems.

3.26 Text Management Library

Domain:

Miscetlaneous.
Company:

Hewletr Packard Co.

Description:
Supports building interactive text oriented applications.
3.27 Tools.h++

Domain:
General, Collections.

Campany:
Rogue Wave Software Inc.

Availability:
Source code is included.

Fpe 20 199%

Price:

3395

Support/ Maintenance:
Yes. 90 days of free support and updates are included with each purchase. Optional
continuing customer support is also available,

Description:
Rogue Wave advertises Tools.h++ as follows:
Tools.h++ is 2 complete toalbax of over 97 C++ classes. It is a set of efficient and ver-
satile C++ foundation classes that will make virtually any programming job easier. It
provides:
- Time and Date handling and manipularion classes.
- String and Character manipulation classes.
- Singly and Doubly linked lists, Stacks, Queues and Vectors classes.
- Smalitalk™-like Collection classes: Set, Bag. SortedCollection, OrderedCollection.
Dictionary, Stack, Queue, cic.
- Regular Expression Class for search and replace.
- Tokenizer Class for easy string parsing.
- File Class to handle file manipulation with read, write. seek, erase, ewc.
- B-tree Class to handle efficient keyed access of disk records. . !
- File Space Manager Class to allocate, deallocate and coalesce space within files.
- Virtual and Buffered Page Heap to manage objects bigger than 64k.
- Other classes include: Bit vectors, Vinual /O sueams, Cache managers, Emor han-
dling, and more.
- All objects fully persistent. The Persistent Store facility allows complex to be stored
and retrieved on hetcrogeneous networks.

3.28 USL C++ Standard Components

Domain:
General, Collections.

Company:
UNX Systems Laboratory

Description:

The USL C++ Standard Components are a collection of container and commonly used
utility classes such as lists, graphs, sets, atnngs. dynamic amays, etc. This collection
also contains classes for often used UNTX'S funciions like regular expressions, argu-
ment parsing, and path name handling, |t has been extensively used and opumlzed
within AT&T and USL throughout the development of the C++ language itself.!?

The following information was contributed by Paul Fillinich (paulf@usl.com) and
came to me by way of a correspondence from Ira Pohl.

Components:
The classes provided by the library are several, and they are listed here:
Included in the C++ Standard Companents are the following components;

Args - a set of faciliies providing more nafural and convenient access to UNIX
command line options and arguments than typical command line parsers.

Bits - extends built-in support for bit manipulation to arbitrary-length bitstrings. It
also allows easy access to individual bits and provides additional operations such
as concatenation.

Blocks - are like built-tn arrays, except that their size can be adjusted dynamically.
Using Blocks eliminates many of the errors progranuners make when working
with adjustable-size data structures.

Block Algorithms - 90 highly efficient algorithms for operating on contiguously
stored data (can be used with either arrays or Blocks) including algorithms for
searching, sorting, inserting, partitioning, generation, copying, and removing.
Fsm - offers a method of specifying program control flow that is useful in a wide
variety of applications. Programmers define “states” and “transitions™ among
states that are “fired” by specific “inputs.”

Graphs - three classes that can be used to maintain arbitrary relationships between
arbitrary entities. Useful for semantic modeling and other “network™ applications.

Graph Algorithms - Severa! of the most fundamental algorithms for operating on
Graphs, including breadth-first and depth-first searching, cycle and component
detection.

ipcsmeam - specializes the standard /O architecture (iosoeam) to interprocess
commuanication between clients and servers. Clients and servers communicate by
writing to or reading from soreams.

Lists - are doubly-linked lisis. Since pointer manipulation and node allocation are
haadled automatically, using Lists climinates another major source of program-
ming efrors.

Maps - are fike arrays, excepr that the subscripts can be non-integral types such as
character strings (similar 10 associative arrays in AWK).

16. UNIX is a registered Yrademark of AT&T.

t7. From copyrighted unpublished document {[BM TUQ) -- Consumer Report on C++ Class Libruries. Ver-
sion 1 0. Object-Onented Technology Cemer, 1993,

) e a
‘ ‘ une ‘ ' b

Objections - are a kind of “error object” that can be “raised” by one piece of code
and “handled” by another (like UNIX “software signals™). Library components use
Objections to inform clients of errors.

Path - a set of facilities for manipulating UNIX path names and UNIX search
paths. Facilitics include automatic path canonicalization, path refativization, wild-
card and tilde expansion, path completion, and searching in search paths.

Pools - improve the runtime performance of programs which allocate and deallo-
cate many objects of the same type (for example, Lists use Pools internatly for
obtaining nodes).

Regex - a set of facilitics providing a consistent and enhanced interface 1o the Sec-
tion 3 regular expression compilation and matching routnes (re¢3). regempt 3t
segex(3). of regexp(3). depending on the version of UNIX running).

Sets - three unordered homogencous collection classes: Sets, Bags. and pointer
sets. Provides the usual insertion, removal, membership. algebraic and reladonal
operators and iterators.

Stopwatch - can be used for timing critical sections of code during the “perfor-
mance tuning” phase of development.

Strings - are variable-length character surings. Strings offer an efficient alternagve
1o null-terminated characier arrays and their assoctated C library functions (sucpy.
stremp, ete.). Strings have natural syntax and semantics; for example. to concate-
nate sings X and y, write X+y.

Strsream - specialize the standard /O architecture (iostream) to in-core format;
ting, where the source or target is a String. Symbol - unique idendfiers based on
character strings with efficient tests for equality and ordering.

Time - consists of three related absactions for dealing with time in computer pro-
grams: Time (absolute time), Duration (time difference) and Place (geographical
location).

Tools:

In addition to the above components, the following tools are also made available as
part of this release:

demangle - Demangle demangles all the various names saewn throughout each of
the object files in the argument list. This enables the various C 100ls such as ame 14
dhr(1), gprof(1), and others 1o produce results with pleasant idenditier names.
“reestore - Freestore is a C++ symbalic freestore manager which coniains routines
that set the programmer view the contents of the freestore symbolically dunng exe-
cution of a C++ program. They are normally called “by hand” by the programmer
from within a debugger but since they are linked in as part of the applicaton cede.
they can also be calied from the program itself.

G244+ - G2++ provides a methad for structuring records for messages used Vor
interprocess communication or records used for lang-term data storage. 1.0 rou-
tines are availuble for reading and writing G2++ records from a C-+ program:
G2++ typed /O routines. These routines are generated by the G2++ compiler.

Jupc 2, 1404 N

hier - Hier produces the inheritance hierarchy for the C++ source code contained in
the given coblection of Liies. The output language can be any of "ps” {postscript),
“dag”, “pic”, “tex"”, or “dvi".

publik - Publik prints the public portions of all class definitions contained, dizectly
or indirectly, in the list of input files.

3.29 View.h++

Domain:

GUL

Company:
Rogue Wave

Availability:
Provided in object or source format.

Price:
$795 “per seat” (object code version)
$2995 “per seat” (source code version)}

Support / Maintenance:
Yes. 90 days of free support and updates are included with each purchase. Optional
continuing customer support is also available. '

Description:
View.h++ encapsulates both 100% of the functionality of the industry standard OSE/
Motif. [talso 100% of the X-Intrinsics allowing the programmer to extend View.h++ 1o
new types quickly and easily. At it’s lowest level, View.h++ offers a C++ binding to
Motif with the same naming conventions and data structures as Motf. In addition, the
package includes a Model- View-Controller architccture, 2 mouse management system,

a vireual canvas, and full object persistence.

4.0 Supplier Information

The following is list provides information on a number of the C++ class library suppliers
listed in this document.

Dryad Software
Address: Dryad Software
13103 Travis View Loop
. Austin, TX 78732
Telephane: 1-512-343-5037
FAX: 1-512-338-5599

June 21 1993

)))
Empathy, Inc.
Address: Empathy, Inc.
P.O. Box 632
Cambridge, MA 02142
Telephone: 1-617-787-3089
FAX: 1-617-782-139%

Hewlett Packard Co.

Address: Hewlett Packard Cu.
Customer Information Center
19310 Pruneridge Ave.
Cupentino, CA 95014

Telephone: 1-800-752-0900

FAX: 1-408-773-7182

ImageSoit, Inc.

Address: ImageSoft, Inc.

2 Haven Avenue

Port Washington. NY 11050
Telephone: 1-516-767-2213
FAX: 1-516-767-9067

Network Integrated Services, Inc.
Address:

Telephone:
FAX:

Network Integrated Services, Inc.

221 West Dyer Raad

Sana Ana, CA 92707 1426
1-714.7554495
1-714-433-2347

jo

lune Y 1

Oasis

Telephonz:
FAX:

Oasis

One Cranberry Hill
Lezingion. MA 02173
1-617-862-2002
1-617-863-2633

Object Management Laboratory

Address:

Telephone:
FAX:

Parc Place Systems, Inc.
Address:

Object Management Laboratory
2666 Country Lane

Westlake Village. CA 91361
1.818-879-9620
1-818-379-1360

Parc Place Systems, Inc.

Rational

Address: Rational

3320 Scou Boulevard

Santa Clara, CA 95054-3197
Telephone: 1-4018-494.3700
FAX: 1-408-494-3636

Rogue Wave Software, Inc.

Address: Rogue Wave Software, Inc.
P.O. Box 2328
Corvallis. OR 97339
Telephone: 1-503-754-3010
FAX: 1-503-757-6650

Star Division, Inc.

1550 Plymouth Street _
’ Mouniain View, CA 94043 Address: Star Division. Inc.
Telephone: 1415-691-6700 2180 Sand Hill Rd. #320
FAX: 1-415-691-6715 Menlo Park, CA 94025
Telephone: 1-415-233-0140
FAX: 1-415-233-0142
PostModern Computing Technologies, Inc.
Address: PostModcm Computing Technologies. Inc.
1032 Elwell Court, Suite 240
Palu Alto, CA %4303
Telephone: 1415-967-6169
FAX: 1-415-967-6212
June 2%, 199) 2z June 29, 1991
¢ | ¢ ¢

WHAT IS CASE

J. BURTON

pi

)

What is CASE___ | " Upper& Lowercast |

* Planning and Analysis
* Design and Construction

* Integrated Case
- Enterprise-Wide Object Definitions
- Phase Integralion
- Re-Use

¥ Superconducting Super Collider [aborato u s
uper g Super Coilider Laboratory e * Component Case

. Superconducting Super Collider L aboratory

CASE Activities CASE Components

* Underlying Model

* Repository
» Common User Interface
o Activity/Task Framework

* Requirements Modeling Using Diagrams

* Model Validation
¢ Specification Development

* Design Validation
* Code Generation e Verification of Correctness/Consistency
* Testing and Animation * Access Control
* Project Management * Multiple User Access to Common Information
¢ Documentation Production * Management of Composite Components which
» Review/Re-Engineer Existing Applications change in varying and conflicling ways.

* Document Generation

. Superconducting Super Collider Laborato Mese i3t st ' _ _ .
g 0200 v . Superconducting Super Collider L aboritory

” Workbenches (Criteria) ”

o

Types of CASE Tools

L

» Workbenches :
Integrated Product Support Environments * Models and Approaches
Application Generation Environment * Richness of Life Cycle Model
Specialized Application Area Oriented * Apps Areas Supported

* Ranges of Techniques Supported

Tools
Redevelopment Tools » Approach to Multi-user Support

e V&V Tools
Project Management

. Process Management
» Misc. and Specialized Tools

-

1. Superconducting Super Callider Laboratory Wb 53 CAES . Superconducting Super Collider £ aboratory FITR I
Workbenches (Features) In.tegrated Project Support
, Environments (Characteristics)
 Underlying Model
* Define Project Framework

User Interface Provide Role and Responsibility Definition
Validation Rules Provicde CM & Version Control

« Consistency and Completeness Checking Provide Library Management, V&V and

» Reporting Capability Testing Tools

« Consolidation of Partial Models

« Automatic Import

e Documentalion Generation

Repository

. Superconducting Super Collter Laboratory ey . Superconducting Super Collider L aborato
ta r}l

([« 0 p])] .

Typical IPSE Facilities Integration of IPSE Tools

* Closed IPSE
* Public Tool Interface (rThH
* Open Tool Interface (OTI)

* User Interface
* Object Modeling
* Activity Management

. Superconducting Super Coltider Laboratory

B oh b W AP CASER

. Superconducting Super Collider Laboratory

T T — —— .

Applé;a‘f;l(‘);]?nil::;ahon Age Characteristics

Specification Tools for:

Very High Level Programming Language(s)

Prototyping and Rapid Development Tools
* Application Design

End User Computing Support
Automatic Code Generation from Design Specs. - Data Structure and Element Definition
~ User Interface Definitions

- Transaction Iniernal Definitions

* Target Environment

= Application Structure Definition

* Development Procedure

L Superco.rrducfmg Super L‘alﬁdertabo.r.rlu.ry

Lo W R CASEN

s Superconducting Super Collider L aboratory

mmﬁA‘Redevelopm_é-l'i—t—f(m)_b]s B W},

Application Area Specific Tools |
(Characteristics)

(Characteristics)

SR

¢ Extraction Facility

* Program/Data Structure Analyzer
* Restructuring Facility

* Re-generation Facility

¢ Documentation Generator

Database Template

Data Element Customization Facility
Library of Function Templates

User Interface Customization Facility

» Apps Generator
¢ Documentation Generator

[]

it Superconducting Super Collider Laboratory e 8 B G50 . Siperconducting Super Collider Laboralory

V&Y & Testing Tools V&V & Testing Tools
(Types of Toals)] (Characteristics)

e Test Harness * Stand-Alone
¢ Test Data Set Generators * Not Integrated
s Static Code Analyzed Some V&V to IPSE Interfaces
: Some AGE Codegenerator to Test Harness/Test
» Dynamic Code Analyzers Dats Set Generation

* Sensitivity Analyzers

i Supeqonducn‘ng Super L‘ﬂlhderlabom!my ‘ ”(““m e q 3 Sl‘ rreonducting Srmp' “atlider 1hnr7r:n'|:. ¢

Process Management Tools
(Desirable)

Project Management Tools
(Support Rqts.)
+ Workplan Generation

* Resource Planning
¢ Quality Management

» Task Tracking
¢ Technical Recommendation

Specification
« Risk Management Plan * Tool Invocation/Support
* Project Budget _ * Progress Tracking
* Actual Resource Expenditure ¢ Standards Enforcement
* Interface to Project Management Tools

* Report Generation
Recording of Significant Events
¢ Indexing and Crossreferencing

 Open Issue Tracking
i, Superconducting Super Collider Laboratory A6 CASEH (. Superconducting Super Collider Laboratory

Misc. CASE Tools J Where is CASE Today?

———— - -— -
» Meta-Tools
» Network Management tools * Many Similar Tools
« Hypertex Management Tools * Market Highly Diversified
o Performance Monitoring Tools ¢ Emphasis on Workbenches
e Capacity Planning Tolls
« Expert System Development and Integration
Tools
Lok WO CAY It Crinarennductory Canar Fotlicdar t 3hacston-

w Sunerconduching Super Collider Laboratory

Future Directors of CASE |
(Near Term)

What are CASE’S Problems

A
—

* Repository

* Version Control for Models
* Route Maps for Tools

* Novice/Expert Mode

* Automatic Code Generation
* Redevelopment Tools

* Prototyping

* Hypertext

¢ Insufficient Coverage of Life Cycle

* Insufficient User Training
¢ Tool Capability Does Not Match Claims

» Few Tool Internetworking Standards

it Superconducting Super Collider L aboratory BL§ 093 CasERt . Superconducting Super Collider L aboratory

;,

) G YT | P i B [

Future Directions of CASE -) ;;3 ” l, 'EE’L il T’ i l ll .

Later § i) [LA R I~
— : | ":f:::::~+’!j 58
* End User Tools Ea *“"'_“g'_ T r i ll'u g gg
* Inteiligent Tools g — , & "F SRR KRR "_ﬁ.{:.'jl § UE
* I SUN & Exception Handlin S 1 N T T o e - =
- ¢l R 2
S Ak | (handiaet. . / N -
Q“":},‘“H ,f-{ I 5—33

S e b M - };
Y Crimacnnndimtinn Cunnar Pallider | ahneatan: d ‘ ¢ ¢ { L

a

)

)))

)

Typical Workbench Components

Huost Based Compuuicals

Wurkstation Based Elemems 77 ,
— - 7%
: Coa e i
"1« > Vuirum
| Conesd
: Hers Mol
: b‘li'lz
! d £ Mhaakel
-+ E by
Mergeatat
"R Y00 s
[ERT . /,;,
Ty ey %;
4 Hopnt - /:///J
gt s Eoport 7
\ . | ; ‘ B = . ——

. Superconducting Super Collider Laboratory

Mo 62090 (ASE2Y

- Typ1 éa'l*l"-foc‘esﬁs M'hii}l;gement

Tool Components

" Methudulogy™

Justity
cilieels pud
staudanils

U7

Prujrcl wurkplsa

=

ey eduper s worhalathen

Tachulguey & Touh

N

/l wut lhrocatbon

|
!

I dlhawry
s

N L ________l‘,.._.__,,,,

Dedixgsabien

3. Superconducting Super Collider L aboratory

Campungnt

b &I RT CASE]Y

)))

1yp1 ca ITA]?[SHEﬁ tion |
Generation C()mgonenls

- S ool tatalaere
' : Nata l_ N ’ Eelanitiany
— Elemcii Ciencran

: Delinnition

| Movess r

Detinitim , Lol

I e Lienesaiian
o

¢ Usey .

' lcifu e '

I Pelinition RS

a - B Ilfllvimumcul

J— o[Dedindting Waws Liane
¢ Ctnatanaly

hm T Licoe s abiany 1

¥ Superconducling Super Collider Laboratory fren i

!
]

Typical Re-Developme

nt |
Tool Com ponents o /

Imcutnemiating I

YT
Jil:uilﬁié -

'l‘urgn:mr /

i'lnn;mmmlug l

Saimlfaads
ihata Shucine I

o _!7 /{ Analyses

il R
"’I }léﬁ-‘;’ﬂfﬁi“""" |

Hewumming
agic

v

J‘l'-"l

Stirce

Copry Dok
Menilers

X¢; Superconducting Super Coliider { abosatory Wiy

Typical VVT Tool Components

M. Superconducting Super Collider Laboratory

Siatic Test Path identification
Analysis
—d e ___I _____
Compleaily Instrwinedation
Analysls
Comleaity Meuics j

Pogiam Shuciure Reponts et
1w tion Yeelfication Hascss
Paits Analysis

Test Coverage Kepons —,_— grria

QA Sumwary —l Test

Itelcrence Listings menh: , Resulls
Analysis

b K0 9G] CASE2S

—.

Typical IPSE Components

Standardy Pinjoct
frramewmk

Kesned Functlna

‘“#r«!m; ! (__

Penfect]
b Mlanngenicin
. F-M‘Q'It:'-.'r-

=)

Analysis

Derign T
Woakdwich

Winbbemch

Eapoud

B Snpercongucrmg Super L‘aﬂit‘er L aboralory y

M0 R0 AT CASENY

T

Typical IPSE Components /

!.t Superconducting Super Collider Laboratory PR

PARALLEL PROGRAMMING
LANGUAGES

sl) g g%y

") sy e)) s) iy

'

hias

T] Miaihaiy) MGy bt

Parallel Programming Languages

SIGPLAN PLD! ‘93 Tuterial

James R. Larus
Computer Sciences Department

I

University of Wisconsin—-Madison

* What is a parailel language?

* Language for programming parallel computers

* Computer exposes capability to execute several operations simuitaneously

* Language need not expose parallelism

* Wide range of approaches
* Adapt sequential languages
* Design new “parallel” languages

* Why parallei languages?

* Exploit parailel hardware
* Express parallel algorithms
* Facilitate programming parallel computers

u Paraiiel Pragramming Langusges s
Copyright © James R, Larus
SIGPLAN PLDI *93 Tutorial, Juns 1893

Slica

Parailelism

* Why are paraliel machines different?

* Simultaneity
* Find several operations to perform concurrently

* Indeterminacy
* Dataraces
* Non-reproducibie resuits -

¢ Performance
* Exploit parallelism without incurring large costs
* Wider range of costs than uniprocessors

® Paratie! Programming Langudges ®
Copyright @ James A, Larus
SIGPLAN PLD *33 Tutorial, June 1993

Slide

(Parallel Language Design A
* No consensus on parallel languages or language constructs
* Many parailel machine modeis
* Too little experience
* Many design choices
* Sequential language concensus took many years
* Still many different approaches -
e J/
. . % . Parailai Programming Languages = Silde
- ' SIGPLAN PLDI 93 Tutoria June 1393 :
14 Design Choices A
* Sequential vs. parailel semantics
* Does language semantics ailow simuitaneous cperations?
* Explicit vs. implicit paralielism
¢ Does programmer specify and coordinate paraliel operations?
* Imperative vs. single assignment vs. functional vs. logic programming
* Does language allow side-effects?
* is basic computation step function appiication or rule deduction?
* Deterministic vs. indeterminate
* Will pragram always produce same result?
~ SII:}

& Parailel Programming Languages @
Caogyright «» Jamea A. Larus
SIGPLAN PLDI '93 Tulorial, June 1993

R il “pull

)u-u-..f M) [

L —— L] - e e

.)M Apinigenietrn) il

,—-qi-ﬂ—-n

=r

‘b

* Control vs. data parallel =
* Control processors or aperate on data?

¢ SIMD vs. MIMD
* Single or multiple threads of controi?

* Single vs. muttiple address spaces

* All data uniformiy addressable?
* Machine-dependent vs. machine-independent

* Operations portable to wide r-ange of machines?
* Cost model

* Which operations are cosﬂ-y?

(" Design Choices, cont’d

u Paraiiel Programming Languages =
- Copyright © James R. Larus
SIGPLAN PLDI ‘93 Tutorial, June 1993

Siide

é - WARNING!

* Not an exhaustive survey
* Most languages not mentioned
* Languages not described in detail
* Logic programming slighted
* Overview of parallel languages
* Understand design considerations™
* Relate constructs to probiems ‘

B Parsilel Programming Languages n
- Capyright © James R. Larus
SIGPLAN PLDI "93 Tutorisi, Junes 1993

Slide

4 " Overview

* Parailel computers (review) -
¢ Sequential imperative languages

* Parallel imperative languages

* Functional languages

* Logic programming !anguages

.
= Parailei Programming Language: = Slide
Copyright € James R. Larus 7
SIGPLAN PLDI *83 Tutorial, June 19823
é Parallel Computer Review
* Typical paralle! computer:
Processor §
* Variants:
* No cache
* Memory separate from processors
* Shared-memeory hardware
* Other parallel units (e.g. vector units)
* Centralized processor logic (SIMD)
N _/
® Parailel Programming Languages = Silae

Capyright -0 James A. Larus
SIGPLAN PLOI '93 Tutortal, June 1933

p——— ‘

U ‘

(o wmm ¢ AR sEey e e SR g

oWe -

Fod bk paems mea) Slit vy M W

plaat,

et

(Parallel Computer Attributes

* Communication mechanisms: -
* Shared address space
* Message passing
* Network latency and bandwidth
* Synchronization mechanisms:
* Hardware/software locks and barriers
* Empty/full bits on memory locations

* SIMD/MIMD execution

a FParallet Programming Languuzes 8
Copyright © James R. Larus
SIGPLAN PLDI "33 Tutarisl, Juns 1993

Slide

s Parallel Computer Families

* Message-passing
* No shared address space

* MIMD, 10-1000 processors

* e.g., Intel Paragon, TMC CM-5
* Shared-memory

* Shared address space

* MIMD, 2-100 processors

* e.g., Sequent Symmetry, Kendall Square KSR-1
* SIMD

* SIMD, 1000—10000 small processors

* Message-passing

* e.g., CM-2, MasPar MP-2

N\

* Communication and synchronization through explicit messages

* Communication (and synchronization) through reads and writes

8 Paraliel Programming Langusges = '
Capyrignt © James R. Larus
SIGPLAN PLDI *93 Tutorial, June 1993

Slide
10

Vs

* Parallel computers (review))
* Sequential imperative languages
* Explicit parallelism
* Implicit parailelism
* Parallel imperative languages
* Functional languages
* |_ogic programming languages

-

Overview)

= Parsilel Programming Languages = slide .
Copyright © Jamas R. Larus v}
SIGPLAN PLDI *83 Tutorial, June 1983

4 Explicitly-Parallel Sequential Language Overview h
* Not an oxymoron!
* Explicitly-paraliel
= programmer specifies parailel tasks and synchronizes execution
¢ Sequential language
= programmer writes in conventional language with sequential semantics
* Typically, library callable frem C or Fortran
N .
® Asrallel Programming Languages = Slide
Copyright © James R. Larus 12

SIGPLAN PLDI '33 Tulorial, June 1933

€ o o—

'.[H

) s e) wAR i B

. “ o L i .

* Process creation

m_fork
m_kill_procs

* Synchronization

m_lock
m_unlock
m_wait_barrier

* Memory allocation

shmalloc
shfree

Reference: [40] -

(Sequent Shared-Memory Library

create child processes
kill child processes

acquire a lock
release a lock
wait at a barrier

' allocate shared memory
free shared memory

- /
- B Parallsl Programming Langusges « “Slide
Copyright © James R. Larus 13
SIGPLAN PLDI 3 Tutorial, June 1983
(Intel Message-Passing Library)
* Message passing
crecv synchronous message receive
csend synchronous message send
irecv asynchronous message receive
isend asynchronous message send
* Global reductions B
~ gdsum global double-precision add -
gihigh global integer max
Reference: [27]
N J/
8 Psratiel Programming Languages = Siide

Copyright © Jamaes R. Larus
SIGPLAN PLDt 93 Tutarial, June 1993

14

4 Explicitly-Parallel Sequential Language Summary ﬁ‘

* Libraries added to sequential languages -~
* Programmer breaks program into parallel tasks and synchronizes them
* Language only supports sequential execution
+ Don’t need to learn new language
+ Adapt existing programs
~ Low-level access to machine features
¢ Abstractions below problem domain
* Machine-specific = not portable
* Programmer must understand hardware characteristics
- Large-grain parallelism
* Cost of calling routines
¢ Complexity of inserting by hand
- No semantic checking
* Not part of language

a Parellel Programming Languages s Stide
Copyright © Jamas R. Lafus 15
SIGPLAN PLDI ‘93 Tutarisl, Juns 1993

(" Implicitly-Parallel Sequential Language Overview)

* Impilicit parallelism .
= programmer does NOT specify parallei tasks or synchronization

* Sequential language
= programmer writes in conventional language with sequential semantics
* Write in language with sequential semantics | . '
* Compiler finds paralielism
* Programmer may help by annotating potential parallelism
* Hides parallelism

& Paraliel Prggramming Languages = Shide
Capyrignt @ James R, Larus 16
SIGPLAN PLDI *93 Tutorial, June 1993

[y

Ay Wl U AR e Swm, mma wngp AR ag A ¢t

- rw

) Sl |

rﬂﬁkw—m

.

(" Restructuring Compilers

* Find parallelism in sequentiai language (e:9. Fortran)
+ Pragram irf familiar language
+ Run existing programs without modification
+ Machine-independent programs '
- Program is compiler-dependent
- Difficuit to express parallel algorithms & data structures

* Mildly successful
+Many compiler algorithms [50,52]
- Fails on “dusty decks” [43]
* Lack of parallelism in programs [35]
* Need interprocedural analysis
+ Successful as programming tocl
* Programmers use negative feedback to parailelize program — M. Wolfe, OGI

w Paraliel Programming Langusges s Slids
Copyright © James A. Larus 17
SIGPLAN PLD] 93 Tuterisl, Juns 1993
4 ™
Fortran 77

* Compile Fortran 77 programs for parallel computers
* |dentify code that can execute in paralle!

.. *. Transformation increase paralleiism by reducing control and data
dependences

* Produce parailel code and synchronization

DO 10 I=1,100
DO 10 J = 1,100 _
A(I, J) = (A(I-1, J) + A(I+l, J) + A(I, J-1) + A(I, J+D)
+ A(L, J)) / 5

| * Many projects:

* Univ. llinois’s Parafrase [31,41,42] E
* Rice's PFC and Parascope [3,9,22,30]
. * IBM's PTran [2,14]

u Parailel Programming Languiges s
Copyright -0 James R. Larus
SIGPLAN PLDI 33 Tutoriai, June 1993

Siide
18

4 Fortran 90

* Latest revision of Fortran introduced whole-array operations

REAL A (N,N)
A = (CSHIFT (A, DIM=l, SHIFT=-1)
+ CSHIFT (A, DIM=2, SHIFT=-1) e

+ CSHIFT (A, DIM=1, SHIFT=+l)
+ CSHIFT (A, DIM=2, SHIFT=+1}) / 4

* Operations have parallel (simuitaneous) semantics
* Right-hand side evaluated before updates - g T
*" Inherently parallel operations

* Reduce need for program analysis \9‘.! ?3\‘;
* Source of dependence-free operations o :tlpt’ v
o | i . : L L] o$o
Limited parallelism (vector processing) P’ e
* Straight-line operations on array elements &
* Parallel operations not extensible ~ —™) A Flow
i Pherse) TTL?M(gordid e
Referance: [6] F-.,-,d' el
\. J/
m Parsilel Programming Laugusgas = : Slide
Copyright © Jamss A. .o 19
SIGPLAN PLDI '$3 Tutorial, June 1993
(" High Performance Fortran (HPF))
* Extends Fortran 90 with data-distribution directives and parallel loops
* Programmer partitions data for non-shared-memory computer
S . P . u'u-E sebiam aFurrey
* Compiler produces message-passing program Rl e whuith procesao~f
. addmes Spas,)
REAL A(1000), B(1000), C(1000), X(500), Y(0:501)
tHPF$ PROCESSORS procs(10C)
'HPFS DISTRIBUTE (BLOCK)} ONTO procs:: A, B
'HPFS$ DISTRIBUTE (CYCLIC) ONTO procs:: C
tHPF$ ALIGN X(1) WITH Y(i+l) .(‘1«-
FORALL (i = 2:999) A(i) = (A(i-1) + A(i) + A(i+1))/3 P,‘-‘;,r"
~
o " o , x? \ta‘:‘f""ﬁ
* Directives partition data and (implicitly) computation
* Programmer must understand: problem, compiler, and computer
* Anticipate effect of compiler algorithms (e.g., owner computes)
* Parallel ioops assert absence of sequential dependencies
Reference: [37]]
- /
® Paraflet Programming Languagas = Slide

Copyright & James A. Larus
SIGPLAN PLDI '93 Tutorlal, June 1983

20

= Vg BT R .ﬁﬂh

i A M gt deed e

| JYwe FRPWITEE RV D)

h)qm.hh-u

é . Implicitly-Parallel Summary

* What is implicit parallelism? -
* Compiler discovers parallelism in “sequential” code
* Programmer uses parallel operators
* Programmer specifies statement has no sequential dependences
* Programmer partitions data and computation to fit parallel computer

* Two dimensions o ,
* Language semantics: do muttiple operations occur simuitaneousiy?
" * Programmer intent: do programmers consider parallelism?

B Parsilel Programming Langusges w
Copyright © James R. Larus
SIGPLAN PLDI *93 Tutorial, June 1993

Slide
21

(Overview

* Parailel computers (review)
* Sequential imperative languages

* Parallel imperative languages
* Distributed-system

* Control-parallel
* Message passing
* Speculative
* Coaordination
* Object-oriented

* Data-parallel
* Functional languages

* Logic programming languages

a Parpiiel Programming Languages =
Copyright © Jamas R. Larus
SIGPLAN PLD1 '33 Tutarial, June 1993

Siide
22

(" Distributed-System Language Overview

* Distributed systems
* Multiple autonomous processars communicating via messages

* Qriginally computers on a local or wide-area network
* Slow, unreliable communication

* Also, networks within parallel computers
* Fast, reliable point-to-point links

* Special requirements: reliability, wide-area, hardware
* Programming models

* Sequential processes exchanging messages (“hardwére”)
* Distributed objects

* Logic programming and functional

Reference: [7]

u Paraiiel Programming Languages W Slida
Copyright © Jamaes R. Larus - 23
SIGPLAN PLDI *93 Tutorial, June 1993
4 Ada

* DoD language of choice

¢ Tasks are sequential processes
* Statically and dynamically created
* No mapping to processors
* Simple static priorities
* Communication via rendezvous mechanism

* Accept statements look like procedure entries
* Recsiver has little control over which message is processed

* Entry call statement looks like a procedure call
* Select statement allows asynchrony and indeterminacy

* Updates to shared varia_bles only need be visible at rendezvous
* Simple, large-grain paréllelism

+ Tightly integrated in language

- Limited application domain

u Paraiiel Programming Languages &
Copyright © Jamaes A. Larus
SIGPLAN PLDI '93 Tutorial. Junes 1993

Slide
24

O WD WER W

'-—-

“Healeumy

SRR G, Bwm W e e Mo, g W g

y -

- r“ ik r-—-—q S

e

3

= K SR I
* Synchronizing Resources (SR) _
* Program consists of resources
* Dynamically created
* Resources contain processes
* Processes synchronize with semaphores
* Processes communicate with operations (messages)
* Receiver is either static or dynamically created upon receipt
* Sender may invoke operation synchronously or asynchronously d
* Guarded commands introduce indeterminacy - :
* Receiver may é‘aieqt_nexj message to process .
* Well thought-out Ianguagé for message-passing communication
References: [4,5] L '
\o : _/
2 Parzilel Programming Langusges Silde
Copyright © James H. Larus - 25
SIGPLAN PLD1 '93 Tutorial, June 1983
.
é Emerald e T
Yo e AN 0
» Distributed object-oriented language \\X‘* X N ?,} + o f,,}"
L%
* Strongly-typed - 6 90 \-fd\\l—r v 5 5
* All data are objects fﬂ N\ .u\é '
¢ Access through messages, not direct reference 6;-"\(o"i ¢
* Communicate by invoking each other’s operations v U
, . , &N
* Active objects have associated process \"
¢ Passive objects run when invoked .
* Programmer can control placement of objects .
* Concurrency between abjects
* Concurrency within object
* Monitor to synchronize access to shared variables
References: [8] i
N W
a Paralisi Programming Languegss = Slide

Capyrignt © James R, Larus
SIGPLAN PLDI "93 Tutorial. June 1993

26

Copyright @ James R. Larus
SIGPLAN PLDI '93 Tutarial, Juhe 1333

(" Distributed-System Summary)
* Machine, but not system, independent
* Coarse-grain paraiielism .
* High communication cost
* Message passing (no shared address space)
* Common denominator -
* Little attentian to numeric computation
* Fault tolerance and error recovery
* Languages span wide range of machines ‘ L
* Programs may be system-dependent because of communication costs -
o r«*w
\k:(/ (e
AN N ol
LML P\,f'/ .
AN /
N CopYrign © damed . Larus o
SIGPLAN PLDI ‘93 Tutorial, Juns 1933
(- Control-Parallel Language Overview h
‘. _Cbntrol parallelism
* Muitiple, independent computation execute simuitanecusly
* Threads synchronize as necessary _
. Commun'iéa'tion is either message passing or shared memory'
* Common model is Single Program Muitiple Data (SPMD)
* Differ from distributed system languages
* More tightly coupled with cheaper communication
* Correspondence to MIMD hardware model
+ High degree of programmer contral
- May not reflect true costs of operations (communication)
* Difficult to manage independent tasks
- Data races
- Poor speedups)
e _/
W Parailel Programming Languages w Slide

25

T

‘«_— L — ' A oo orn

ﬂ*

1

ey N ow eed Nl

SN b el SN) sl

diaid

A et el bt)l s) e k)

(. Controi-Parallel Languages Taxonomy

* Message passing

* CSP & Occam
* Specuiative

* Muttilisp & Qlisp
* Coardination

* Linda, Strand, & PCN
* Object-criented

¢ Actors, COOL, & Concurrent Smailtalk
* Other '

* Jade

® Psraiiel Programming Languages =
Copyright © James A. Larus
SIGPLAN PLDI ‘93 Tutarial, June 1983

Stide
29

é Message Passing: CSP

* Hoare’'s Communicating Sequential Processes (CSP)
¢ Influentiai paper design

* Message-passing sequential processes
¢ Fixed number of parallel processes
* Communication and synchronization only via messages
* Emphasized input/output statements. ™

* Synchronous communication (no buffering)
* Pattern matching on message types

* Nondeterministic guards determine next operation

* Static naming
* Allow arrays of processes
* Not practical: i.e. libraries

Reference: {23]

s Paraliel Pragramming Languages w
Copyright © James R. Larus
SIGPLAN PLD1 '93 Tutarial, June 1993

Stlige
30

e

* | anguage inspired by CSP
* Systern programming language for Inmos's Transputer
* Extended CSP

* Channeis provide unbuffered, unidirectional communication
* Values that can be passed around
* Strongly typed

* Dynamic arrays of processes

* Datatypes and functions
o Placement of processes on processors w a
* Minimal, message-passing language %{j,u("’;‘;J b

* Close to hardware L ol J
Reference: [36] ¢ “'_9 C

é CSP Example i)
. e e e
* Systolic matrix multiplication
(M (i: 1..3, 0) :: WEST A
iIM {2: 1..3, 4} :: EAST i i - B)
fIM (Q, j: 1..3}) :: NORTH
I{M (4, j: 1..3) :: SOUTH
JIM (i: 1..3, j: 1..3) :: CENTER]
NORTH = *[true -> M (i, j} ! Q]
EAST = *([x:real; M{i, 3) ? x -> skip]
CENTER = *(x:real; M(i, 3j-1} ? x ->»
M(i; j + l) Ix; ’ -~
sum:real; s
M{i - 1, j) ? sum; - .
M(i + 1, J) ! (A{i, J) * x + sum)] o
AN\ ,
: n Paraiiel Progreamiiny Langusges & Slids
Copyright © .lamey R. Larus — n
SIGPLAN PLDi ‘93 Tutarial, June 1993
Occam 2 R

® Pprsiiel Programming Languages =
Copyright © James R. Larus
SIGPLAN PLDI '93 Tutorial, June 1993

Stide
32

it

ity \.-Tu Agannind,, fg—u o) oty isu—-")

3

»

)H -—-n-') Pa—y

Speculative Computation Overview

* Use parallelism to perform computations that are /ikely to be useful
* Reduce latency in programs with dynamic behavior (symbalic)
* Cannot predict in advance which values will be necessary
* Needs mechanism to manage excess parallelism

* Schedule computations
* Terminate useless computations

s Parsiisl Programming Languages W
Copyright © James R. Larus -
SIGPLAN PLDI ‘93 Tutarial, June 1993

Slige
33

4 Multitisp

* Parailel Lisp dialect based on Scheme

* Introduced futures

* Combined process creation and synchranization for (mdstly) functional
languages

future (£ (x))
* Creates process to evaluate f(x)
* Return a token that represents the resuit
* Token can be passed around v
* Process attempting to examine token stops until f(x) computed
* Dynamic parallelism in shared address space
* Futures appropriate for functional ianguage
* Side-effects require other synchronization mechanism
Reference: [21,28]

8 Parsiiel Progrsmming Languages =
Copyright © Jamea R. Larua
SIGPLAN PLDI '93 Tutortal, June 1993

Slide
a4

(- Multilisp, cont’d h
* Muiltilisp program may have too much, fine-grain parallelism
* Future can (usually) be ignored and code exscuted sequentially
* System should choose whether to create parallel task
* Difficult to decide if paralielism will be useful iater o T
* Lazy-task creation allows decision to be revised [39]
* Convert sequential future into a parallel task to produce more parallefism
. J
w Paralisl PFrogramming Languages ® Slide
Copyright © Jamaes R. Latus . as
SIGPLAN PLDI 93 Tutorial, June 1993 ~
4 Multilisp Example h
* Quicksort .
{define gsort (1) (gs 1 nil))
(define gs (1 rest)
{(if (null 1)
rest
{let {({parts (partition (car 1) (cdr 1)))}
(qs (lefr-part parts)
(future (cons (car 1)
(gs {(right-part parts) rest))}}}}))
{define partition (elt lsz)
(if (null lst)
{bundle-parts nil niil)
{let {{cdrparcs (future (partcition elt (cdr lst)})))
{(1f (> elt (car l1lst})
{bundle-parts {(cons (car lst)
(furure left-part cdrparts!))
{future {(right-part cdrparts)))
{bundle-parts (future (left-part cdrparts))
{cons (car lstc)
(future right-part cdrparts))]
_ J

= Paraiiel Programming Languages ®
Copyright © James RA. Larua
SIGPLAN PLDI *93 Tutorial, June 1993

Silde
a8

L oA weik Rl S el

O HR TR T BT

Nt

~

(

Qlisp

* Parallel version of Common Lisp —

* Programmer controls parallelism explicitly

-

* Parallel constructs contain predicate controllmg parallel executton

+ Flexible and powerful annotation

- Regquires knowiedge of execution costs and target machine

- Complicates program logic

8 Paraiiel Programming Langusges =
Copyright ¢ James R. Larus
SIGPLAN PLEH ‘93 Tutorial, June 1993

Slide
37

-

QLisp Example

* Parailel factoriai

(defun pfact (n depth)
(labels ((prod (m n depth)
(if (= m n)
m
{let ({(h (floor (+ m n) 2}}))
{glet (> depth 0}
{{x (prod m b (~"depth 1)))

{(y (prod (+ h 1) n (- depth 1))))

(* xy)inh
(prod 1 n depth)))

& Parslisl Programming Languages 8
Capyright © James A. Larus
SIGPLAN PLDI '93 Tutarial, June 1993

Slide
a8

/_

Coordination Language Overview

Manage synchronization and communications among sequential code

* Large-grain parallelism

* Distributes data and schedules routines
+ Reuse existing code ¢
+ Large-grain parallelism suits machines

* Mainly for loosely-interacting problems

* Underlying assumptions

* Parallel problems can be broken into large chunks
* Parallelism described non-imperatively

Reference: [19,38]

AN

K

- & Paralist Programming Languages «
Capyright © James R. Larus
SIGPLAN PLEH *93 Tutorfal, Juns 1993

w~

-

Linda

* Embedded coordination language

* Added to language as library

* Processes communicate through a tuple space

out (£1, £2, ...) Addstuple (f1,{2,...} to tuple space

in (kvl, kv2, ...) Removes tuple matching (kv1, kv2, ...) from space
rd (kvl, kv2, ...) Reads tuple matching (kv1, kv2, ...)

eval (£1, £2, ...) Creates new process to-produce tuple

¢ Structure and order of tuple space left to program

* Flexible and general communication mechanism
* Non-imperative specification

* Associative lookup is powertul, but expensive language feature

| References: [11.19]

Py CE e I Biommen B s et

G Wy Aahw ey

- ' Parmtiel Programming Languages =
Capyright © James R. Larus
SIGPLAN PLDI "81 Tutorisl, June 1993

DI R

ot vasat) e hed) e W o el NN el DS Wi) basal W B e

) ==

a Linda Example

* Finding prime numbers

main ()
{ .
for (1 = 2; 1 < LIMIT; i++)
eval ("primes*, i, is_prime{(i)}:

for (i = 2; i <= LIMIT; i++} {
rd {"primes", i, ?0k);
if {(ok) print (*%d\n", i};
} . .
}

is_prime (int me) r
{
for (i = 2; i < sqrt{(double} me}; i++} {
rd (“primes®, i, ?0k);
if (ok && (me % i == 0)) return 0;
n T
return 1;

)

® Paraiiel Programming Langusges ®
Copyright € Jumes R. Larus
SIGPLAN PLDI '93 Tutorial, June 1593

Stide
a1

4 - Strand

* Simple logic programming language coordinates sequential routines

* Single-assignment variables are communication channels
* Reader blocks until vajue is produced

* Call executes concurrently when inputs are available
* Routines can be “foreign code”
* Routines must have functional interface

* Calls protected by non-deterministic guards
References: [16,17]

8 Parsilel Programming Languages u
Copysight © James R, Larus
SIGPLAN PLOI '93 Tutortal, June 1993

Slide
42

4 Delirium -

* Embedding coordination ianguage
* Sequential code invoked by Deljrium

* Single-assignment functional language

* All computation written in C or Fortran

* Coordination and dataflow is exprassed in Delirium
- * Enforces determinism by preventing concurrent modification
Reference: [38]

s Paraiivi Projiramming Languagas =
Cop;ricin © James R. Larus
SIGPLAN PLDI ‘33 Tutorial, June 1893

Slide
43

(Delirium Exampie

* 8 Queens

main {)
let board = empty_board ()
in show_solutions (do_it (board, 1))

do_it (board, queen)
lert hl = try (bcard, gqueen, 1)
h2 = try (beoard, queen, 2)

h8 = tcry (board, queen, 8)
in merge (hi, h2, ... h8)

try (board, queen, location)
let new_board = add_queen (board, queen, locaticn)
in if is_wvalid {(new_bocard}
then if is_equal (gueen, 8}
then new_board
else do_it (new_bcard, incr (queen))
else NULL

y

u Parwilsl Pragremming Langusges @
Capyright & Jamea R, Larus
SIGPLAN PLDI '93 Tutorisl, June 1993

Slide
a4

| D

L

11-"'

-1_

e q W 1- m:""_ ﬁl—t‘,

[Y MmNy

-t AN AN A

JENE N D) W) WEN LD WG iy S O Gk B

w e

(Object-Oriented Language Overview

* Objects are autonomous entities that communicate via messages

DrawLine

* Similar to message-passing machine model

¢ Parallelism
* Separating request and response
* Sending multiple messages

* Object maintains internal constancy
* |ssues '
* Global addresses for objects
* Handling muitiple messages in object
* inter-object consistency

® Pargilel Prograinming Languages u
Copyright © Jamas R. Larus
SIGPLAN PLD] ‘93 Tutorial, Junas 1993

Slige
45

& Actors
* Actor consists of a “mail address” and a “behavior”
* Address is Iocatibn—independent
* Communication is asynchronous, reliable, . and buffered

* Executes sequentially
* Determines its repiacement behavior

* Can be dynamically created

References: [1]

= Paralisi Programming Languages W
Copyright @ James R. Larus
SIGPLAN PLDI 93 Yutoriai, June 1993

Stide
46

b

_&;ﬂ;‘“ "‘;m nu—-‘ Pm—— n—{w

. Lopyright © James R. Larus
SIGPLAN PLDI "33 Tutorial. June 1933

48

(" Actors Exampie)
* Bank account .
{define (Account (with Balance =b)}
{Is-Request (a Balance) do (reply b))
(Is-Request (a Deposit (with Amount =a)) do
{(become (Account (with Balance {(+ b a))})
{reply {a Deposit-Receipt (with Amount a))})
(Is-Request (a Withdrawal (with Amount =a)}) do
{(if (> a b) .
(then do (complain_({an Overdraft)))
{else do .
{become (Account (with Balance (- b a)})) :
{reply (a Withdrawal-Receipt (with Amount al}}))))))
AN J
® Parallei Programming Languages ® Slide
- Copyright © Jamaes R. Larus 47
SIGPLAN PLDI *93 Tutorial, June 1593
(-~ - COOL h
* Parallel language based on C++ e r“L
* Parallel functions execute asynchronously , o’ e
* Specified by either caller or callee — ¢*
* Mutex member functions have exclusive access to object
* Futures (cf Multilisp) support functionai parallelism
Reference: [12]
. a. g}
oy
PR
R
Y
O oy
¥
- /
8 Pgralie! Programming Languages Stice

JF— ‘w---

"v--

oy e Gwemm wm

b X Soniad)

P

D tiadl Masal) Vel G N Wl el S MR ekl) Vsad e)

P W il) -

{
array left (count / 2, aptr};

ints done = left.sort (};
parallel~ right.sort {);
waitset (done); -

(" COOL Example A
* Merge sort _
class array (Cof+ ’e‘ﬁf’\ 3
int countc, *aptr; L T =
parallel int# sort ();
s_. A lwer
} . _ Sor !JU;QVQ‘Ja-f%U
parallel int$ array::sort() ! ,-,_,‘..J-/JM-Q

array right (count - count;_JZ, aptr+count/2);

uS Q= Qf'@g,\

. merge .
} -
e J/
‘ a Paralist Programming Languages a Siide
—Copyright © Jamsa A. Larus 43
SIGPLAN PLDI ‘93 Tutoriai, Juns 1893 .
(cm - Concurrent Smalltaik . ™
i] - .. ,Jl-‘i'a
* Extension to Smalltalk 80 [20] v d o7 +
o '9 (%9 *.\\L *Qfd
* Asynchronous message passing RSy
* Receiver object can execute after sending reply 5 ol
* Sender can continue axecuting before receiving reply
* Atomic objects
* Messages serially processed in FIFO order
Reference: {51] '
e _/
® Paraiiel Programming Langusges w Slide

Copyright O Jamesa R. Larus
SIGPLAN PLIN *93 Tutorial, June 1993

50

(Other Control Paralle! Languages: Jade

* C with annotations to declare data accesses

* Programmer specifies which locations code accesses
* Describe specific locations, not interactions
* Annotations indirectly speéify potential parallelism and execution order
* System runs program in parailel and preserves serial dependences
° Senahzes declared dependences
" * Also, helps system ship data among processors
* Checks correctness of annotations

+No explicit synchronization
- Still may need to rewrite program
References: [32,45]

& Parailel Programming Langusges w Stlde
Copyright © James R. Larus 51
SIGPLAN PLDI ‘93 Tutorial, Juns 1993
(Jade Example e e gt

~ P
* Sparse Cholesky factonzaﬂon—? A e &0

factor. (column_vector c, row_indices r, int n)

(
int i, 3;

for (1 = 0; 1 < n; i++) {
withonly {
rd_wr (c[i].column); rd (c): rd (r);
} do (¢, ©, 1) {
InternalUpdate (c, =, 1i);
}

for (j = cl[i].start_row; j < cl[i+l].start_row; J++) {
withonly (
rd_wr (cir{jl].column});
rd (c{i].column}; rd (c); rd (r);
Y} do (¢, r, i, 3 { §

ExternalUpdate (¢, r, i, ri{ji);

u Pargligl Programming Languages w -
Capyright U James A. Larus
SIGPLAN PLDI *93 Tutortal. Juns 1993

Slide
52

'1M

umaliinad

“r

(Control-Parallei Languages Summary
* Programmer specifies program for each processor

* Each program runs independently
* Two-edge sword: understanding and cocrdinating
* Is generality necessary?

* Processors synchronize and communicate
* What are mechanisms

* Difficult to program
* Races and performance-

* Difficult to reason about

u Parailel Programming Languages &
Copyright © James R. Larus
SIGPLAN PLDI ‘23 Tutarial, June 1993

Siide
53

4 - .. Data-Parallel Language Overview

* Simultaneous application of operation to ccllection of data
* Parallelism from applications of operation

* Interactions among applications
¢ Synchronous operation is SIMD
* Asynchronous operation is SPMD
* What is middle ground?
* Discussion
+ Single thread of control aids reasoning
+ Can have determinate semantics
+ Clean specification of parallelism

- Cannot express all parallelism

R}

u Paraiis! Programming Langusges =
Copyright © James R. Larus
SIGPLAN PLDI "83 Tytorial, June 1993

Siide
54

o C*

* Data-parallel extension of C by Thinking Machines Carporation
~ * Two languages: “oid” and “new” C*
* Strong SIMD influence from CM-2

* Shape is a template for parailel data
* Specify dimensions
¢ Paraliel variable has a shape
* Parailel operations on variabies of current shape
Reference: [48,18]} v
shape (2] [2] ShapeA;
int:Shaped x;
with (Shaped) x += 1;

x
.#’

- = 3pialial Programming Languages Siide
Copyrignt © James R. Larus 55
SIGPLAN PLDI "$3 Tutorial, June 1993 :

e Paralation Lisp b v },.,W N
* Data parallel extension to Common Lisp d’"" th \5"'2{”’ I
* Added new datatype and operators M

* Paralations are ordered collections of vaiues
* Apply any function simuitaneously to all values
* Data dependences between operations are “iliegal”
* Strong Lisp influence

Reference: [46]

8 Farsiiet Programming Langusges » Slide
Capyright & James R. Larus 56
SIGPLAN PLDI '93 Tutorial. June 1993

l'“ it] I- "o d T _. N— 'T e . ’F Y, — _',:

Wasl oy UNRN e AN Dt x) BN K ¥

A e e dd) el)

b

Bty [m’

(" Paralation Example

* Finding primes

{defun .find-primes (n}
{lec* ((sieve {make-paralacion n}}

(prime-p (elwise {sieve) nil}))

(do {(next-prime 2 (position t candidate-p)})
((null next-prime}
{<- sieve :by {(choose prime-p})}
{(setf (elt prime-p next-prime) t)
(elwise {(sieve candidate-p)}

{setqg candidate-p nil))))})

{candidate-p (elwise (sieve) (if > sieve 1) t nil}))

(when {and candidate-p *(zZerop (mod (sieve next-prime))})

Capyrignt © Jamea R. Larus
SIGPLAN PLDI "93 Tutortal, June 1993

o
® Paraiiel Programming Languages ® Slide
Copyright © James R. Larus 57
SIGPLAN PLDI '93 Tutarial, June 1893
4 C*)
é)y-L_a/145
* Large grain data parallelism
* New model of data parallelism
* Parallel functions are applied simuitaneously and instantaneously
* Simultaneous = start with same state
* Instantaneously = do not see others'’ changes
* Based on C++ :
Reference: [34]
A
® Parailel Programming Languiges = Slide

(C** Example
* Matrix multiplication - 5
struct matrix { H
double val;
matrix operator* {(matrix &B) parallel; CfoJ

} (S512]1(512]);
struct column : matrix()f.) { };:

struct row: matrix [.]1[}] (
double operator*{column &B) parallel{(
return %+ (val * B[#0].val);
}
Y

matrix matrix::operator* (matrix &B) parallel {
‘return { val({*this)[#0)([] = B(][#1]}) };
} ;

matrix A, B;

(A * B)
\- ‘
u Parallel Programming Langusges ® Slide
Copyright © James R. Larus 59
SIGPLAN PLDI '93 Tutoriai, June 1933
/

Data-Parallel Language Summary

* Attractive, though restrictive programming model

* Close to SIMD machine model
* Can be generalized so tasks are control independent

* Semantics of sharing data among tasks
¢ SIMD == determinate
* SPMD = indeterminate
* Large grain data parallei "= determinate

m Parailel Programming Langusages &
Copyright & James R, Larus
SIGPLAN PLDI '93 Tutoriat, Juns 1293

Slide
L1+

N WL REM WA, WEN Wy Wem W Rmm qmE R e

s

(Single-Assignment Language Overview
* Only one assignment to location (variable, array element, etc.)
* Repeated assignment requires new copies of object
* Compiler sometimes eliminates copy
* Advantages of functional languages
* Clearer programming style
* Simplify compiler analysis
+ No anti- or output dependences

- Efficiency depends on copy elimination

Py Jo‘-s

(' 3 o
:}\.«J')

o’

+ Easier to find paralielism \l |b"‘ %

o

b u Parsitei Programming Langusges = Slide
. SIGPLAN PUD! 93 Tukoriai, Jume 1893 o
4 ‘Sisal
* Restricted functional language with Pascal-like syntax
* Qriginally, limited higher-order functions
*» Static type-checking
* Restrictions facilitate compiler analysis
* Semantic goals: -
* Functional: functions have no side-effects
* Referentiaily transparent: names bound to vaiues, not locations
* Single-assignment: name assigned once
* Competitive with Fortran on Cray YMP for smali kernels [10]
References: [15]
e
u Peraitet Programming Languages = Slide

Copyright @ James R. Larus
SIGPLAN PLDI 93 Tutorial, June 1983

62

Copyrignt © Jamas A, Larus
SIGPLAN PLD1 '93 Tutortal, Juna 1393

(" - Sisal Exampie)
* Gaussian Elimination —
type Onel = array [..] of integer;
type OneD = array (..] of double:
type TwoD = array [..} of COneD;
funcrion Reduce {piv : integer, A : TwoD, B OneD
recurns TwoD, OneD)
let ‘
mules := A[.., piv] 7/ Alpiv, piv]; -
in
for row in A at [i] do
¢ . 'Rrow, nB :=
: .'. 1f i=zpiv then
) row / Alpiv, piv],
- Bli] / Alpiv, piv]
° else _ .
) row - mults[i] * A{piv],
B(i] ~ mults[i] * B(piv]
end if
returns array of nrow, array of nB
end for
end let
end function
\ -
8 Paraiiel Programming Languapes w Stide
Copyright © James R. Larus 83
SIGPLAN PLDI *93 Tutorial, June 1993
é Overview)
* Parailel computers (review)
* Sequential imperative languages
* Parallel imperative languages
* Functional languages
* L.ogic programming languages
\ _J
u Paraliel Programming Laiguages = SHde

64

T W e e o e ww, fEa e

! Mgl g emd Vit sl) Bl) B 1 i

e W

Jisd)

»

/ - = -
Functional Language Overview
* Computation is entirely expressions evaluation
* Expressions are functions (not relations)
* No side-effects
+ Program are more concise and high-level

+ Easier to analyzer and reason about programs
- Less efficient

* Smaill grain computation
* Different Ian@uage features

* Higher-order functions

* Lazy evaluation

* Pattern matching

* Key: referential transparency

* Substitute function appiication for use of value without changing resuit

let x = £ a
in x + x

8 Parsiiel Programming Langusges =
Copyright © Jumes R. Larus
SIGPLAN PLD{ ‘93 Tutorial, June 1983

(Parallel Function Languages

* Mostly compiler-detected paralielism
* Also parafunctional parallelism with programmer-supplied annotations
* Not much language design for explicit parallelism [24]
* Also, lots of work in nearly-functional languages
* Scheme [28,33,26] .
* ML [25,44]

b‘ \
%, “lﬁ— 4

w Pgraliel Programming Languages @
Copyright © Jamesx A, Larus
SIGPLAN PLDI 93 Tutortal, June 1993

Slide
1)

(Parallel Graph Reduction

* Different model of parailel computation [28}
* Program is represented as graph showing function calls -
* Call whose arguments are available can evaluate
¢ Many calls can evaluate in parailel

* Order of evaluation does not matter (except termination)
par_sum n = dsum 1 n

dsum lo hi = if {(lo = hi) then hi _ -
else (dsum lo mid) + (dsum (mid+1l) hi)-

where nid = (low + hi)/2 e

dsum .1 10 -

. ds S ds 10

dsmm ¢S5 dsd 68 dsum 9 10
seq_sum n = if (n=1) S
then 1 - -
‘ K else n + seg sum {n - 1}
w Parsilel Programming Languages u - Stide

Copyright © James R. Larus 87

SIGPLAN PLDI "33 Tutorial, June 1993

(| , . Overview

* Parallel computeré (review)}

* Sequential imperative languages
* Parallel imperative languages

* Functional languages

* Logic programming languages

e

s Parsilel Programming Languages = - Slide
Copyright © James R. Larus 68
SIGPLAN PLDI 9] Tutarial, June 1993

[

“— H L] :qi-

WE "R Ul T s W gy

LL'

Yousadi Mt) BN 0 ha Y e

Vit Bl) WA BN G e Gy

G S T VR VR Y

il

o

4 Logic Programming Language Overview'

* Logic programmiing is a different programming paradigm
* Program is declarative collection of assertions and inference rules
* System attempts to prove new assertions
* Languages restrict paradigm for efficiency

* Two patential sources of parallelism

* OR-paralielism

Al :- Bl, ..., Bn.
A2 :- Cl, ..., Cm.
A3 :- D1, ..., Dp.

* Try clauses in parallel
* AND-parallelism
a (x: ZJ i b(xl Y)f C(YI Z)o
* Try goals in body in paraltel .

References: [13,47]

1. Thanks to Brad Richards for his assistance in preparing this section.

® Paraliel Programming Langusgas =
Copyright © James R. Larus
SIGPLAN PLDI ‘93 Tutorial, June 1983

Siide —
89

(Concurrent Logic Programming

* Particular approach to parailel logic pragramming

* Don't care non-determinism
* AND-parallelism
* Commit to a ctause and never backirack
* At most one binding per variable, never undone

* Flat language o

* Guard contains only primitive predicates
* Simpler, easier to implement

* Nonftlat
* Guard may be arbitrarily compiex

* Variable instantiation
* [nput matching
* Read-only unification :
* Determinacy conditions

u Parsilel Programming Langusges w
Copyright © James A. Larus
SIGPLAN PLDI ‘33 Tutoriat, June 1993

Stide
70

e

Concurrent Logic Languages 3
After [47] o
CSP PROLOG .
Relational Language
Concurrent Prolog
PARALOG 83 =T’
FCR (D)
c .
PARALOG 86 Oc \ P-Prolog
Flat PARALOG Doc G '
Strand FQP(]) FCP(:)
FCP(.,?)
L)
N u Paraiiel Programming Langusges . Slide
) Copyright © James R, Laru: 71
SIGPLAN ELDI ‘43 Tutorial, Juns 1893
4 | FCP()))
* Fat Concurrent Prolog (Commit)
* Simple language related to Fiat GHC and O¢
* Match on heads and guards
Goal Clause Head Resnlt
p(a) p(x) X=a
p(xd p@) suspend
p(@) p(b) fail
sum([n, Oun) sum({ XIXs), 8) suspend
sum([], Qut) sum({XiXs]. S) fail
* Fixed set of guard predicates
X != Y, integer(X), ¥<Y, X<=¥, X=:=Y¥, X\=:=Y, var(X)
wait (X)
e _/
& Parsiiel Programming Langusges = Slide
Copyright © James A, Larus 72

SIGPLAN PLDI '33 Tutorlal, June 1983

— e T

(VR TEA g wmm WEm, R ey

L e bt ek) sear M) oMY AL R

¥ S, ikt) el T il

P-

4 FCP(|) Example

* Summing leaves of a binary tree

'~ tree_sum (T, §) <-
tree_sum’ (T, Q, S).

tree_sum’ {tree {L,.R), P, 8) <=~
tree_sum’ (L, P, P},
tree_sum’ (R, P’, S).

tree_sum‘ {leaf {(X), P, S} <-
plus (X, P, 8).

8 Parsiiel Programming Lancusges ® Slice
Copyright © Jamaes &. L.arus T3
SIGPLAN PLDI '83 Tutarlal, June 1933

wew ltymes

:),_/vut/@"fe)
_ /Je,,‘_/ G/ydf/%"‘sl\F/aJ‘
e 540-6&/[C“V""-LIC;(P ‘Sd/"“-..e e

des

- W he }“a/‘«_ 7‘1-/3.@% w‘-n;,_é,-,,_.\qf
(b Fara ey - ”f/ﬁ_/)’ :
| /~C/7"§ é 7‘.' 74; il re //v/wwl)

N Co""\f"" ‘L‘A"""‘L/ C"J-/AJ“]\S w9~7‘_/7[’¢/0i/
&5 tQJ/' 45 Fo ~se
4"/{ “s < ﬂg,; }gnh-v C'm/<

A3

/ﬂ#f C/(JJ-.-\L-)

