
-

-

SDC/GEM

JOINT COMPUTING

WORKSHOP

SSCL

JUNE 30 - JUL y 2, 1993

-

-

-

-

"oint SOC/GEM Computing Workshop
SSCL June 30-July 2, 1gg3

Agenda (Note rooms carefully, they are al I different)

Weds June 30
AM: Building 1 Room #285
9:00 Report from E-Systems on Mass Storage options
10:30 SOC Specific Topics:

SDCSIM upgrades
Package organization
Event data structure

PM: Building 1 MSD Room (upstairs)
1:30 Report on PASS collaboration meeting
2:45 Report/Discussion on video conferencing and ESNet plans:
4:00 Status of SOC CORE SW

Thurs Jul 1
AM: Building 1 Engineering Room #118c
9:00 Discussion of GEM/SDC/PRCD operating procedures

Discussion of definition of Joint Projects
Plans for future joint meetings

10:30 Data Modeling A Data definition language A related items
Cheetah: Gary Word
Object persistance, object transport, IPC, RPC
Proposal for geometry def'n language J. Womersley

PM: Building 1 Engineering Room #118c
1:30 World-wide Web J. Hi lgart
2:30 Programming languages

GEM C++ Pilot Project:
C++ Class Libraries
C++/FTN status

Fri Jul 2
AM: Building 4 - Directorate 2
9:00 CASE/IDE

Irwin Sheer
Alicia Harvey

Distributed development discussion
PRCD Plans
User education

PM: Building 4 - Upstairs Conference Room
1:30 GUI, Graphics A Event displays

E-Systems
S. Kunori

D. Q.uarrie
Greg Chartrand
S. Frederiksen

Volunteers for talks or discussion leaders on any of these topics would be
appreciated.

-

-

-

-

--

-

SDCSIM UPGRADE

S. KUNORI
D. SCHMID
A.FRY

-

-

-

.;o/ - '·
/I .

-

- /

-

Pat.b. to th• ultimate SDC Software

\•·-c.-,-
\ ~a_._......

time ~ cocU.Ac
flow--(a!J>) comao'A

exi•tinc Phy•ic• cod.e•

1993 I
11

tool

I lx-----o
111
111
111 I
llx---ol
11 11
11 11
11 11
11 11
11 11

i

•
p
r

- 0

v

•
• - .
" t

(•Y•t-)
A. B c D &

Stlc:ED\ ~.,...
I I I I I ---- I I I
s 3 1 I I I
R{1 I I I

-> "''i1 I I I
I I

I I I
I I I

-> I I I
I I I
I I I
I I I

11
II

v v v vv

········----------------------··········· II • ewi. tc.b. to NEW SYSTEK •
II •••
11 I
I I
I l
I I
I > I
I I
l I

2000 ., v

Help to acc.elerate the cac:l.e Ovelopa.at. iZL
SDCSIK -.Del eY&l.uat.ioD of the det.ector d.••igZl.

(1' , .. ff-ir-\ '"""'1~c.s. <lii:'ti..d.\ \)

a.1

)\ ;"'-·~ - •--.ller prosram. •ize (event •iae

- ,t---.~-
- more ueel"' fritm.dly

toward c.oaplet• detector eimulation
aad. ••--t. recom•t.ru.ct.ioD

Preparatioa for m.i.cratioa. to future
•o«tware

•\~ ~
C•- 8. 2 for -.joro develoama.t. plaa)

Not.s Te ~t.buae to ..-pport Vil-VllS &&l.d. UHtt.
Uaer fri-41.be.• AIUi ~o~ on Vll-VllS
... Y be 11.a:i.ttad.~ hut fu:a.ctioll.&l.itiee
ia Si.aul.a1;.ioa. &IUl llacoa:rt.ructioa rill be fully
&Y&i.l&ble.

Sche.iv.J.e

"T/'4."'!, ~ •\ocal"T--,• "ta ~.l.09 ·~·{t\a.""''"
8/93 more COil.Crete propo•al..

(wi:t.h prelJ.ai.D.arr var•ion. o! u•er pi.de)
8-9/93 lnri.tc.A to uew c:.ode =·renem::a.t •Y•t""

l/94 coapl•t•iou of l•t upgr&d.e

3.1 ...

•

•

Orgaai.zation

SDC compu"t.ing <->
(G&i.u.••)

Computing Tedmic:a.l Bo.d.
(•pec.ial.i•t• froa ph7•ic•
d~ector•, computinc}

I
I +(Fry 'Aa&ko)
I
I-On.line
1--D project•
\-SY project•
\--Code K&Aag-.m,t

I
1--Phyai.ca Applicat.ion (~u=.ori)

1-•ub•y•t.- coordi.~tor• (&t remote • i te]
I (coordination • re•pona:ibilit.y)
I -pa.clcag;e mua.acer• (at remot.e site]
I (cod. clevelo'P...at. + m&intflDAD.C8)
1-•upport. group [ao•tly at SSCL]
l (c.od.e/al.eoritl:m t.e•t.
I + con•ul t.iAC)
1-seneral '19.r• [at remote •it.e]

(Motes 'remote ai.te' iacl.wie• SSCL.)

o Coordi.D&tion of Pb.yBi.CIJ Application Grou'P1

- replar -iDc durba collab. mt.c.
SY GEllEIUL lllZUllG/SY DClllCl:Cil llEln:IlfQ
PlltSl:CS A!W.TSZS lllZTDIG

(COORDillUOllS IQZTDIQ)

- well cl.:fbed •pacJu.ce'
'package' i• ~bed. or a11.tl:Loris.d. at.
repla.r ...tiAcs.

- 'E-mai.l'

'S'i)C.SIH u:yo.,.-o.d..Q. i"eams (.a.': ~c.1..)

........... C>o<'S - \'S\Il"'") ... \a.tl?>) • Cll

,. • ...,o::,oa ~-\ ~,.T,...,
- ~°'"'{ - "'bis ··"' +""tf

• ~__.,_\I-, \it -~ .,_...~ ~
Y.l- ..)/ .. "'!>.

,..,,_"t" d..o."io. .,--·
- C.\CA.lf\olll&'" .L ca-~\&'\-. .. ~'c.·• a-t:~~~ \\O"'I\

~~·.. ,___..i.s

'S.:..!z..""'.~~o ~or c.cdA./~ac-~~ ..,..,.;.~c.al:O"'lol

• \.kin-~~\ d.o..""to.. M.Dcl.4-\"..~. r .
-... t..o~ .. ~~ ~~~·.\;.-. r....r oJ.\ Ml".

•

C:..O'l'\•f.'S\-.-,c.tri.f\ -~""" ca~;,~"''\ d.taM:~~
-s~ I ~t.DC"-..l::~

.. 4•~~ n~•t11t.~/-AY.._._.....~
'E.u-.~\ <l;~

- <l~"I .. <«. C..- &a.\rt 'i>"'t";'s

0 ~/~ ~~ - i•ft --~\ ... -­
.... _ _.... -«•u-....\ &.. I.I.Sar &r••....A""\

~ Pia~\ o~ ?"dm~ <:J::d,Q ~ea"'~<lll:~ocw. .lo)~\\
\>ca.. ~"'°'G- ~. or'~~\ - a.....""o(""S -

•

...
•

• ...

•

...

--+ H.,,.i o~ \""'m'(S" <:a!.Q. ._.o.~;Q>'J;:.,.,.. "';1
'04.. cl.oY'\Q.. ~•QC"'\~\~...,.\~ o.u.~af"'S _

...

-

-

..

..

)

~jj New SDCSIM Code Management Scheme

Current Status

- After several more tries, SDCSIM libraries have been
unpatchyfied and imported into a CVS tree on PDSF

- Now have functionality equal to old scheme:
- site manager can build libraries
- users can build customized executables
- developers can use (r)CVS to maintain code
- most users never use CVS

- Have asked a handful of package developers to give new
scheme a try

- Currently, everyone in SOC group on PDSF has write access
to the tree

- Made a feeble attempt to get new scheme going on VMS
- had problems with VMS CPP on FORTRAN code

Plans

- Make 'unpatch' program releasable so that users can migrate
their personal .CARs to new scheme

- Write a post-CPP cleanup tool for VMS, or write our own
CPP

- Investigate better protection schemes

i;we Schm10 -- ,
P,1qe ---.-

))))

a Pros and Cons of New Scheme

&Qi;

- New building scheme using make is nicer:
- N6 more messing with cradle files
- Basically copy code into a directory and it will be linked into

your sdcsim executable

- Make will only recompile modilled code - most builds faster
- allows easier use of CASE tools such as Workbench and

CASEVision.

- CVS allows developers to keep better track of code changes

- Can more easily obtain old versions and current 'test' versions

- Easier for us at SSCL to fix bugs

~

- CVS is hard to set up (but maybe just because of inexperience)

- rCVS has some annoying features:
- no read-only export
- automatic conflict resolution is dangerous
- sometimes cannot 'cvs release' what you've checked out
- can 'cvs commit' even after 'cvs release'
- various bugs
- revs is painfully slow

- One-way transistion from .CAR to .I (no 'repatch')

rdv!i SCtmil(] -- SSC

P.JQt• -

))

e. "Te~f bed''

IH;1-1c.£. C1 u.i
l•>\t t-l PPl£it \

• MA-t.Telt."

......

AfR.U./
l'\Gj q3

)

,, \I

SDCSfM ·

'17 I ,

·FIL.& ~

~-0.6' :lat.IE,

ZE8~~
SE1t.llEA.

~IJ I

....,....:...,:....., ,, '~~~li .. r=:..&....~ . ~l:L· llS' ... ·' ••''-··· · ... -- ... ,,,.,
- ,"' (

TRll\l 1154t.cf~,' "~:d)-.
(AOAMS) JULY ..

•
S DC. $ I II"\
re. ~!A-"i ~ .. -.;.,

PIA111

F\ Pl Pe !.i 9n

-·\
-

New
"M~ST&A•
" SLI /s&/'

. - ____ 1_

y-p•
.. ,.,

,. _,., f

• ..? :...
t•-6 .. 9

. ~I"' ~
F1Le
Re-oara

))))

M~S Te;il \ . ~

0 A~'l '• c.o W\ c..e c.I C.C..W.~1

• s\nc;~ lc..tr~t \:>rou.s.s (I)

· c.oope,,cJ.i,~ proL•t.I• ~
'

• m~\l ~l&.tto.-~ / ptouMOf' ·
··,:,;· ::·

,

• ~UI • ,. A ·s-.11~.,I! f'•"~""'

• ~1 "0t.1!$S "F\.OW• OC:ts1N1~101o1 "9 f/C.P J,, "
1Ji/e

• r !AW\ - .. i Wf\4 i t\i '1' '1. /1' 'l,, IO. l·i Ollt
. : Nf)flo) '!

WO A"t1C:MPT (Y<ET) To 'TIUNlt ~9•1JT
l.f ISTo Gtf(,_lllCM tt.Jh

~ANDOM. ts ~iJ.;.,-
0.C.lu u~; ti.f.; ~ ~

)

-

-

-

-

-

-

-

SDC FRAMEWORK

DEMO

M. SELOVER
I. CHOW

'
,-~

···~

.-s::
.;

-

-

-

-

-

SOC Demo Project
SZ I ZEBRA Bank Server

Mark Selover
[van Chow

June 23. 1993

BASIC OVERVIE\V

I. Software Architecture for SDC distributed
computing applications.
a. l coarse-grain parallelism
b. I shared data. distributed memory.
c. I inter-process communication via

message passing.

2. \lndels for sharing data between processes.

3. Process Control model using
Token I Event [d) message passing network.

..+. SZ/ZEBRA Bank Server model for the
"'Jara ser\"\::r"" concept.

PROJECT GOALS

I. Test out basic ideas in "CORE Cunccpts"
document using simple prototyping
package based on customized version
of HENCE/PYM.

2. Primary Focus on evaluating
"data server" concept with real physics
multi-process. multi-cpu applications.

2. Understand better implications of running
SDC software in distributed computing env.

3. Test out "Modularity" of various SDCSIM
Physics sub-packages .

..i. Generate feedback and new ideas to better
focus efforts in Core Development process.

Parallel Process - Shared Data Models

p!

Shared ~temory

memory

Distributed ~1emory.
:vtessagc P:iss1ng

I
i
i
i

!

I

Dln.:l:t ~o<lc to Node Dat:.i.Transtcr

('\11.•n1/S1.•r\i:r \hl\.t .. ~t

Process Control Model
Token (Event ldl message passing network

\laster
\Hencci

\ ..:nd

' ,/

()

~ i~I, ..
\ \IE~IOR)

r~~iC~~~~~~~~
(5

Sharc:i.1 :\ternary Arca

SZ I Zehra Bank Seo•er Model
for '"data server·· concept.

(~
•.)

...

-

-

-

-

-
-
..

..

•

-

-

-

-

-

LL"1c ({cqum:mcm'
~1.1111a111tain compat1bili1) "1th <:urrc111

SDCSI:--.1 FZ lik fonn:ns
b.1 prcwide vinually s~um: SZ .-\Pl Ill clicn1
c.1 minimum code re-write of SZ rou1111cs
u.1 max. number events c:1cheu as possible

, Basic Design Solution
:1. l hulk of SZ and Zebra software runs on

server. only thin SZ layer on client.
h. l no Zebra on clients. all evem data store<.!

in multiple Zebra evem store areas on
server.

c. l transaction size between client and
server is I bank per request.

d.) server handles requests from FIFO
in sequential order.
client sends requests to server in
synchronous fashion. waits for server
to respond before continue.

e.) bank modifications handled on first
come. first serve basis

sz Clji;n11Zt;hra Sen·cr -.ofl\\'i!O: ;ind nrncc~s lj!\'t;CS

Cllcnl CPU Ser\'er CPU

SZ clicn1 nrocess Zehrit Server nroc1•ss.

Hl!ncc: wr::ipper code +
. . I l ' I physics packa

1

ge \

SZ interface f
szget.szfill.etc.

Zscrv cmd interface +
zsclient rouunes

'
?\'M interface t -,

'

1. PV\.1 ll:iemon

I

~ zserver main loop

l

ZS server routines +
zs~et.zstlll.zswipc.
zsload..z.sfish.c'..c . .
Zebra software l"
\ szc.om u. \.!.3.4)

t ?\'~\Interlace \

P\' \ 1 tl;icmon

LOI' ,,,~1..1;1 commu111cumn

S%('Cl\IO

SZCO\li

SZCO\I!

SZCO\i'

S 1~1t1l· P;1ran1ctcr~ "t~'r'-· ,\fl..' •1
STPS + T£::~tP Jt\ 1,11111,

1.000.lXKl won.ls

Evcn1 store area #I
HEAD+ TE:O.tP div1si(1ns
!.000.000 words

E~ent store are:i If~
HEAD+ TEri.·tP divisions
1.000.000 "·ords

Event store are:i #J
HEAD+ TE~1P divisions
1.000.000 words

Event s1ore :ire a #4
HEAD + TE~1P divisions
2.0<>0.000 \\'ords

· ZSIXDX Server evem mdex lookup 1ahlc
1!\'Cnt # => store area#

SZ C!jcn1qt'hra Sep•s:r rprnmitnd srquc:ne('s

fZ inn file
t.\IOad: lo.id ne::u cve:nr

'
i
+

zehr\t server

-:;1.cnm O \ :_ -.., J.

z.shll: update banl;

Fl our tile

'

1. Zchra St:rvt:r working nnw in rcad+wrnc
modt:s on multi-t:pu applications.
Only tested so far on PDSF Sun ·s.

2. Currently testing SZ client functions:
szget.szget l .szget2.szget3
szfill.szfil l .szfil2.szfil3

3. Soon to add other SZ functions:
szdrop.szdro l ,szdro2.szdro3
sznum.sznum l .sznum2.sznum3

-l. Have not tested yet to see if server
FZ output file can be read back in
by SDCSIM.

PREL!\11'-'ARY CO'-!CLl'SIO'-'S

l. Zebra is not well suit.:d for this !..ind nf
application. This type of data scr\'cr
is a major kludge.

2. Zebra server limited in its capabilitcs
a.) cannot cache more than -l events
b.) FZ file input is one pass only
c. l PYM send.recv is slow
d.) clients will see major deadtimc if

server is busy.
e.) server does not protect banks

no lock mechanism for now.

3. Demo package may not be able to
handle large applications with many
processes because of limits of server.

..

-
..

..

..

•

•

•

•

-

-.

PASS STATUS

D. QUARRIE

-

-

-

-

-

,,,.,--- SDC Co,,.pu11ng ll'mlc.rhtip · Jli Junr IYYJ ---------------._

PASS Status Report

David R. Quarrie

LBL - MS 508-3238
I Cyclotron Road

Berkeley, CA 94720
(510) 486-4868

DRQuarrie@LBL.Gov

David Quarri• • PASS Status R•port

SDC Computing Worlc.rhop ·JO Jun• 1993 ---------------

Major Ongoing Projects

• Architectural Model Document

• SSCL Testbed

• LBL CDF Tests

• 64-bit PTooUVTool enhancements

Preparations for Mark I :it ANL

• Monitoring related projects

I
'

l
j

J

----~--~·=··=·--·=···===-.,,,,.,,-~-~··=-=--=·-··=-=-== --...,,..,.....,==.--'
Du\·ul Quurne • PASS S1u1u.s Rt'porr

l
I
J
•

1
i
l
1

~ SDC Cu1n11u11ng \\.ort.thop ·JO Jwt~ JYYJ

\.

Architectural Model Document

• Concise statement of PASS goals and architecture

• Requirements
Statement of Problem
Sta..,ment of Goals

• Abstract Reference Model

•

•

Identity componcnLS and mechanisms
No discussion of hardware or policy issu03

Policy Issues
Identify areas of concern
Discuss possible approachs

Implementation Models
Generic
Specific to SOC/GEM

David Quurri• • PASS Sta1us R•pon

SDC Compu1ing Workshop· JO Jun• 1993 -----------------

....... ·-

Ff cure J. Process ~1odcl

01.1\·l1J Quurrte . PASS S1a1us Report

\

'· I

l
I

l

,,
•

i
-1

' j
i
J :
l
I
!
! •

..

..

...

..

..

-

..

-
..

..

-

-

-

-

SDC Compul411g H"ork.sht111 ·JU Junt> /YYJ -----------------

Query Services
Adaptor

Application

Com puuuion
Service.>
Adaptor

Query Services Computation
~--' Services

Broker Broker

Object Request Broker

Query Engines Computation Engines

Figure 4. Comn1unic:itlon ~1odel

....._ __________ __ -------------------------
DtJYid Quarrie • PASS Status Report

SDC Computing Workshop· 30 June 1993 -----------------

Architectural Model (cont.)

• Draft being internally circulated

• Still lots of work to do
Com:c:t inconsistencies
Expaod Policy Issues
Expand Implementation Models

• Aim for August 93
Working document
Expect to change as project continues

• Basis for future work :ind discussions with customers
E.g. SDCIGEM
Also discussions wilh o;cndor:s

• Yi t:il !

Du,·i1J Quarne - PA.SS Sturu..r Rt'pt1n

1
I

!
i
l

'
l
t

' I

l
1
I
l

./

.~ SDC Cumpu11ttR Wnrk..rhop ·JU Jun~ 1991

•

•

SSCL Testbed

Tests of multiple d:it:ibases with DD-2 t:ipe
YBOS. Sybasc. OhjcclStorc & PTooVVTool

10 GB CDF D:it:i
Major job to cn::i"' data model

• Tests on Sun & SGI

• Some configur:ition limit:itions

' l
;

i
l

Davit/ Quarri• - PASS Stana R•pon

SDC Computing WorluhDp - JO June 1993 -----------------

Sytme

SUN

oo: T.,,rc On~

SSCL Testbed I l::ird ·ore CanfigurDtJon

YBOS

·~

1
.1
'

l
!
1
1 .
1

SCI

IOGB

,,/
-....._..., .. e.~.--~·"""·~····~-~-~"===~-~--~··-~-~-'""'-~-~-"'-=-~-"""'·=-=-...,,,_...,..,,,.,..,,,,.-=o,_,.,.. ,,...,.,,

Oo\·id Quurrie · PASS SuJtUS Repon

-

-
...

...

-
...

-

...

-

-

- ~ SDC Con111u11n.~ ~\"ork.shl11r • JU J&u1e /YYJ ----------------..._

•

•

•

•

SSCL Tustbed

IOOMB file (database) size
Not optimal for 002 Tapes

Limited Data configurations
!'l=ntly Event-oriented (event data clustering)
Perhaps Data-oriented (similar data clustering)

Good integration & concepts testbed

Less than ideal comparison benchmark testbed

David Quam• • PASS Status R•pon

SDC Computin!l Workshop· 30 June 1993 ----------------...._

•

•

•

LBL-CDF Project

Demonstrate use of OODBMS & Mass Store in existing
physics analysis framework

CDF Analysis_Conttol fr.uncworlc

Access to complex queries
Mark 0 & Mark I use r:u.hcr simple queries because existing queries in
FORTRAN and databases use SQL or C++.

Access to large quantities of data ("blobs")
Mark 0 limited hcausc of mismatch between awil•ble data and tl1c
data models supported by tl1c databases. Very labor intensive.

• Perform real physics analysis
LBL physicists already have a <Uta access problem (10-100 GB oota)

• Stepping stone to final solution
Maintains phy.sic:isto; convcn1inn:il analysis model
Expose physic:iSL'l to gains through cJaub:i.sc techniques

I

1

' !

l
\

!
t
• ;
I
!

.·
............... .,.,=-.~-~ .. ~--~--""'=-=""""""-=''""" ""'"""'~ ... ~<:-'-

SDC Cumpu11tt1t Work.Jhnp ·JO Jwn~ IWJ

LBL-CDF Project - Software Configuration

Anl.lysis Driver

User Modules

Analysis Services
1---------~ ~~~~~-Obj cc !S 10 re File lnpul

lnpul ~----'---_._-~M~ad,,..u~lc,___.__..._~---------1
Module

Oaia Access Layer (YBOS)

• Modify low-level Data Access Layer Routines
2S'lll of files in pock.age modified

• Completely transparent to user code
Also ll'al1Sparent ta Analysis Services apan from lnpu1 Module
Input Module scleciablc al run-lime - easy 10 do benchmarks

• Demand driven data access
Contrast to conventional scqucnti.U access

Davit/ Quurrie • P!iSS Status Report

SDC Computing Workshop - 30 June 1993 ----------------~

LBL-CDF Project - Hard,vare Configuration

• RS/6000 client
CDF code olrc:idy poncd la 1his plalform
AclS as Objcc!Slarc douibasc clienl

• SparcStation server
AclS as Objec!Slarc douibasc server
2GB lac:illy maun1ed disks

• LBL UniTree
500GBy1e iapc (ltXJ Smm c:inridges)
4 t:lpc drives
IO GByie disks
A.ppc;irs :is ~SF-mounted filcsystcm

------===-=--=--=-~-=-=--~--~-~--=--===-=---......,====-==--""""'~
Du,·111 Qru1rne · PASS S1u1us Ret"'"

...

...

...

...

...

...

...

!
1
j
l ...
• '

I ...
]

...

/ ...

SDC Co111pu11n.r: \\'ark.shop· JU Jun~ /Y9J ----------------

•

•

LBL-CDF Pro-ject - Status

Database loading program operational
Only loaded 300MB or raw data so far
ln~tigating performance and optimum organiution or data

Cluster similar data together
Data rrom banlc.s with same name in same daiabosc file
Da1a from a single event scaucrcd acros.s multiple files

• Two Full Analysis Programs functional
I/Psi & 8-liretime job (22 modules in analysis path)
W/Zjob (5 modules)
Identical results bc1w=n YBOS files & OODBMS
No bcnchmarts done yet rcompar.iblej

• Goal
Functional sys"'m using UniTrce by end or July

David Quarrie • PA.SS S1a1us Repon

SDC Computing Workshop· JO June 1993 ----------------

64-bit PToolNTool

• UIC Persistent Object Manager

• Sc:ilable

• Interacts with Mass Stores

• Distributed Stores

• Distributed Queries

1

l

,
"

1
1
I
l

\
' ' !
I

/ ,.
- _,,,_,,, __ >= ... -"'··-,...,...,· -"'-===· ·"'· =··,...·"'"··,..,,....,.,,,.,_ -=""-='·'='-=··"'··'""-·""-"'-·""-""'-"'-"'-=-=-=-=-="'-=""-.:."

_,,,,...-- SDC Cu"lfl"""·~ \\'oruhop ·JO Jun. /WJ ---------------­

Configuration oC ANL System

3 Drive

DD2 Tope Robol RAID
Disk

RAID
Disk

POWERparallcl
System· I HIPP!

RAID
Swiich Disk

128 nodes
(initially 32) RAID

Disk

220 GBytes of RAID Sloragc
RAID

6 TBytcs oCTapc SLOrage
Disk

UniTrcc File Managcmcn1

David Quarrie • PASS Stams Repon

SDC Computing Workshop - JO June /99J ----------------

MarklatANL

Du\·frJ Q"urne. PASS S1u1w Re pan

-
..

-

...

-

..

SOC CumpUllnJ lforuhop ·JO Jwr< 199) ----------------.._

Monitoring Related Work

• Object Management Group
Distribuicd Computing (CORBA CIC.)

• Object Database Management Group
Siandardizcd Object Database Query language

• IEEE Mass Store Reference Model Group
Ensuno consiscency between our Reference Model and theirs

• Sequoia
Large-scale Databue project a1 UCB (DEC)

• LBL
Otller work within ICSD

• ANL
Ba11lefteld Simulations

David Quarrie ·PA.SS Suuiu Repon

SDC Computing Worbhop ·JO June /99J ---------------~

PASS Summary

• Good progress towards lll"Chitecural model

• Several implementation testbeds

• On track for Mark I
End of93

• Ensure compatibility with St:indlll"ds
Framework
Rcpl•=blc componcnis from diffcrcn1 vendors

• Simulation Studies?
Do we have enough input infonn3tion'?
We do h:ivc cxpcnisc & h:irdw;:u'C/so(tw:uc

'/ - -·
Du\•i1l Quurn~ ·PASS S1u1us R~pnn

PSDF UPGRADE

S. FREDERICKSEN

-

l'la11sfor PDSF Upgrade

~11m:111 i'tl""u 1>i::1ec\OI' S1mulauon F11e1h1y 1PDSFl 111n the procal o{ being up~ lrom
·' SSCUP l'.l'•U:m '° •4IUJ SSCUP l)flla!L Th11 uppw» wdl conuao(11pl&fl0n101hc cWTCm.

.nu•u and will"'" include any new ucl\1ucwra. At~ POSF CIMIAlll oJ 4 "conab .. tKh ot
.. l\ich con'"" of , D~ SCl"lcr~ Scrwa tSGl l60l -111. U ar 16 1ndl¥1duU ComiN• 5crvcn
($p:ue l or HP·l20l 11iacbccl. from caiicna- .,11, PDSF·l ii hu bccft foiand !hat 11 ii~ 1mpor•
t:Mil to ~panic the 0111 Scrtt:r and ComJ1111C Sena' fUinCUOINluy .net so fot PDSf· 1 no mKIUMI
..... 11 &Cl H llOlll. Daui Server 11111. eorr.a-s-. nu. Uioul4 elim!MIC plObleml "'-'has bccl'I
obw:rved ..,,II\ PDSF·l when a ''corni'' l\ad \'CT'J' stow di.sit ra,onM ~Ihm: weie • numbcf ol
CPU H\ICllllW: JObl nhlltllll Oft the Dua Sena. Tbae II &110. need 10 l)UDUOft die ball:b and mtcne·
11vc uiagc and lila1 d1¥1!UGll ""'U al.so be .adraled Wllh the up:pwie.

The bardwan: upsndc i:cinsucs of tl'lrft ~ pacas: me SUN Span: 2 have been upJRdCd to

Spare LOI. Lile: HP·llOI. an: i.1111 upsradai., HP· 7)), VIG. llddiuonal SQl Ch&Ucngc·U U'C bcms
installed ilbey an: i:onswXml io be o(the SG1 l61k. allhouah lhc SCl l60s w1ll noc be
inQc:41n1. Also 1wo.i4iuonal SUN S,wc IOI h...: bocn ~IO bnnl die ll)u1 number of SUI'
WC)fll.SWIORllO 32116 pere!Xfti). lbe HPsllll1SUN1-llal10baVC thcil'mmnorymcruscdfrom ll
1ob4 M8y1CS. The softwan: 11par-Qa-1W1ofill1&1llinl Sun0S4.l.J on LIMI SUN won.muons
(~OW.ly 4.1.:\. HPUX-9.01onIMHP~slPft""'OUllY1.07).andtb&Olailcngc·U ~u
be NMUll !RIX .5.0 while me SOI J60s ..,u c:onan• ., nH' uux 4.0 • .5 until IRIX .5.0 IS l'lilllablc for
tl'le SGI J60s and !tie 11ars :ue lady to llDgn& 1bc 10ftw11n1 Uflpadil shcNlcl llCllCIUK any~
for the SUN1 $UllCt; the 01S VcnMlllSU9 vcryclole. Mdi for WI HP 11 has beC11 obla'ICGon •I lcaal­
rmdl.mc mu HPUX·l.07 binancs are c~ and can be nan on 1n KPUX·9.0l rnactunc. At
present thm= tw not tieaa uy capawncc ""Ill nmMnt_ lRlX 4.tu bi.aancs on an lRlX .5.0 machine
~ 11\e cffcet of 1has QIS uppada as 11t1knowa but lmda"mvcsopaon at 1ft1S umc. E'l'l:!lllally 1he S\JN
worutauonl wall be ~ 10 Sal- 2.l Uld dW llftlftde Wiii probably calllC $OA'IC llfObla:N
-1h l:nnary COl'll(IQtlbdiQes., howc'ICr this -11 acx. OCClll" llftU1 aim- the hanl'llflte llperade II conq»ietal.
l.nd subiUu:d.

Two of IM 4 SOl-3605 will be innsimcd 10 Ule Ptl'f'ICICirouitt in the Physics Research Division
of the SSCl- The mnauu.n1 ,_will be • .,.u.blc U Compu111 Scrtcn U l).n of POSF. This wdl
enable oUiU Phym:s groups ., connaue 10 use the SOis ror 1heir ~ns. "They can rictin a -a
UV!lilbon ofUlcir sofrinre iomc Chaalcnp-l.s runiuac IRIX .5.0. Since the 4 Qallcagc-LI ll praen1

e!ICCCd 1ile upeaed kl:id for the dala tcrnftl needL - ol ltlc OWlcnp:·l.s W\ll bc Ged&alCld u a
Compiue Scrvu mus !here -11 bc 2 SCI J60s lad I OWlcnp·L u Compule Sawn 1114 J Chai.·
lcn;e·Ls as Daia ~n. ibi11mplic:s Um theesua.1Cld fil• sc:nm11 lmd wiU be about 112-:?/J of the
O'U power of ll'le OW.lenp-Ls. The Cballcnsc·l.s U.OUl4 be able io h&ndk this load. This may
cauK mme comotw;:at-~ 2 SOI Conqiule 5c:rYcn will be NMlng IRtx 4.0 . .5 and I will be
nmn111g IRIX 3.0, ~this ll also an .i,.,uuap beause tllis Wiii pve people an opflllftllllUY '°
OJpendc lftctr\Oil-11w NM Oii IRIX 4.0 . .5 IO somi:tl!.1n1 ow nmson IRtx .5.01114 be~ for
...nen Uie sat 360I cc• uppadcd '° IRIX .5.o.

....

dRk space wlll be di.'11dcd up roup&y as follows: KO GBriea for GD\. MJQB,_.es for SDC. 16
GByicsfor DO. 16GBytc:sforCDF.and. 16081'CI ··CKben··. The nunm1con..--of me lilcsy'"
terns will also clwlp IOl"I from PDSF•l IO PDSf·l. llle new con-Kin w1ll 111C /bolnclpdsfJ
~lltlUU. SDC ft.le 1.,_oa !he SOI cornt w'U be labekd/
~. /bomtlpdsf/tck:Ol. ~dhdd)l_ alld Ille,.,_ on die SUN car.al wiil be
l.abcled~IO.~ll.~12-Eedllilesy-..,llbel__.IO
""'GB.,.a lliUcqU.col~'"""'--- IO -.V.e lartcr'l\lc syncm '*'-do.- sec bKUld""
(for eumpk-...,. or sc:mca dull.II. It is allal a,__. mu U. uers clirslona will br: siiraa
out acmu dlae ftlc ,,_ ana- all lllCIS will ti.voe~ on UI file sy-. Sor. ftk syw­
len'I$ Qft be dedlCallllS '° spca6c Jn1CCU .,,,....._, on U. n:qwranc:na ol the Uldi.v~ c:ol.labon·
\IO!llllf'OllPL

The nlllllioll fftlftl PDSF-2 10 PDSP·l will tn a COllple of peps. At present t1w1: SUN
Spare-ls ha"" been 1l,.nclld '° S...OS "4.1.l eho t.e. 9ppadld 10 Spuc-IOs W1U1 64
MB,_ of~ ...a .. pan ol PDSF·l. Nat a. HP-7205 .nU hawe dleirOIS 11ppaded fram
H.PUX 1.07 IO HPUX 9.01 lftd Ulen 1M HPs will beft lheir ~ unnded fnlm 720 10 71, -lb
64 MByiesof ~·This ..,11 ~Ill PDSF-2..5 willl will t. lhl peesaa PDSF wnh S1MR·IOs
and HP·7l5s..

Wlr.lle "" ----- bein1 llP ol lhe newOWlcn .. •LI Wiii be SCI.,, Ullli con-
1\eaed wceu- on an FDOI nn1 ud IM: 160 Glyta ot diSU fonnamcl. The fountt Challenp·L Mil
be :wxllal \OU._....,. FDDl nn1 lFDDl..Q\. o.-u. oma-... u been 1\abi\izatudail
the~,.-_...._ for PDSF·l hu be~ Ult...,.. UicR -u be• ma,.. cbsnrpaon of
POSF·l.S. The files,,_ ol IWOa:wnll "Mil m-srum fftlftl trw SOI l60s 10 tw0 of U1e O\al.
lcn1e•l.s w11n the·~ Ale syuan-cllup. Onm ail Illa g.,. beat m&Pllll!G fram the
SGl 360s lM tw0carn&s t- S\JN ana- HJ') wdl be fram llle PDSF-2 na1 and U.:
d1W on 1M SOI]60s wdl be UDdlell. ID - of die CN.Uen&e·Ls. The. SCil J60s ..,11 then be audlcd
10 Ille fDDI nn1connccmt10 U.Cllallcnl"'"L ~ Saver lfDDl..Ol. The IWOcanall of_....
lLlllOftl wtU bc &ml:hcd IO die lWO omcr ~ .. ·LI onup Vlcsr FDDI Conc:eatrnn. Ora all the
connec1IOll$ n..,. tlmflO. and U. ~- ..a0111 lflc onllftU l'OSF·l...5 will be~ anoall
OJKn ~ "'v. ... conn..-, Ahll:r au.._....,. t1oca movm io in. new ci:.itis-- the
,,..._. nle •YI- ...UI 1111Mlftlllll-•0. ·--~ PDSF. Onm V. flk IYl"ftl ,......_ 11 _.
piaaa Viii rell'm.UWll SUN Uld HP_._. wdl 1111 aaaclled m Ille~ cGfftia an4 ~
~vulM!k IO !he a-nt iuc:n. TllC •en-af l\k ,,,__will~ - pftltManl few •sen. bW 11
will &Uow inc 11111n IO ll•w _. io a&l ll'lcr f\ks d11nn1 lhe ftlDWC. Tiie laa ,_SOI l60s Illa! w1ll
fomi lhe a\Ckuof IM Wort! Croup chisu:n will be 1nsl&lled Uld 1&111p once POSF·l 11 1111 an4 n1n­
n1nc

The SClaR· 10 upsnoe" ICMdulc:ci '°be comi»eted °" fiiJILCJl. The HPUX llPSf'IOC tl.07 IO
9 01l"1.CllOSlllal IO tic c:omplcled 71".J9l alld 1he H11 h.vd- llCl,n4c woll be camoleud b1' 1/ltl/
'11 Thc Ch&llelltc·U ••LI be om.Wied 11"1~v.tar111.icc b'° ,,lQA) Tl11' -11 mu11 & "'"- ot
It: ol PDSF·!.S - II/VJ} •11n uic new "°'"'"'"'I"°" re.sv Im uoc: by lVI J/93 "Tiie rn1111er ot lhe
~""" 10 IN:,... COlllft11!11nllOfl w1U be C:°'"JllclOI by IVI UH TllC n""'l 11.rdwve 11p~ 10 f'DSF· l
•UI be c;orl\D&c1ftl ttv "lll'H

, ...

The POSF·l conn1unuon c:ons"u of) (."'ballen1c-U used u U;,111 Sc1"¥Cn un1,., wt11ch mean1
1.11111,1sen cannot lot on'° 11\e$C mad11nn. 1hc:ir only p-urpowi "10 ~' u !.Cl\'UI. Two of inc Chai·
lcni:e·l.a will nwn1ain llll G8)'1H al diV. eao:n. :and Ille ll'llrd CIQ!kn;e·l. ••II have 48 G&y1n ol d1U.
~which'' 1dollbhn1t ol11'1e 1oWd11lr. •OKC· The lfltlGBy1es 12 • IHll we llil 11CWd1U1.1 IZ
GByi-es, SCSI-Ill wh1'8 1M 411OBy1esans1hc old d11lr. lflM WCR on 1lle iwo SCI JflOI Serven. The J
Data Saven w1ll llil be connected w111t1a on an FOOi nn1 IFDDl-n. The 1-SCI J60s wh.:11 wtll
'--sfem::d IO die f'llD G....- w1ll 1lilo bll on 11111 nn1 and Conn lhe n11Cle11S of 1wo new \Nork
Group 01,11ien..

There w111 be second FOOi M1 lllKhed IO each D11a Sc:rta"11fO"tdin1fiberC100 Mb/ti connec­
tion 10 qcft eom,u.e s-. For WI 41 GByte Daia Scrler 1ni1 FOOi nn, (FDDl-01 -#Ill be au:ichc:d
10 1hc: 2 SCI 360 Ind 0Wlea1e·L Compcnc: 5c:rvm. One or the 80 OByte CWlen1e-U will be
allKfted to 31 H.P-73~51 IFDDl·ll. whale the Wrd QWlaip:·L will be •uadlc:d 10 !he 32 SUN S~
\Os (FODl-2}. The Jl woRaallOM Mii be divided 11-p lnlO •- l'O'IPlor 16. cKh of wllkh IS
attactlcd to 1n FDDI c:oncenn.IOI" whic:il 11 then alllCfled ID lhe: FDDI rin1 pn& ID Ute Om. StTYel'.
One C"KIP or~--""" br: dec:IM:aied IO bucll and ... otlltt IJ'OllP '° bl.ICll and 1111CSW:lift
usage.

~ -w1U alto be- AppUl:aDon Scrla- IRKMd IO acft Compqic Server nng. This Appliauon
Server will be NMUll tlle Andftw File System CAfSl and wdl be supply;n1 a numbes'of pni~
1ncludm1 die codlllbonuon dc:'ldopld soltwaM. E...emually when the OWlcnp~ can nan AFS this
Appllcauon Saver fllnalOMUty Ylll be moved IO !he Dala Saven. ApplM.:aaon ~(CERN·
LIB. SDC and GEM libnfta. ~cc.I -11 be ··suppliecr by a combinaoon of the Oaia Sav­
ers an4 lhe Appl~ Servers..

Thc lhra ClllT"IU ucbltccmn1 is much man: coasuat wub 1M l supported Compu1c: Sc:rYCI' ui:111-
teic:nft. 11 is alto tnucb nm dkient from a S\lllPlll'l ~ since llll lhe same ComfMe Saver
arc:h1tC1C1Uta an m the - carral.. and 1hi1 should ailO reduce the r:onf11sion 10 the 11sc:n.

Users '°llinl OMO lhll IYl1Cftl would speaCy Msua.pdsf.uc.p". Nhp.pclsi.uc..pt"', or Ntp.pdsf.­
uc:.p·· dependiri1 on wftXb type ot vduaeame !be! -t to IOI oat0. The wn.pdsf and hp.pdlf
names would UlXh Ille acn IO - of the S\JN or HP woftMauoM dedia1Cld ID 1nienmwe lldle
lim:lup. a prDP*ft like WASH. 'The 1p.pdsf nmnc will '°I thc ucr 01UO-. ol ltlc S01 360s which
will ti. dedc..& D ~ -p. The soeorldSGI 360w1U be dedicalcd IOonly bald! Ull.!e. The
CbaUence·L will br: llOCCSad by ~ryin1 1a - chnledy. and wlll su,pan a miKIUR Of i!llCIXUw
and bmcb uusc. When lM SOI Jli()f. have beea u,~ '° IRtx 5.0 Candcompmbie wnh 'he OW­
ln;e·Lsl then 1be Chalknte-L will be dc:dica&a11D tlU:tl ua1e only and m1crxave llSll' will be
resa1Clal 10 - of 'he SCI Jli()f..

This dedican. oi at lealt Ill lhc c:orn&s and 2/J al die SCI Compuic Serven 10 belcb 1s done 1n
onleT to meet Ule re:~ uw at leul .50'li and prdcnbl,.- C'len ,,._of me a.,.aliabic compuung
fCIO!ln:CI be ~ '° b.ateD 1111.ce. The soltwan: ior the bllich syuem 1s 1n pnxeu oi be1n1 pw­

'"""'-
Whh 1hi1~1be 10llJ unooin1 of disk spxc: avaab.bk •ill be ~Pl)IV .. 1nwcly 201OBy1es1160

GBy1es or new disk pl11s4K GByccs or old dislts1. w1111 son-. disk......... '"'for Ille syscem hies. Thii

Uppade S\JN'
Upp:lde HPs
Scai,o Challmp·~
Upp:lde Sof1Wen
TeuSofrw­
Sh11...,n 112 PDSF
Smip 112 PDSf· l
Recunnea POSF·l
SCIUfJ Won Groups.

• •• -.-.-au--

PDSF

!

l
' l,

Work
Groups

··.,
'· ··• ... ,.

·············~

-

-

-

•••

-

-
-
...

-
...

-

NETWORKING ISSUES

G. CHARTRAND

-

-

-

-

z
:>
c::
\!!.
.:.:
0
3:
Ci z
0

" "" >
.c
I: ..
" "' " c::
>-

"' -"' c::
w

NETWORKING RELATED ITE~.lS

Video Conterenc1ng

ESnet Uc9raa1ng

NSF net

Russian Connec11v1ty

SSC~
LABORATORY .. ~-­W>

l~ ~ i~ ire
i J ' '

' '
'

., '
I

I

I

'
'

\

'
~~

'

..J
0
(/)
(/)

' ·' !'2
£
·' D :~

-~

• ' ' ,
l
' • .,
'

VID:OO CONF:R:NCING

The Energy Researcn Video NerworK (EAVNl nas-

12 Sites (11'\ree a0d1t1ona1 on order)

17 systems (three add1t1ona1 on order\

Gateway to the Spnnt Meeting and AT&T GBVS v1oeo nerwonc.s

FTS·2000 and AT&T Accunet tor wortd-w1de !SON access.

VIDEO CONFERENCING

ERVN Status

ss-/Jf
LABORATORY

C..9QC!lallt­.,,

All systems can operate With !he H.261 stanoard

Multipoint capability with Vtel systems only

MigrallOn to lSON
4· Accunet
6· FTS·2000
4· ESnet dependent

-~
SS~
LABORATORY

::Rl/:I :30iJ CONF1GUilA710:J
AND

BONDING V.'S NON-BONDING

, , ,

SSCI..

G-3 PBX

' '

'----'-----·

I~ '1'Cl --

ERYN STATS

Total vc:r·s tnrougnout au ERYN netwcrk

Total ERYN YCF problems exoer1enced

Toni ERYN No-Snows exoenenced

Toni ERYN cancellations expenenced

T ctal ERYN scheduled VCF hours

Taul ~ctual ERYN VCF hours

.i.verage ERYN YCF length

s;:onencge and Central Facility ERYN panic:1pation

Percentage of VCF's scheduled after Z200 GMT

TELE OS
MULTIPLEXER

' '
..... o. I ! __ -_-__ n'------'

I

,\::::!

Z04 each

19 each I or 9%

46 each I or ZZ.5%

30 each I or 1 5%

35Z.S hours

Z09 hours

l hour and 36 min .

9Z% of YCF's

15 each I or 7%

Stcnencge and Central Facitity "other" room usage reflects only those ac:tN~ties
s.:neauted with me prior to the usage of the room. and are net included m the figures
c:.ioted for regular VideoConferenc:e ac:tMty.

C.:imc11ed 5/ZB/93
tl! ·. t~ie Reece

c:.: Wayne Gore

-- V•Oec·..:cnterenee St:1t1st1e:i1 reoort tor tne month cl 1.4.:iy 1 '39]

- .'.:F s a~ Stonenoge

Tou: SSC\. vcF·s

Tout SSCL scneouled VCF hours

Tout SSCL actual VCF hours

.i.verage SSCL VCF length

Total SSCL VCF Problems experienced

Total SSCL No-Shows excerienced

Total SSCL c3ncelt3t1ons expenenced

Stoner109e ~na Central Facd1ty "other" room usage

81 eJcn

l 53 hours

89. S hours

1 hour ~no 6 min

B e:icn 1 or 10'!-:i

Z2 eacn, or 18.6%

l S e3ch / or 12.7%

44 hours • not 1nc!u!>1ve

~!c~~:Y 118 total SSCL VCF's - 31 each were betweeen Stonertdge 3nCJ Cenuat

VIDEO CONFERENCING FUTURES

Mutt1po1nt using H.26t stanoare1s

Desktop video conterenctng Jn what form .. ?

Possible billing arrangements tor FTS-2000

-

..

-

-

-
..

SS~
LABORATORY

"' .. ~- lw

I

::sN::T UPG;:iAo::

We snoutd be running c T ·3 now out.

The acqu1s111on circcess will put l:pgraaes a1mos1 a year behind.

Site setec11orvcnont1za11on process restanea due 10 delay

Add1t1onat lines will be put 1n to avo•d nerwol'k conges11on

SSC~
U.BORATORV

NSFnet ISSUES

NSFnet will no tonger be "free·

c;. .. o.-­
•u

NSF's interests lie mostty in deve1ocmg g1gat111 networks tor
supercomputer appliCat1ons

The transport ct "normal" network traffic 1s to oe
commerc1al1zea.

The ·tntemet• may oecome tne •micronet" as indeC1enoen1
groups of regional networks work out tneer own linanc1a1 and
tecnmcat arrangements.

ESnet l'las independent connecttons to many regional networks.
but routing ana tranSJt tral1ic: oecome senous issues.

sscfo
LABORATORY

c.. .. c..i-.....

"'

~
c­o 0 .c u

...><: 8 ;.;
u 0 :-_

.-

t1l -!:! .
::::i Q., -~-· -

"' = u
3
---'---L

-·-- _,__ __
.--:-_, ----- -

RUSSIAN CONNECTIVITY

The Russ1an·s are ready we are not!

DOC ano Ccr.gress1ona1 restnet1ons have not cnanged w1tn tne
times

A sub-committee of the ESnet Steenng Commmee wdl
complete the management aocument 1n July which is necessary
to secure i:ierm1ss1on from DOC

The management plan will be subm1nec1 to DOC in early August

'""°'-·­.,,

RUSSIAN.'CHINA CONNECTIVITY

Strategy

Secure oerm1ss1on to route Russ1antChinese traffic on ESnet

th NASA and Europeans 10 connect Russran sites Colaborate wi

Clone AuS$1an management document tor Chana

-~
SS~
LABORATORY ...,,,__ -

-
..

V1deoC:.nierencc St:n1st1ca1 reoart ror the month ot "4ay 19'JJ

vcF·s a~ Stonenage
81 e::ach

vcF·s a~ Centn.1 F;u:1hty
37 each ..

iot:ll ss:::.:.. VCF's
118eJch

Tout S!Cl scheduled VCF houn:
1 53 hours

Total SSC.to ~tual VCF hour'.!
89.S hours

:..verage SSCL VCF length
1 hour ;and 6 mrr.

Tou1 SSCL VCF problems expenenced
e e;icn I or 10%

Total SSC:L. No-Sh~ expenenced
22 each / or 18.6%

Total SSCL cancellations expenencea
15 e.ich I or 12.7%

Stonencge :ind Central F;iellity ~other" roam usage
44 houl"5 • not inclusive

Of the 118 tot.:il SSCL VCF's - 31 each were oetweeen Stoner1dge 3nd Centr.il Facd1ty. ..

..

..

..

....

..

-

-
SDC/GEM JOINT

PROJECT DEFINITION

CEG
IBM

MEHO TO'
FROM'
DATED'

)

L. Corm~ll
J. Burton
June 17, 1993

))

SUBJECT: Identification and Prioritization of Tasks by the
Gamma, Electron and Muon (GEM) Collaboration and the
Solenoidal Detector Collaboration (SOC) at the Joint Computer
workshop, May 17-19, 199)

REF: Memo on same subject dated May 20, 1993

1.0 INTRODUCTION

Per my previous memo, at the Joint Computing Workshop for the
experimental detector collaborations held 17-19 May, 1993, a
brainstorming session occurred in which a number of items of
mutual interest/concern were identified. Reference the above
memo for additional details.

Most of these items involved development efforts in which the
Physics Research Division Computing Department (PRCD) would
play a significant role. The Computer Engineering Group
(CEG) has requested additional definition/delineation of the
subject areas from each of the collaborations. In the
meantime, the CEG has developed a consensus definition of
each of the subject area$ to present to the collaborations.
That definition is enclosed herein.

)))

2. 0 MANAGEMENT !'!'~~13

2 .1 Li3t of S•J(::f--:>!"~-:-i Syst.e!fls

The Off-Line Cor:lp•Jti!'lg Envi~onment 13 !'lCt ci.:.:i.r-.!.J-- d~:.:..:!
the Physics Communicy. There is conside~abl~ inte~es~
highly visible, readily accessible, consensus liscing o
available and/or supported systems. This listing ·1:oul j

logically be availabla in a simple te:<t fot"mat on the­
network. As a minimum, the following at"eas would be
addressed.

2.1.1 Hardware Platforms

)

j ::: :::

n a
th~

The hardware environment at the SSCL should be e:-:pl.:..::i:li·
detailed in terms of the various platforms install~d. Th13
should include engineering release information and
compatibility with pre·Jious platforms/oper.3ting syst~:;i3.
Additional platforms, not installed on-site, b1Jt corr.pat ib.!."!
with the system should be identified, if possible.

2.1.2 Operating Systems

The in3talled versions, including release numbers of the
various :;:11x operating systems supported at the SSCL should
be· identified, to include the platforms on which they a~e 1

installed. Their compatibility with previous versions sh.JOJ~d
be identified as well as compatibility with other op~ra.tin·J
systems and/or versions of UNIX, if possible. Uniq~e
problems or new features of the release should be not~d.
Hardware System dependencies should be noted as well.

2.1.3 Software Compilers

The installed versions, including release numbe~s ot the
various language compilers and pre-compilers su~porccd a~ t~~
SSCL should be identified, to include the plat for:ns on wh::h
they are installed. Their compatibility with pre•1i01..:s
versions should be identified as '.-Jell as ccmpatibili':y ·11:-:~
other operating systems and/or v~rsions of Ul'IIX, i: po3 it~~.
Unique problems or new features of ·the release sh'Juld b
noted. Hardware/.Operating System dependencies shoi..:ld b
noted as well.

2.1.4 Utilities

The inst3lled ve:s
various u:ili~ie
to include the 9la

ns, inc!·Jdi
ppcrt.-:d at
.:>r:ns Qr:. wh!

g r.:.!.o:a.se n·..::rl:~
he S3..::!.. .:;::')1J.!. :!
!1 :!':i::y ~=-: :.:-:.:;::::

..:: : ~. ··=
:.::-::·::.::.~ :.

_.;:.: -:·~~~.:·

compot:i.bilii:.:r· •Nir:h pce·1io11s •1~r3i.on.3 shculd be identi:ied a:>
·Nell as compatibility with ':>thee oper-.3.ting systems and/oc
versions of UNIX. if possible. Unique problems or new
featu?:es of the relea.se should be noted. Hardw3re/Oper3.ting
Syst~m dependencies should be noted as well. Third party
•;endors, licensing agreements, usage limitations and other
pertinent data should be made available as appropriate.

2 .1. 5 Communications Soft·11are

The installed ver5ions, including release numbers of the
communications sOftware supported at the SSCL should be
identified, to include the platforms on which the software is
installed. Compatibility with previous versions should be
identified as well as with other utilities, operating systems
and/or versions of UNIX, if possible. Unique problems or new
features of the release should be noted. Hardware/Operating
System dependencies should be noted as well. Third party
vendors. licensing agreements, usage limitations and other
pertinent data should be made available as appropriate.

2.1.6 SoftNare Development Tools

The installed versions, tncluding release numbers of the
various Software Development Tools supported at the SSCL
should be identified, to include the platforms on which they
are installed. Their compatibility with previous versions
should be identified as well as compatibility with other
software development tools, operating systems and/or versions
of UNIX, if possible. Unique problems or new features of the
release should be noted. Hardware/Operating System
dependencies or integration dependencies with other tools
should be noted as well. Third party vendors, licensing
agreements, usage limitations and other pertinent data should
be made available as appropriate. Methods of access to
shareware and SSCL developed software should also be
identified.

2.1.7 Project Management Tools

The installed versions, including release numbers of the
various Project Management Tools supported at the SSCL Off­
Line Computing Department should be identified, to include
the platforms on which they are installed. Their
compatibility w~th previous versions should be identified as
.,...ell as compatibility with other projec:: management tools,
sof::war-c dev·elopment tools, operating systems and/or versions
2t UN!:<, .:..: ~ossibla. Uniyue problems or ne'.v fc3t;.iras ot the
r-ele3se shculd t:e net.ad. H.:irc!wa:-e/Operating S~'stem
d:per:.denc.ies shculj t:e :"loted as ·.vell. Third party ·Jendor-s,

4 • f • f

licensing ~'1=-'=~~~nr:.3, 113.:i.i;~ limitat!.·;:-. .j ;::j ;i:h.::: r--:-:-.~:-:..,:·.~
dat-3. sho1Jld br: made availabl~ -3.S a~pr'".)~r:.3:~.

2.1.8 Network Management1Adminisi:.rat1·Jn._::._~.:i.lj•si.3 '!'-.:-·:::3

The installed versions. including release number-:.; o: t:~e
various Network Management Tools supportej at the S3C~ cr:­
Line Computing Department should be iden:ified. to incliJd~
the platforms on which they are installed. Th~ir
compatibility with pre•1ious versions sho1Jld be ident if ~~rj a::;
well as compatibility with other utilities. network
management tools, operating systems and/or versions of Uti!:(.
if possible. Unique problems or new features of th~ r~l~as~
should be noted. Hardware/Operating System d~pendensi~s
should be noted as well. Third party vendors, licen3:i.n~
agreements, usage limitations and other pertinent da.t.:i. sh,~·i:·..!
be made available as appropriate. Methods of access t~
shareware and SSCL developed software should also be
identified.

2 .1 9 Other Software

The instailed versions. including release numbe:-s of the
various :JU"port software ~ta include SDCSIM, GEMfAST, GE..lJIT
and associated Physicist Applications tools should be
identified, to include the platforms on which they ac~ 1

1
installed. Their compatibility with previous versions shou!.O
be identified as well as compatibility with soft·.vare
development tools, utilities, other operating systems ar.di-:.r
versions of UNIX, if possible. Unique problems or ne·.v
features of the release should be noted. H3r-dwa:-e/C[::-:!r3~ :.:i;
System dependencies should be noted as well. Usag~
limitations, known problems and other pertinent da.t.3 sti.c•itj
be made available as appropriate. Methods of ac:ess t~
shareware and SSCL developed software should also be
identified.

2.2 Standards

The di·1ersity of the developing c~mmunity iri t-=rms of
geographical location and skill levels requir-=s that. a r:')rJ';~r:-:
set of software development. project management.
couununications, t.esting, documentation and quality st.3:!':!.l:--:!:.
be implemented and propagated across all development gr:::·ips.
As a minirnwn the following areas are seen as candidates ~=~
standardization.

2. 2. l Software De·:elopment Pr:Jcess.

Standarjs should be established for defic~:i·J~ o: th~
so:t:.var9 de•1elopme;it process. The .it.3.:-.c!a::-:!:> s!"'.c1.:.!.:! ::::·:·: :.::

• f ' • • •

))))

[\)r che tl~;.;:ibiliti' cv s.;lect 3.mong 5vme r:eason.lble sub8.:t o[
softw3re development methodologies, depending on the specific
requirements of the project .. .\mong the potential subset of
acceptable standards which should be evaluated/incorporated
are the following.

2.2.l.l Waterfall

2.2.1.2 Iterative Waterfall

2.2. 1.3 Incremental Waterfall

2.2. 1.4 Structured Rapid Prototyping

2.2.1.5 4th Generation

2.2.1.6 Spiral

2.2.1.7 Reusable Component Composition

2.2.1.8 Exploratory

2.2.2 Project Management Planning

Guidelines should be developed for the process of project
planning. The areas that should be addressed are identified
in the following subsections.

2. 2 .2 .1 Task Definition and Assignment

2. 2 .2. 2 Task Prioritization

2. 2. 2. 3 Task Scheduling

2. 2. 2. 4 Resource Loading

2. 2. 2. 5 Risk Assessment

2 .2. 2 .6 Activities/Milestone Identification

2. 2. 2 . 7 Project Scheduling Terms and Symbols

2. 2. 3 Software Development Planning

Guidelines should be developed for the planning of a software
development effort. The areas that should be addressed are
identified in the following subparagraphs.

2.2.3.! Met~cd Selec:ion

:! . 2 . J. 2 30f ::·11a :-e De·,.elopment 2nvi ronment S-=lec:: ion

))))

2.2.3.3 Si~ing Estimation

2.2.3.4 Risk A~alysis

2.2.4 Software Analysis

Guidelines should be de•1eloped for the selection of an
.3nalysis method appr0priate to the type of softwari:
development project and selected software de•1elopment mett".i:d.
A list of appropriate software analysis me~hcds should c~
identified. The list should be a subset of the following
subparagraphs.

2.2.4.1 Structured Analysis

2.2.4.2 Modern Structured Analysis

2.2.4.3 Object Oriented Analysis

2.2.4.3.l Coad/Yourdon Method

2.2.4.3.2 Schlaer/Mellor

2.2.4.3.3 Rwnbaugh et.al.

2.2.4.3.4 Booch

2.2.4.3.5 Jacobsen

2.2.4.3.6 Meyer

2.2.4.3.7 Others

2.2.4.4 Jackson Method

2.2.5 Software Design

Guidelines should be developed for the selection of :t

software design method appropriate to the type of sc!:·..,c:-~
development project and selected soft·Nare de.,eloi:meni: me:!'-11.::d.
A list of appropriate software analysis methods shou!1 b~
identified. The -list should be a subset of the foll~wi~g
subparagraphs.

2.2.5.1 Structured Design

2.2.5.2 Meder~ Struc~ur~d Design

2.2.5.3 OCjes~ Gr!e~c~d Design

)

2.2.5.3.1 Coad/Yourdon Method

2.2.5.3.2 Schlaer/Mellor

2.2.5.3.3 Rumbaugh et.al.

2 . 2 . 5 . J . 4 Booch

2.2.5.3.5 Jacobsen

2.2.5.J.6 Meyer

2.2.5.J.7 Others

2.2.5.4 Jackson Method

2.2.7 Software Progranuning Languages

A standard set of programming languages should be established
for the SSCL and the collaborations. The set should be a
subset of the languages listed in the following
subparagraphs. Extensions to the associated languages should
be discouraged. For those languages which do not include an
approved standard, an in~house standard should be adopted
that is compatible with both the selected compiler(s) and any
proposed standards.

2.2.7.1 FORTRAN 77

2.2.7.2 FORTRAN 90

2.2.7.J c

2.2.7.4 C++

2.2.7.5 Assembler

2. 2. 7. 6 Others

2.2.8 Coding Standards

Coding standards should be adopted for each of the approved
languages. As a minimum these standards should address the
areas identified in the following subparagraphs.

2.2.8.l Language Extensions

1. 2. 8 . .; H=:t.de~s

2.2.9.3 Call Str~ctu~e

• f • • •

2 .2 .8 .4 Interpr-;c-:33 C:Jr:-municati'.:ln

2.2.9.5 Exception Har:dlir:g

2.2.9.6 Interrupt H~nd!ing

2.2.8.7 Garbage Collection

2.2.8.8 Process Initiation/Completion

2.2.8.9 Statusing

2.2.8.10 Program Structure

2.2.8.11 In-Line Documentation

2.2.8.12 Reserved Words

2.2.B.13 Naming Conventions

2.2.B.14 Data Structures

2.2.8.14.l File Structures

2.2.8.14.2 Clas& Structures

2.2.9 Documentation Standards

A minimum set of documentation should be established for ea~h
type of software development effort. Standards f3r
establishing the documentation set within the Soft~are
Development Plan should be incorporated.
Guidelines/Templates should be established for all
documentation. The documentation for each project should
include, as a minimum, a subset of the document3tion
identified in the following subparagraphs. This
documentation requirement should be incorporated in the
software development plan for the project.

2.2.9.1 f lnctional Specifications

2.2.9.2 System Specifications

2.2.9.3 Software Req1Jirements Specifications

2.2.9.4 Soft~are Design Document

2.2.9.5 Database Design Document

2.2.9.5 Test Pla~

2.2.9.5 Tes: ?:~ced~=~s

• • ' ' • '

)))

2.2.9.7 Test Reports

2. 2. 9. 8 Software Development Folders

2.2.9.9 User's Manual

2.2.9.10 Operator's Manual

2.2.9.11 Release Description Document

2.2.9.12 Interface Requirements Specification

2.2.9.13 Interface Design Document

2.2.10 Software Review Process Standards

Standards/Guidelines should be established for the software
review process. The standards should identify the software
reviews required for each type of software development
project. They should include guidelines/templates for each
of the software reviews as well as review timelines and
specific review goals. As a minimum. each software
development project should include a subset of the reviews
identified in the followtng paragraphs.

2.2.10.l System Specification Review

2.2.10.2 System Design Review

2.2.10.3 Software Requirements Review

2.2.10.4 Software Design Review

2.2.10.5 In Progress Reviews

2.2.10.6 Walk-Throughs

2.2.10.7 Test Readiness Review

2.2.10.8 Functional Configuration Audit/Physical
Configuration Audit.

2.2.11 Testing Standards

A set of standards should be identified for the testing of
.:;vft· •. wa:re. The standards should be tailored to the software
de'!e.:.J~mer.t method selected for the software development
pr:)J,;Ct. .l..s 3. minimurn, some subset of the testing identified
.i.:1 ::he f-:Jll-:;wing subpa:-3.graphs should be addressed. The
p!'."O[:osed r:.es::.ing appr')"-Ch shaul-:i bi: i.:lcluded in any sofr.ware
dev.o:l0pment plan.

)

2.2.11.l Inf~r:nal Testin7

2.2.11.1.1 Unit .Level

2.2.11.1.2 Subsystem Level

2.2.11.2 Formal Testing

)

2.2.11.2.1 Test Plans and Pr0cedures

2.2.11.2.2 Test Reports

2.l.11.2.3 Test Coverage

2.2.11.2.4 Test Team Makeup

2.2.11.2.5 Test Responsibility

2.2.11.2.6 Test Approach/Philosophy

2.2.12 Software Metrics Standards

))

Software metric standards should be established for e~~~
language used in a proje~t and for each project. As a
minimum. the areas identified in the following subpa~agraphs
should be addressed.

2.2.12.1 Project by Project, Department, Collaboration or
Lab Wide

2.2.12.2 Based on Coding Standards

2.2.12.3 Standardized Toolset

2.2.12.3 In-Line Docwnentation

2.2.12.4 HcCabes Complexity Metrics

2.2.12.5 Halsteads Complexity Metrics

2.2.12.6 Other Metric formulas

2.2.13 Software Problem Reporting

A set of procedures should be established :or 1.d.:r: --: -··;!·
reporting, documenting, pricriti=ing, e•:aluat1.ng, ::-:::-:1 . .: .. ,
implementing fixes to problerr.s. The precess shcu: ::::~.:::!<::
some automated, easJ-· tQ use, tools t::> ensu:-e repc:-~_::-.; 5'~ . .:

tracking of the pr-::bl-;m r:o c-los1Jre. The pr'.Jt:es3 sr.;·~:.: !:-:­
applir:abl~ to l:::or::h r:.he de·1<;!!0pm~nt .,_n<i mai:1':~~"::r::~ ri: i ·; ..

both soft·,.,are and doc·.lment:..Jtion.

)

2 .2. l..J Software De•1el0pment Cr.;infi 11ur.3.tion Manag,:;:ment

A set of procedures should be est~bli3h~d to manag~ change to
de'lelopmental software systems. Although de.,elopmental
systems do not require as rigorous a configuration control
system, it is important to track changes during the
developmental process that may lead to deviations from
approved system requirements. The procedures should identify
responsibility for configuration management and cont~ol.
Responsibility identification should include establishment of
developmental configuration control boards, configuration
management, library management, document and software change
control procedures, etc. An automated tool set should be
identified to support the configuration management and
control procedures. Critical to the process will be the
capability to manage both traditional development effort
software and documentation and Object Oriented development
software and documentation.

2.2.15 Production Software Configuration Management

A set of p~ocedures should be established to manage change to
production software systems. The procedures should identify
responsibility for configuration management and control.
Responsibility identification should include establishment of
configuration control boards, configuration management,
library management, document and software change control
procedures, etc. An automated tool set should be identified
to support the configuration management and control
procedures. As in the development process, critical to the
process will be the capability to manage both traditional
development effort software and documentation and Object
Oriented development software and documentation.

2.2.16 Software Certification Process

Standards for certification of Framework software and Physics
Application software must be established to ensure that
inclusion of new sof t~are or upgrades to existing software do
not unwittingly result in system failure. The certification
process should be incorporated into formal testing procedures
and Configuration Control functions.

As a minimum, the software certification process will ensure
that the deli·1erer of the software: ll includes the
docurner.tation identified in the Soft·,..are Development Plan; 21
h3s ==~;la~ad :~e formal Re~iew pr~cess identified in the
Scft· . .,..3:-a !:'eve!Of::ment Plan; 3) has been audited for adherer:ce
:.:> :.'.""!: ·Ju:i.lity .;ssur3nce st3ndar:!s :ind sof:·,..ar-= mei:rics
ijen:.:.:.:ad in t:-te 3oft·Na!'-: Cevel'.)f:menc ?l:i.r.; 4l has com~l:~ed

• • • • •

the for:nal T~3tir:.;i identifi~·j in the S·::.C-:;1.,.:-.::: ':-?·:.:::l·.:i.:ir.-::::
Plan; 51 has documentad and addressed ani' lier.3 r~3·~1r::.:-:1
from formal a•.Jdits. re·1iews and testing; 61 ha.J t:orr:(:l~-:~·.! :!.::·_.
Indeo~ndent '/~ri ~ication and 1/alidat ion :le:: i ·;!.-: !.~3 :'.-':·J·..:.: :·-': ~
by the Soft-..,..are De•1elopment Plan; 71 has adeqL.: t-:l·; r:~~.J.·:-:-~
the requirements through the design to the del ·;-=:::-:::rJ 5':'3':~~.;
and 8> n~s prov~ded an adequate plan for train ng o:
users/~a~~tainers.

2.2.17 CASE Toolset Standardization

It is importa:i.t to establish a scandarj f·;:::­
implementation/integration of CASE tools into the Fh:r·.;;1.cs
Research integrated development environ;nent s;.ich as .~.:1.3! I?:.s
or IBMS Repository or the Portable Common Tools Ir.ter!3t:-:
(PCTE+), AO/Cycle, POSIX or others.

2.2.18 Graphics User Interface (GUIJ Standards

The GUI software we develop or purchase should conf or~ t~
industry standard or de facto standards. For the GUI, ~~J-:
standard is probably X window and Motif. The standa:::-1s
should be evaluated and a standard approach should t~ ch~s~:-:.
implemented and propagated.

2.2.19 Distributed Processing Standards

The distributed processing software we develop or purchaso::
should conform to industry standard or de facto standards.
For the distributed processing envir-onment, at le3st CC'E 31:'~

CORSA should be evaluated.

2.2.19.l Remote Procedure Calls

Refer to para. 4.5

2.2.19.2 Parallel Programming

Refer to para 4.5

2.2.20 Database Standards

Some standards must be adopted for the use of Data 8 s~
Management Systeffis (DEMSsl to inc!.•Jde ::ioth r-:laticn;. -j!°:-:!

object oriented databases. Standards must be identi :~: ::~
SQL utilizatior. as well.

• • • ' 4 •

)))

2.2.20.1 Relational

The selection of the SYBASE Relational Data Base Management
system (RDBMS) implies the necessity for establishing
standards for in house development in the ROBMS environment.
This should include standards for utilization of SQL
commands, populating the data base, docwnentinq the data base
structure, etc.

2.2.20.2 Object O~iented

The Object Databases ODMG-93 standard should be evaluated for
impact on Off Line computing products and the probability of
it being implemented in the commercial marketplace. In
addition, standa~ds should be established for implementing
C++ commands to the data base for database reads, writes,
queries, populating the data base, documenting the data base
structure, etc.

2.3 Software Fielding

Standard procedures must be established for the
implementation of new software releases to include conunercia·l
products, in-house softw~re.and Physics Unique software at
both the Systems and Applications level. As a minimum, the
activities in the following.subparagraphs should be
addressed.

2. 3 .1 Migration to New Operating System

2.3.1.l Notification of Upgrade

2.3.1.2 Identification of Upgrade Impacts

2.3.l.3 Plan for Transition

2.3.1.4 Notification of Proposed Fielding Schedule

2.) .1. 5 Consensus on Fielding Schedule

2.3.2 Software Upgrade Strategy

2.3.2.1 Notification of Upgrade

2.3.2.2 Identific3tion of Upgrade Impacts

:.3.2.3 Plan fur Transition

.2. 3 .2 . .t Noti:.:.c3r:0n 0f Pr')pcsed :i.eljing Sc!"'.edul.:;

)

2.3.2.5 Conser!.sus on fielding Sch~dl!!..::

2.4 Staff/Use~ Trai~ing

A unified approach must be established to ensu~~ ~ha
users/developers in the SSCL Off Line computing envi
can maximize their utilization of the enYironment.
minimum, the following course materials should be ~d

2. 4 .1 CASE Over·1iew

2.4.2 Development Overview

2.4.3 Methodology Management

2.4.4 Planning Skills

2.4.5 Planning Tools (basic and advanced)

2.4.6 D~ta Gathering

2.4.7 na~a Modeling

2.4.8 Function Modeling·

2.4.9 Analysis Tools (basic and advanced)

2.4.10 Applications Design

2.4.11 Database Design

2.4.12 Design Tools (basic and advanced)

2.4.13 Application Testing

2.4.14 Verification and Validation Tools

2.4.15 Construction Tools (basic and ad·1anc~dl

2.4.16 Documentation Design

2.4.17 Documentation Tools

2.4.18 Project Management

2.4.19 Project Management Tools

2.4.20 Process Management Tools

2.~.21 Jo.:.nt A~plic3:i0ns Ce~e!cpmec: S~ssi:~3

2. 4. 22 Knowled~e .1 :::i:e;ios i '::)rJ .:.Jo~d.!.nd':: ;~

))

3.!.:
~r::::en:

s d

r-:s3-:d.

2.5 Quality Assuranc~

There is a lab wide requirement to support an integrated
Quality Assurance approach to all efforts. Quality Assurance
efforts must be integrated into all aspects of the project
life cycle, to include establishment of standards, formalized
reviews and feedback procedures, problem reporting, tracking
and process improvement. To the extent possible, the process
of Quality Assurance monitoring must be automated, to ensure
the appropriate level of feedback to the developers and
maintainers. Areas that should be addressed are identified
in the following subparagraphs.

2.5.l Standards Establishment

2.5.2 Document/Code Reviews

2.5.2 Requirements Tracing

2.5.3 Problem Reporting Tracking

2.5.4 Verification and Validation

2.5.5 formal Testing

2.5.6 Configuration Management

2.5.7 Software Metrics

2.5.8 Process Improvement

3.0 USER ENVIRONMENT

3.1 Common UNIX "Environment

It is important for the Off Line Software Development
Environment and the eventual Physics Applications Environment
to have a common ~Look and feel• This may be accoprnlished by
the Common Open Software Environment (COSE) initiative,
however the success of this effort is not guaranteed. This
implies the establistunent of a set of PRCD and/or
collaboration standards for the environment to include items
identified in the following subparagraphs.

3.1.1 Window Management (X-window, Motif)

) . !. . 2 G~ru sof:·,...d:::-e {Er-t::i.cs, G++, e':c.

) . 1 . 3 S~andardi:ed Command s~r: (f~r all machines1

4 • • • •

3.1.4 Standa:::-di?~d E:-::,.i:?nmen:: ·:aria!:!~:> 'f:'.·3.':~3. ~~ :.

3.1.S Shdr.;d Lib:::t:-.r, C::rrmon Di::~~t·:>!".! T!:~~ S-:!-·1:-:,;:

3.1.6 Interface Control Documenc::>

3 .1. 7 Standardi?:ed Software De•1elopmen: Teo!..;

3.2 Data Modeling

There are currently a variety of data mcdels a.>.>cr::..lr:'=d ·,, .. :_ -··
Physics data. Although not formally presented as s~ch. :~
file structures of the ZESR.:\, BOS, YBOS. and Adamo o!- t~.: ~
models such as Cheetah and GIZMO systems may be ·1ie•.·•e::i .:13

working physics data models. The challenge fa: the o::-l~~~
computing environment is to present a robust, work:ng me~~!.
of physics data for the petabytes of raw information to t~
produced by the individual detectors. The additiona!.
complexity of making the data available to fORT?_l._;/ 77.
FORTR.Ati 90, C and c ... + as well as a relaticnal ar.d,or ~t;-::-:
Oriented ~ata Base Management System increases the ~talle~1~.
In order co reduce the probability of having to re·1is.::
applications code and to ensure system utility and u3~r
confidence, it i~ important that some preliminary dat3
modeling efforts be initiated as early as possible within th-:
off-line software development effort. Properly employed,
this methodology can ensure correctly normalized dar::a,
without redundancies and with only logically cor::ect
dependencies. In addition, data modeling prepar-:s th~ ·11a·;
for unbinding the data from the process and st:iri!1g t~ie d:l: 3

in databases. Thus data modeling makes things simple: f0~
the applications developers. This must be balanced with t!:<J
potential for too early an implementation becoming obs'Jl~r:~
as a result of changes in the on-line environment oc ·::it!".e::
unforeseen modifications to requirements and the result3nt
costly modifications to database structures.

The task of data modeling covers both the descripticn 0~ :~~
data and the methods of accessing the dat.3. .;mong ~he i3s·J.:;:_~
to be addressed are: ll what data shall '.lie store; ~' r.·:·.~·
shall we organi::e the data; 31 hew shall we store r:~e d~:;;
4 I how shall we provide a uni form, or'Jani ::ed A~p l i.c.:ir:: !. :;r,3

Programmer Interface for user storage, recriev~l and
manipulation of the data.

Generic tasks associated with this effor~ ar~ ide~::.~:~·i -··
the following subparagraphs.

3. 2. 1

•

Ec:i:y:~b:e~: [je~r:::fi•:3:i~r. ~Gd ~~fi~~"..::~.
~~e iJse 'Jf Su!: T"i:::'=s 3.r.-i S•.:r;~!: T'/;::"!3.

• • •

--

' •

)))

3.2.2 Attribut~ Defi~ition

3.2.3 Domain and Data Type Definition

3.2.4 Relationship Identification and Definition

3.2.5 Identifiers and Their Use

3.2.6 Entity/Object Normali=ation

3.2.7 Entity/Object Model Partitioning Using Subject Areas

3.2.a Methods associated with the Objects

3.2.9 Interface ·Controls/Applications User/Programmer
Intet'f ace

3.3 Data Definition Language (DDL)

Conventional data modeling has tended to focus attention on
the fundamental units of information of a system entities.
The Off-Line computing efforts need to be able to model much
more complex aggregates of information, which may change
their composition over time. This takes us much more towards
the Object Oriented Design concept. Most integrated
programming support environments provide both a data
definition language and a data manipulation language,
accessible via a user interface, for the
creation/manipulation of objects in the development database.
So far these languages have tended to be product specific,
and to use non-SQL syntax, making them difficult to use. It
is important to identify/establish a data definition
environment in keeping with the open systems concept and in
support of the data modeling effort.

3.4 Physics Units

Off-Line computing must support a standardized set of physics
units for each of the collaborations. For example, all
routines that make use of position variables should use the
same standard (i.e., meters vs. centimeters). This will
support data and code transportability, reduce software
development and maintenance costs and support the open
systems concept.

~.O CODE BUILDING BLOCKS

~.1 C!3ss Libr3r:es

The ~a·:s:=~m~~~ ~~ ~:~ss libr!ri~s 3up9c::s the c~nce~cs ~E
i:l.CJr:na.o::::on ·h:j:ng a.r:.d sof'::Na.r'= =~use. T~rough th~ use of a

)))))

c c!.3.ss libr3::-::· ·.:ine can incli;de mon:i,. ct~::::..r:.:..r:: :n.; ·.-;:.::-: _i

single nome. yet at the same time ensure that only t~~
minimal number of definitions is included i!1 \:he !'~S'.!l::..::1
progr3m. In fact, the greatest possibility for so::-; ·,.;a::-.:
reuse and subsequent improvements in software de·.1elcp::-:.ent:
efficiencies is in the early development of Cl.3.ss Li.br3!"!.-?5.
Class libraries must be identified and developed both f0r
general purpose support tools in the Framework en'.·i :-cr:meP.~
and physics specific applications support so~t"are. .;r.ong
the efforts required in developing Class Libraries a.re- ':3s'.-:.;
identified in the following subparagraphs.

4 .1 .. 1 Identify the Concepts/Classes and The1 r Most:
Fundamental Relationships

4.1.2 Refine the Classes by Specifying the Sets of
Operations on Them

4 .1. 2 .1 Classify These Operations/ Identify Class Met hod.s

4.1.2.1.1 Construction

4.1.2.1.2 Copying

4.1.2.1.3 Destruction

4.1.2.1.4 Other

4.1.2.2 Consider Minimalism

4.1.2.3 Consider Completeness

4.1.2.4 Consider Convenience

4.1.3 ~efine the Classes by Specifying Their Dependencies ~n
ether classes

4.1.3.1 Inheritance

4.1.3.2 Aggregation

4.1.3.3 Use Dependencies

4 .1. 4 Specify the Interfaces for the Classes

4.1.4.1 Separat~ Functions into Public and Protected
Operations

4.1.4.2 Specif'.!· the E:<a.ct 'I'_lpe o~ Cpe!"-3:ir,r:~ o~ ::!e ·~:13>-!.:

,

_,, .1. 5 Idantify Commercial Cla33 Libraries 3uch as th~ + ..

Booch Components or Public Domain/Sharew3.r<: Class
Libraries That Might Support the Class Requiremer.ts.

4 .1. 6 Establish In-Hous·e Development Projects for
Environment-Unique Class Libraries.

4.2 Object Persistence/Data Management

File handling is the most critical function of a software
applications program. Unfortunately, the management of dat3.
in the off-line computing environment is complicated by the
use of multiple programming languages and by the dearth of
C++ file handling class libraries. This leads to the
requirement for the development of an approach to ensuring
object persisten~e. A persistent object can be stored
outside of a program for later retrieval. Such objects are
considered persistent since their state persists between
instances of an application. In essence, persistent objects
are objects that can be stored in files. It is not entirely
accurate to view objects as data structures with associated
functionality. An object is a program component that has an
identity and a state. The identity and state involves
relationships to other objects, static class members, virtual
functions and base classes. In storing a persistent object,
the identity and state of the object must be preserved. Only
an object itself can know how to preserve its state; thus
only an object can be responsible for controlling the storage
of its components. When the object is retrieved, it should
be able to construct itself based on the data that was
stored. A number of the possible approaches to ensuring
object persistence and issues to address are identified in
the following subparagraphs.

4.2.l Extended iostrearns

4.2.2 Parameterized '{ypes

4.2.3 Inheritance Persistence

4.2.4 Data Blocks and Pe~sistence Classes

4.2.5 Resolving Pointers/References Across Address Space

4.2.6 Maintaining Consistent Class Descriptions

~.2.7 Data Base Management System Storage Mechanisms

4.3 Ctje~~ T~~~spcr:/Data Transport

• • • • •

The distributed -::rr.[:•..::i.n1 en·1ir:Jr:~ent 333;.,::.i:~:! .. :~::l :::~
Physics Research ·):: !..ine computing eft·::>r: req•..::.r~3 r::!.;.: .J

standardized methcd b'3 made av.Ji!able f :r pack3~:.~~ 1r.~
transporti:-ig data both acr':>S3 the net·,..r0?"!c 3.ni ~·..:o:.3:.':!~ :::: ::!-:­
SSC environment. The approach to dat3 s-=·)ra']'= m1J.i: .J•.i;:~>Jr·':
both the wide va::iety of platforms and 3~oragi: rr.e:!:..i a~d t::~
variations in Operating Systems versions supported.

4. 4 Inter-Process Ccmmunication (IPCI /Communi~:it :.tJn La.:/~r

There is a requir~ment to pro~ide Inter-Pr~~~33
Communications between procedures executing on a rra.::r.:.~-= -:::·
across the network. A standardized approach mus:: be 3-:!-=·:":.-':J
t:::> support this communications service. The or-i;i:.:-:3.l c:n•:-:r::
of !PC, commercialised by Sun Microsystems is a s.;s3:.·Jn 1~:·~::
communications protocol, layer 5 of the Open Systems
Interconnect (OSI) model. It is typically implement.;d
through a combination of sockets and port mapping. T!'"':e !"!-=:-::
generation approach is the utilization of the OSI cOm(::a":.1t!e
transport mechanism based upon streams and acces~d ti-' ;.;;·,,. -::::
a Transport Librar.1 Interface (TLIJ. The underl'Ji:-:g 5'Jt:~·:.r-.:
protocol would typically be the transpor: prot?col, Tr~ns~s::~
Control Protocol (TCP) or UDP, layered on the net·,..ork
protocol, typically Internet Protocol I I?J. The ad·:3r,(d.'J"=S
cited are typically a lo~ protocol overhead, flexibil!.t'/ ..:i.nct
a resulting higher data transfer rat.e. The disadvant3.ges
include a lack of buffer control, and a lack of eXte:-n..:i.l c~:3
Representation (XDRl support. Layer 6 of the OSI model. 1

4.5 Remote Procedure Calls/Process Control

A Remote Procedure Call (RPCI establishes the ability f0r ..:i.
procedure to call other procedures outside of an
applicat:ion' s current address space. In othe: words, a. loC".J 1
progran can execute a procedure on a remote machine, passing
data to a~d receiving data from the remote piocedur~. Th-=!"~
are currently at least two 12) popular RPC facilities. Th.:;,"/
are: 11 RPC by Sun Microsystems Open Net;.rork Computin1 !OUC;
group; and 21 RPC defined by OSF DCE. The advantages a: P.t=•.:
approach are the additions of buffer- cont:ol and e:<:-=::"!3~
Data Representation IXDRJ supper~. The disad·.,.·ant3ge :.s
increased protocol overhead. The alternatives shot.:l·j t;e
evaluated and an approach selected.

5.0 TOOLS/UTILITI~S

5.1 Graphic User Interface {GUI)

5.1.1 Standarjs

• • f • • •

)))

Req1Jirement3 must be established for the GUI environm.::nt
based on the standards identified for the Physics Res~arch
Integrated Development Environment (PRIDE). Refer to Section
2.1. Once those requirements are established, the requir~d
toolset must be identified/defined, acquired/developed and
propagated/ integrated into the Framework softNare.

5.1.2 GUI Builder

Foremost among the required GUI toolset is a GUI Interface
Builder. A project must be established to: l} evaluate the
various public domain and commercially available GUI
Interface Builders for applicability to the PRIDE; 2) acquire
an appropriate GUI Interface Builder; and 3) integrate the
GUI Interface Builder into the Framework environment and
propagate it to member institutions as appropriate.

5.2 JD Graphics

5.2.l Standards

Requirements must be established for the 30 graphics
environment based on the standards identified for the Physics
Research Integrated Development Environment. Once those
requirements are established, the required toolset must be
identified/defined, acquired/developed and
propagated/integrated into the Framework software.

5.2.2 Event Display

There is a requirement to display experimental data in a 30
format. Standards, a common approach, and the necessary
toolset for supporting such displays should be established.

5.3 Job Control Parameters

There is a requiiement to establish a common •Look and Feel•
process fer the initialization of run time parameters for
various user applications software. This process would allow
the user to set/store run time switches and parameters fa~
the execution of the program, to include the selection of
batch vs. interactive execution and tabular vs. 2D or 30
graphic output.

5 . .t Non Event Data Base

The~e i5 3 r~quirement to provide c~a capabilit
r-::cri~·-;.: non-e•:-::::1:. data such as G.:0met.=:-,i data,
data. test re.sul:s, :'totes, documentation. co::-::-e

to 5C.:O
a:.ibrac
pondenc

ar:d

))))

and other mi.i=el:.1~~;~5 ·j5~a f·Jr ac:~~3 1:r:JJ ~~
collaborations.

5. 5 Par:::-1 lel P~ocess ing Support

)

Central to the design of the Physics D~tec:o!" Si::i'..:.la:i,;n
Facility is the Concept of discrete simultane'.Jus ~r..::i-:-~55:.::1
of event data. This implies a unified ap~roac~ to ~~r3!l~l
processing. There should be a projec: to e'faluat~ Obj~i:
Transport. Inter-Process Communications (!FC), Rexoc~
Procedure Calls, and Multi-threaded Processing. ::·1:3.l'.!.!:::~J
should include products such as P1111, Linda, P4. CPS; E:-:p!"0:-55
and others with the objective of establishing a
procedure/process and associated support tools th~~ ~n~~~~
the efficient, transparent parallel execution of sofc:.·1~re :.:;
the target environment.

5.6 Detector Geometry Definitions

Each of the experimental collaborations r:quirss p!".:-:-:3~
information on the detector geometry. This informaticr. x1~3~
also be stored in a format that is easily modified. For
example, the code that will reconstruct tracks in th~ sili=~:;
strip detector will need-co know the location of the
individual strips with respect to the rest of the dEi:~ctor.
An exact, generic geometric description must be made
available to detector simulation developers across each ~=
the experimental ·collaborations.

5.7 Miscellaneous Physics Support Tools

The physics applications software written by· the ex~e!"i:r.enr:3!
collabora-tions will require a variety of subroutine5 i:..:i

assist in calculations. Examples include the Histog~ammi~~ •
packages, the Minuit routines and Physics Analysis
Wor.kstation IPAW). Although all of these routines ari: pa~:
of the CERN Program Library, there are a number of or:~~!"
potential sources for similar routines. The sour=es ;r.•.i:i!". i:<:
identified, routines selected, dccument3r:ion ac'.:Juiri:-j ·J!"

developed and pr::>pagated to the collaborations and t:.:10:::
routines themselves must be int~grated int0 the fram~·,...::rf:.

environment both in terms of us~ and maintenanc~.

6.0 MISCELLANEOUS TASKS

6.1 fast Simulation

3f!·:! ~eSCL:~-:~ The .si=?. c..::mp!
s.:..mula':! .:;1.s !l~s
col.:.a.borations

.!:~1 ·,,;:::1 ~.!c:-i
u.:..=es that SOI!l~

!"":·.:;·..:: !"-=..-. , ... ---
5 :.::-.t..:.'..3. 3 ~ __ :-·:=

,

in scope for svme studies. It i~ d~si~~bl~ that simu~atiJn~
be executabl9 to selective levels of detail.

6.2 Md3S Storage

There is a requirement to establish a scalable approach to
the on-line storage of multiple petabytes of data for each of
the experimental collaborations. This requirement implies
the selection/development of a hardware system, a software
system and an interface method. A plan should be developed
to fulfill this requirement.

7.0 Programming Environment

7.1 Software Development Environment

There is a i·.:quirement to develop an integrated development
environment for both PRCD and the experimental collaborations
for the development of the framework software and migration
to the applications development environment. This
environment has tentatively been titled the Physics Research
Int~')ratF;!d 0~·19lopment Environment (PRIDE) The concept for
PP.IDE is to provide a uniform project support environment to
include all aspect of aucomated support tools, project
management, Quality Assurance, Configuration Management and
Control, Document Generation, Data Management, Test, Upper
and Lower CASE.

7 .1.1 Computer Aided Software Engineering {CASE)

In support of the PRIDE project there is a requirement to
establish an integrated CASE environment. Integrated CASE
implies the implementation/interaction of both upper and
lower CASE. That is, in addition to the lower CASE tools
supporting design, code development, i.e. code generators,
data base development, reverse engineering, intelligent
editors, screen generators, etc. the environment will support
upper le•Fel CASE tools. These would include tools such as:

ll Process Management Tools,
2) Structured and Object Oriented Analysis Tools,
31 Modeling and Prototyping Tools,
41 Documentation Generation.

It would also include the integration of all of those tools
with cne another as well as the Project Management. Quality
Assurance, Test, Data Management and Configuration Management
tool5.

7.1.2 :nter£3ce Definition Lar.guage l:SL)

• • • • •

Among the tcol5 req:.iired f-::ir the PRIDE :5 3crr-: .::'::::.·~ :i:
Interf~re Defi~i:ion Language tIDL). C~=~ s~a~dard3 ~:-~
est3b1.ished for Interprocess -::owrour.ic.3.r::i:ns :ir:-j r~::-.-::~
proced:ir·~ calls. ther'3 is a requic:ment f.::::c -3 p:-~:~ : : :
identify and evaluate the alternati·1e t-:.cl.s a·:ai!..ab ~ :::
automating the interface definition efto~t. ~Jr.or:~ ~~
alternatives are OMG IDL and OSF DCE P.PC.

7.1.3 Languages

The conuTion suite of developmental or pre-exi,:;t in') s:·.; -:-:n
supported languages should be identified. In conj U:-1•: i :-:l
with this effort, standards for code de'lc!opmen.: for a-:h '):
those languages and associated software metric standa:-.i.3
should be identified and propagated ta the collab·:i~·3-:i::ns 3:::!
PRCD.

7.2 Interlanguage Task force

There is a requirement to ensut·e the supr.;ort of .:i.ll ·~t •.!:·:
languages approved for development in the Physics Res~d.:-<:h
Off-Line Computing environment. This suppoct extendJ tu: 11
the recommendation of language compilers; 21 ensuring ac~.i:ss
to the data repositories for all languages suppor:ed; 31 1

ensuring the ability to pass data between or control to
modules written ~n different languages. This projec~ sh•>Jl .!
provide proofs of concepts and reconuTiendations of m<:':h•)ds :: :;:­
such language interactions.

7.3 Version Control

Version control is among the primary functions of
Configuration Management and Configuration Ccnr:!':.1, !':
ensures that all released versions of softnare a;.d
documentation may be identified, that software ·1~r3::::r:J :-:•!'/
be recreated, and that modifications to sof:·"'a:-e or ~::--:ibl~:-:-.
reports for soft~are can be properly traced. Standa::-d3 !:r
version control and requirements for the same should be
established on a near term basis for both CO and t::-!:!:-::·:::-~~
SA/SD development efforts. Any such standards shculd :.r:cl'J·.:!~
a requirement for and template of a Release or Versi·~n
Control Document that includes, as a minimum: 1) a !:5:::-:; ;:'.
all Hardware versions req_uired bi'· the s:·stem; 2 ! a l:s::.:-:.; ::'.
all Software program versions :-equired by the sys::e;..; Ji ~~!
build or make soft"Nare required by the s·/ste:n; .Ji ·:~'!=~::::;
System 3.nd support sof':ware ·1'?r.ii-:ins !°'?'ltJ::-~d t.::· .:;:,..;; 3;·3:~:r_;

51 a ! ... st of ail documentacion gener:tted f-:::- th~ 3·r·s·:-~!:l: -: ..:.
list of d.1.l known problems .:tnd their st.:sr:us ~s -::: i:~:.;, ~~:-=:1.>---:

• • • • • •

))

of the current version of the system. .:.nee st.3.ndards ha.·re
been established for software and documentation version
control, tools should be evaluated and acquired to automate
the tasks.

7.4 Code Distribution

Once standards have been established for software and
documentation version control, procedures should be written
and tools should be evaluated and acquired to automate the
task of distributing new releases of software.

7.5 Code Organization/Management

There is considerable advantage in establishing a unified
approach to repository services for the collaborations and
PRCD. The establishment of automated repository capability
supports and reinforces the concept of code reuse. It is
important that the repository approach selected support both
the traditional file storage methodology and the 00 software
development apprdach. Requirements must be established and
support tools selected early in the overall development
effort.

7.6 Program Builder/Make

There is a requirement to establish a standard method for the
compilation and linking of software source code. As a
minimum, an automated support tool will provide the
capability tO combine the appropriate modules, as requested
by the user, assemble those modules, select the appropriate
compile time switches and then compile and link the modules,
ensuring that all references in the modules are satisfied.

7.7 Parallel Processing Support

Refer to paragraph 5.5

7.8 Verification and Validation

There is a requirement to establish a standard approach to
identifying the level of Independent Verification and
Validation (IV&V) required for software development efforts.
Once that approach is established, tools should be acquired
to support IV&V efforts. The process of validation is used
to ensure that each end item produce functions and contains
the fe~tures as prescribed by its requirements and
specifications at the correspond:!.ng le•1el. The ve!"ific3tion
ac:i~icy ensu~~s c~at ~ach st~~ of the de·1~lcpmenc ~~~ces
co!"~eccly echoes t~e intentions cf the immediate~/ ?recedi~g
step. Each of these efforts sup~orts the subsequent

))))

))

SOC I OEU Common Prol11cl• 011l11lllo••

SDC/GEM Common Projects Definitions

IBM FSC High Performance Solutions Integration

Glenn Kubena
Alicia Harvey
Larry Roberts

Jun1 J99l

•
P•g• 1.J"'e 11. tllil

G·e<V>K.o.n•1111i 2u 76lS IHrfRNET D.ft~-cc """'°"'· fA.11(71ll 212-7o.l9
•8Mf!.C l'i'9'1 Pt<IOl"'.&rW S<>u•on11<11~•al(ll'I. J100 611 Aru Bl.cl. tb.m11n. l9•ill 110Soa

)))))

SOC I GEM Co111mon PfojoCI• OoJ111lllo11•

----------· ----.

Management

I. List of supported hardware, opera1ing sysiems and soflwarc.

Definition:
The list of vendor hardware platfonns and operating systems 1ha1 are
fully supported by the SDC Framework and GEM (framework
equivalent) sofiware. Fully supported means that Fran1ework soflware
is fully tested on all the platfonns and can interoperate on all the
platfonns. The Framework software must at least be source code
portable which means it requires only one source code mod for all
platfonns and interraces with a standard source code operating system
services AP! sucli as POSIX. Multi-platform interoperability means
that there is a standard way of passing messages or brokering objects
and/or remote procedure calls plus a standard data interchange method
such asXDR.

There should also be a standard user interface look and feel, sl)ch as
MOTIF/X and possibly a standard GUI builder.

In addition to the common list, there might be a list of hardware
platfonns, operating systems and software that are only supponed by
one of the collaborations (SOC or GEM).

2. Migration.

Definition:
The migration of software to higher and more stringem levels of
configuration control, e.g., a community tool migrating to a common
tool. Before migration the software must comply with the cenilication

•
"""•2>..re't Hl

G:.r~ 1<.Door• 11111 212 ;us 1Nl£11l;E f ,,_...:i;-c •• , .. co ••• , oo-> <:D<f' '"' :· 11 .'~l ··n
IB,,.JSC lt'9"P""""'¥"' So·.,~<1"111"• .. •ilO" ll'.<J 8•1 A•uO..o ''°'"'"~ "•••• 1·~~·

)

•

SOC I GEM Common Prol•cls D•llnlllon1

process for Che new level, e.g .. higher level of documencacion, cescing
and reviews.

3. Soflware upgrade scracegy

Defini1ion:
The scracegy for upgrading new capabilicies of che Framework
soflware, which may include new releases of commercial software.
This slracegy would include such chings as regression cesting for
backwards compalibilicy wilh exiscing daca. operacional noces 10 users
and scheduling of upgraded releases, perhaps involving muhiple cypes
of placforms.

4. User training

De finicion:
There is training for two types of "users", defined as follows:

Users, defined as developers of che SDC Core/ GEM Core. Since there
will hopefully be a lol of commonalily both in commercial and newly
developed soflware becween the "Framework" of SDC and GEM and
since boch have cemacively baseline C++ for new development, this
training would include such chings as Object Oriented Design Methods
and use of Ince graced Tool Kits, C++ Programming, GUI developmem,
communicacions software use (e.g. RPCs, message passing, ...), and
incerlangage incerface guidelines. While all Framework developers
should be 1rained in Objecc Orienced design, incegrated cool kics and
C++ programming, only specialises need be !rained in such lhings as
GUI development/builders. The specialises can Chen serve as

•
P..,;1 J >..,.. :6. ·g9l

G ,~n I(~:..'• !Ill) 212 l6J~. INIEi\NE f .,o.....,@ro~"''" •r•t l:>tll a;irn FAX !1•3J 212-IOi
•llM ~SC >;.II" p,.~ ... "'~"" ~-~ ln!<og•ato0<1. 3700 !Ur -"•til lil•CI Hci..Hin. r 11DY

• • f f •

SOC I GEM Com•an Proj•cl1 D•llnlllona

----- -·--

consuhancs as needed.

Users, defined as physics analysis cool developers or users of Che
Framework, need 10 be provided wilh a Framework Users Guide
(documenl) and receive basic "how 10 use che Framework" 1rai11ing by
the Framework developers.

5. Qualicy Assurance

Definicion: The process which assures che fewes1 soflware defeccs
which can be coleraced based on Che cricicalicy of che sofcware. The QA
process definiciori'includes such lhings as Che design. code and tesc
inspections and approvals required, che level of design, code and 1es1
documentacion required and lhe percentage of lime allocaced 10 design,
code and test. The QA process also would specify che level of
integration and regression tesling required.

' I
Finally, Che QA process would be cailored 10 differenl broad ca1egories
of software (e.g. Core vs. Communicy cools). The QA process may also
involve certifying the receipl and conformance of delivered hardware.

~~~~~~~~~~~~~~~~~~~~~~--~~-

• 
P11j11• J..119:1 •tw.J 

G1r" ~•f>trt 1 >!Jj ll2 76JS '"TERI.( T _.,.4~0....,HC ,,.., tr'> Ql<T> UJ/. 11·11 ;12 :•Ji 
1a1.1rSCt"'9'1P ............... ~ .......... "9'•!- }l(I08•••'••8-~ , ........... 1oo ... '/~~ 

f f • • • 



( 

SDC I GEM Co111Mon ProJoc:ilt Doll111110110 

User Environment 

I. Common UNIX environment 

Definition: 
The UNIX environment which serves as a common platform for the 
SOC/GEM core and application software. This environment would 
provide for source code portability, such as in the case of POSIX, data 
interoperability, such as in the case of XOR, and a common user 
interface, such as in the case of X/Motif. 

2. Data modeling; Data Definition Language (DDL) 

Definition: 
Data modeling refers to a standard method and notation for modeling 
the data objects in the system. For example, the James Rumbaugh, el. 
al., method and notation from the General Electric Research and 
Development Center provides for modeling classes, classes attributes 
(plus class operations) and different types of relationships between 
classes. By reviewing and refining the data model it is possible to come 
up with a better software design without coding any prototypes (e.g., 
normalization or removing of duplicate data). 

Where the target language is C++, there is a direct translation between 
the object model (which can include member functions) and actual 
code. 

Data Definition Language is a language which enumerates all the 
names and definitions of the data items in the system . 

• 
Pag• S. )¥1 ti. "H.J 

Gr, K~IM"I ,~t:h 2U· :us IHlfllNE T -•"....-0..•""ICc •~•t"'"' :o<'ll FAll f7•3J 2U-7<.10 
i8t,,1 FSC ••c" P""""''""" Sci ~"on• "'••g•aion. J:co e.,. Area B•-t •tow""1. fuN nose 

( ( ( 

I 

I 
I 
I 

I 

SOC I OEM ContMOll Ptoloclt Dofl11ltlon1 

Many tools exist which provide some automatic gcncralion of 1argc1 

language data definition statemenrs from the data model or DDL. 
3.lnterface Definition Language 

Definition: 
A high level language for specifying the interface her ween two 
program units possibly written in different languages, in a language 
independent manner. For example, a common IDL would be used to 
specify the APis with lhe Framework services to support calling 
languages in both Fortran 90 and C or C++. 

4. Physics Units 

Definition: 
Establishment oflhe standard scientific units (e.g. feet vs. meters) 10 be 
used by all the physics application software. 

• 
P-.;e I -"•• 'I. •tll:I 

Gl...,,,IC-ill!'IJl2tl·~ WlfA'lf:l ......... _..,.SC.C.,..ft .....,_ FAJ·1•11;11 t•ll 
18MFSCH ... ,., .... ..-u ~ ............... _ llOGB~•·•B..e. - .... ~·n :·~u 

( 



• • • , t 

SDC I GEN Coninion Projoolo Oollnlllon1 

Programming Environment 

I. Software Development Environment 

Dclinition: 
The environment in which the software development team designs, 
develops, tests, modifies, debugs, documents and integrates software. 
Optionally, the environment may include process automation. 

IDE - An integrated development environment where the various tools 
(design, code, test, debug, documentation, ... ) are plugged into a 
standard communications platfonn and hence, instead of running 
stand-alone, can provide inputs to downstream tools to alleviate the 
manual transfer of infonnation and control of which tools run at what 
point in time. 

CASE - Computer Aided Software Engineering is often used to refer to 
any environment which automates one or more parts of the software 
development/analysis process. Typically, there are "upper" CASE tools 
such as analysis/design tools and "lower" CASE tools such as 
development, test and debug tools. 

Languages - The standard programming languages basedlined for use 
for development of the Framework (e.g. C++, C) and physics 
applications (e.g. C++, Fortran 90, ... ). 

Inter-language communication - The interface between two different 
progranuning languages, such as C++ and Fortran via direct calls, 
remote procedure calls and the rules for making such interfaces 
compatible. 

• 
P14;t 7.J,,.. 11.1193 

Git"~ ~vDera c11:t1 2U ~'35 "'lEJINEl ..,n.,.,.._.,.,1cc _, _ _. fAll!11:11 HI 7'31 
IQIA ~SC 11'9" Pt<!oo'"'an .. Sa<.....,,,1 ""-9<t!°"'. 31008.,. ol<H 81\ICI ,lluuo.,.,, 1's .. 1710SI 

t t t , , 

SOC I CEU Contrnon Proloclo Ooll11lllono 

.-------------------------·-···-·- .. -

2. Version Control 

Definition: 
The configuration control of collections of software components in 
integrated software baselines and releases. This includes vcrsioning of 
software products (source, object and load), accounting of changes 
made (description of change, date of change, discrepancy closed or 
change request satisfied, ... ) and security (change authorization. 
traceability, ... ). 

3. Code Distribution 

Definition: 
Distribution of ari·integrated software release to a local or remote user. 
Included are installation procedures, tools, instructions, operational 
notes, discrepancies closed, ... Distribution may occur electronically or 
via media In case of commercial software distributed license 
accounting may be involved (e.g check out, tokens, etc.). 

4. Code Organization/Management 

Definition: 
The organization of code libraries and how the libraries are maintained. 
Code management includes change management and version comrol 
(see the definition above for version control). 

5. Program builder/make 

Definition: 
The automated procedure, directed by a script, which compiles and 
links software into executable code, following all the rules established 
for including components of the Core as applicable. 

• 
P-otl W. 11. tltl 

Gl...,,K..,011131112·1635 "'l(~l•...........,_KC••t•...,....., fAJ1l 0 l1111 _. .. ,, 
IBMfSC """ ....... .......,. s.ir..-1 ~ ... , .. _. JIOO e., "'•• e: .. •"O..l'O" .... , 1:c!• 

t 



( 

SOC I GEM Comlftoft Prol•cl• D•tlnlllon• 

6. Parallel Programming Support 

Definition: 
There are two basic types of parallel programming styles, process 
parallel and data parallel. 

Process parallel, more appropriate for coarse grain applications, 
includes message passing libraries such as PYM, parallel debuggers, 
simulators,. .. and typically runs on distributed memory parallel 
processors or clusters. 

Data parallel styl~. typified by High Performance Fortran, is more 
appropriate for fine grain data decomposition of arrays or templates 
and can run on shared or distributed memory parallel processors. Data 
parallel style compilers, e.g. HPF, assist in generating parallel code 
from the compiler directives supplied by the developer. Other tools, 
under design/development, include parallel debuggers, performance 
visualization tools and workstation-based simulators. 

Given the coarse grain "embarrassingly parallel" nature of event 
processing, process parallel is more applicable to the SOC or GEM. 

7. Verification/Validation 

Definition: 
Verification/Validation is often used to refer to the (sometimes 
independent) testing phases of software development. However, other 
methods contribute significantly to error-free code, including: 

Design inspections and code inspections, which are a proven cost 
effective method of eliminating errors early in the software 

• 
P•~• I .i..~• •d. ,9113 

c:._•" Mul>f".I !1!3) 20 76.:IS_ INTERNET ........ ..,t'OU .... KC """'·""" -- fAl 17131211-:ut 
IBMFSC H<;n Pt<!Of....,i;e SalUloC~t ~l19'al .... J100 a., Al .. ei.d., HO.itlll", ft oat nQ-"..t 

( ( ( ( 

SDC I GEM Colft•on Prol•cl• Ooll111tlon1 

development process. 
Compilers and code analyzers and interpreters, which catch many 
errors and assist in highlighting location of errors. 
Unit testing, which is a stand-alone method of removing bugs without 
tieing up integrated computer resources. 
Integration testing, which catches errors which might interfere with 
overall system operations. 

Other forms of system testing include simulations and certification or 
acceptance testing. 

( 

• 
Pap !0. Noe •e. ,,., 

a:.-1(1oO.n.111!3J1IZ·;'US INf~ANEJ ................. su.~ .. °"'- fA11r1·312111~9 
18MFSC ..... P..-..... _Soti.c_ir."11,.,.,., 3100a.,.1it .. a:"" ,,..,,...oan, Tu,u :c,y 

( ( 



• • , • • 

SOC I GEM Co111111an Profec11 Dtft1tltlon1 

Tools/Utilities 

I.GUI 

Definition: A graphical user interface which facilitates ease of use of 
the Framework services and applications. In order to avoid user re­
training and confusion, a standard GUI should be adopted such as XI 
Motif, which has lhe same look and feel on all supported platforms. 

2. 3-D Graphics 

Definition: An added capability to the GUI which allows for 3-D 
viewing of objeci~. 'Examples are PEX and GL. 

3. Job Control Parameters 

Definition: User supplied parameters which control execution of an 
application, e.g., physics analysis. These parameters may be 
interpreted by a shell or GUI and provide job execution inputs and 
control. 

4. Data Base (Non-Event) 

Definition: A data base of non-event information, such as calibration 
data, which does not require the level of performance and volume that 
the event data base will require. Also, the non-event data base may 
require a more random access pattern, malcing it possibly more suitable 
to a relational approach. 

5. Parallel Processing Support 

Definition: See definition given under Programming Environment 

• ""11• 1•.>..~t ••. ·993 
G'..-.,K.,t>11111~·l121176,1' INTERNET ..._ • ..,..,_.,,..cc-.D.,._,, U.1171,l 2fll-7•ll 
18MFSCH..,.Pr'oo~ S--1""*f·.c-. noo&.,.,.,ulll¥11,Ho..1- ftus nose 

I 

I 

I 
I 
I 
I 
I 

• • • • • 

SOC I OEM Com111on Proloclt Otllnlllo111 

6. Detector Geometry Deli nition 

Definition: 
The processes leading lo the creation of a data base of detector 
geometry. 

7. Document Preparation & Distribution 

Definition: Document publication, storage and retrieval tools which 
support a world wide network of users. Retrieval might include such 
things as lookup by subject and author, hypertext, etc. Such tools could 
include multimedia, as well. 

8. Miscellaneous T<i!Jfs 

Definition: Assorted tools, such as histogramming, which are part of an 
application toolkit. 

• 
p ... 11 . ..v-.. .• '"' 

Gl...,11.,119,..p13>112·7135 MEllNET ...._...,.._'"•'•' -- J.U!J•]J 111101 
18UfSCKofl ,.,b_ S-._..,...,_,O'I. J1008.oJ"'u e:..:i.n1 ....... ltu.• 11m 

• 



SOC I OEM Co11tmon Pt•l•c1• Dollnlllont 

Code Building Blocks 

I. Class libraries 

Definition: Common re-usable components of software, such as C++ 
classes, which are contained in a library. Use of such libraries greatly 
increases productivity and commonality. 

2. Object Persistence (data management) 

Definition: An object's data which is retained across executions of a 
program. The data is typically retained on non-volatile media such as 
disk or tape so th~t it can be re-accessed at some future time. Object 
persistence is typically associated with the use of a data base. In the 
C++ world, Object Oriented Data Base managers handle object 
persistence by retaining object data associated with C++ classes. 

3.0bject transport (data transport) 

Definition: The transport of an object's data, typically across a 
network, from one process to another. 

4. Inter-Process Communication (IPC) 

Definition: The communications mechanism between Unix processes. 
This includes such things as message queues, semaphores, shared 
memory, BSD sockets and MENTAT streams. Of these, only sockets 
and streams may be used across networks. 

5. Remote procedure calls 

( 

• 
Pa;e ll. -""'• It. •9113 

G ec~ M"lloe~.1111J1 212·7'35 INTERNET iu.o.~.rr.••:C -'·'°"'-...FU 11'31111·7431 
>t!M fSC H"O" P .. 1or ...... e1 SoMocwt1 rni.,11111111. 3700 ea, ..... 81-.d., liouslllrl. ""' 171151 

( c 

SOC I GEM Co111111on ProJoclt O•ftnl1lo111 

Definition: The mechanism for calling a procedure (under UNIXJ 
which is not resident on the same host as the caller. 

• 
P"9t , •. .N>t 'I. ,993 

oi.....K ....... !11:Jl2U·"3S N1ERNET~-t.e~..-•l-r;oooi F.tlf11lJ1U 1<.ll 
IBMFSClf-r,.,...,_Sol"_""_.J100S.,. .... H9 ... ...,.., .... lo1u llOSI 

( 



• • • • • 

SOC I OEM Comri.on Proftcl• Oellnl1lon1 

Miscellaneous 

I. Fast Simulation 

Definition: The execution of a simulation in fast time, which normally 
means that system wait time in the simulation is set to zero. 

2. Mass storage 

Definition: Storage capable of handling massive amount of data in the 
Giga, Tera or Petabyte range. Usually some form of storage hierarchy 
is used (disk arrays.and tape libraries) in order to provide the most cost 
effective solution .. 

• 
P-cit •S.,,_. 'I. •H3 

(l;t'YI ~-~111'J'llU·1W, IHTEflHET .... D~-·cc.-·~ COIOI. FAXt7•31 lU·7"3t 
'8MFSCU"" p., .... ..._ Sol\ilOn• lnMf ....... 3100 Bay Ao .. 811111 .tfout ... _ .... nos• 

• • • • • • 



-

-

COMPUTER TRAINING 

PLANS 

CEG 



) 

l . 0 INTRODUC1'ION 

The Physics Research Division (PRD) Computing Department 
1 PRCD) Compute1- Engineering Group (CEGJ published a memo on 
June 17, 1993 providing preliminary details on the definition 
of joint computing tasks identified by the Experimental 
O~tector Collaborations at a joint computing workshop at 
Rice University on May 17-19, 1993. Among the definitions of 
tasks was a requirement for training of personnel. A number 
of areas were identified as necessary for training of both 
the user and developer community. The purpose of this paper 
i.s to further delineate perceived training requirements. It 
should be noted that the course strategy is based on and 
borrows extensively from training strategies developed by 
John Parkinson, Qirector of Methods Engineering at Earnst and 
Young Management Consulting Services. 

~s previously indicated in the June 17 memo, it is believed 
:hat a unified approach must be established to ensure that 
ill users/developers in the SSCL Off Line computing 
~nvironment can maximize their utilization of that 
~nvironment. The following course areas have been 
. dent if ied. 

CASE Overview 
Development Overview 
Methodology Management 
Planning Skills 
Planning Tools (basic and advanced) 
Data Gathering 
Data Modeling 
Function Modeling 
Analysis Tools (basic and advanced) 
Applications Design 
Database Design 
Design Tools (basic and advanced) 
Construction Skills 
Application Testing 
Verification and Validation Tools 
Construction Tools (basic and advanced) 
Docun1entat ion Design 
Docurnentation Tools 
Pt·oj ect Management 
Project Management Tools 
Process Management Tools 
Joint Applications Development Sessions 
Knowledge/Repository Coordination 

12 selection of course areas has been chosen from the 
=t:s~ect i ·.,·e of the requirements cf the user/developer 
1IT~'Tlu!1i:y tc.i understand the environment, maximize effective 
oe- of the tool set, and speak in some common terminology. It 
i further an~icipated that the courses should proceed with 

) ) 

the goal of providing both P.d•H>lt.ion and tr-aini11'). Ed11~1~ t·,:1 
will be necessary because many in th.: physics corrununicy .Jt·~ 
unfamiliar with the approaches required to make eff~ct i·:>: U;j·:­

of modern software development tools and pt·ocesses, lt i.: 
important that the physics community be shown the t·e.lsoninq 
behind the way the selected software development proc~ss 
and/or tool works and the assumptions made about how the 
selected methods and/or tools would be used. Training 
courses are also required in that there are new skillJ to ti-: 
acquired both for the software developers and the physics 
colmlunity as users, requirements generators, and or 
developers. These skills require both demonstration an~ 
practice. Given the size of the problem, a long term 
training plan is considered essential. The amount ot r.h~ 
training needed is not yet clear, as a sur'l~Y at cu110:-11r 
skill levels is still required, however, this docum~nc d•:..~·:. 
propose a full scale, in depth plan for training of all 
personnel/organizations involved in the software life cycle 
of off-line computing. 

In addition to basic skills acquisition courses for 
techniques and tools, project teams may need to work togeth~~ 
on skills exercise courses at the start of major projects . 
It is proposed that week long workshop classes based on 
prepared case studies be used to reinforce or focus basic 
skills. 

The level of training identified within this paper may seem 
excessive, however it is believed that it reflects the 
minimum amount of training necessary to establish an 
integrated development environment in a joint application;. 
fram~work. It is not necessary to emburk 011 a trai11i11•1 
schedule that completes all course work as soon as possibl~. 
but it is probably not a good idea to try to I"educe the scopf';" 
of the training. It is believed to be cheaper to establish .l 
qualified staff and an informed community of users than it is 
rectify the problems caused by inefficient tool utili::ation 
or miscommunication between the user and the develope! s. r. 

should be noted that CASE tools do not reduce the skill 
levels required for good analysis and design. The'.t· drJ m.:i).:-: 
it easier for skilled staff to employ their skills and c~'"c!i 
routine errors of detail. Note that a badly analf?e".i prc.b!•::'l 
can be modeled perfectly on a CASE tool, but there is littl~ 
doubt that the solution modeled will not be the solution 
required. 

The detailed contents and the training program will d~pen~t (,:: 
the choices in development approaches and CASE tools. Th~ 
intent within this document is to identify the g~nera! 
principles applied to the design of the program in sur-r~!~ 
the development of the Physics P.i?search Inti?'}rar:e-:J 
Development Environment f PRIDE I Ea-:h of th~ co11rse: ar-=:i:-: i: 

further described below. Note that although the co11!3·? 
descriptions are presented acc0t·r:iinq t0 de·1~lopmi?.-nt ph.'1:;.,~-;. 



the skills acquisition classes are relevant to more than one 
phase of the development life cycle. Also note that specific 
training outside the development toolset, specialized 
training such as quality management and interpersonal skills, 
and redevelopment engineering training are not addressed. 

2.0 CLASS DESCRIPTIONS 

2.1 CASE Overview 

The purpose of this course is to introduce the physics 
community, project managers and development staff to: 1) the 
concepts of CASE; 21 how it will be used; and 31 what 
tJenefits may be expected. The concepts of central repository 
based development and the use of tool based models will be 
included. The overview will be short and structured in a way 
such that key components can be given to a non computer 
technical audience. This overview will be considered a pre­
requisite for all other tool classes. 

A modular presentation with a 1-2 hour executive introduction 
and additional 1-2 hour technical modules will be developed. 

2.2 Development Overview 

The purpose of this course is to cover all aspects of the off 
line computing systems development effectiveness issue. 
Again an executive overview followed by optional technical 
issues modules will be developed. This overview will be 
considered a pre-requisite for all other technical classes. 

One (1) to two (2) hours will be spent on introductory issues 
and an additional two hours on technical issues. 

2.3 Methodology Management 

This course is aimed at the Experimental Computing Management 
Committee IECMC) and project managers who will have to 
structure and plan projects within selected development 
approaches. It will consist of up to four (4) hour sessions 
for the ECMC members accompanied by up to twenty (20) hours 
of methodology basics for project managers and team members. 

2.4 Planning Skills 

This wi 11 be a workshop based class 01·iented towards training 
:aarns fer specific PRIDE strategy planning projects. It is 
:i.nticipated that such projects will be infrequent and will 
Lnvolve a limited subset of the software developers and the 
~xperimental detector collaboration user conununity. The 

• • • • • 

workshops will be tailored to the phase of th~ PRID£ 
development effort to be undertaken. Techniques will b~ 
selected to meet the scope, time scale and organ i:ai: ion.1? 
culture of the planning project. 

A class of approximately 40 hours is anticipated. 

2.5 Planning Tools (basic and advanced) 

Note: These course will probably require customization. 

2.5.1 Basic Planning Tools 

The basic tools class will be incorporated into the skills 
course. It will cover the following items: 

o Essential Enterprise Modeling. 

0 Planning Object Representation and the recording of 
unstructured object properties, required by most tools 
to some degree. 

0 The use of appropriate object associations. 

o Using the s~lected planning tool. 

Between eight (8) and sixteen (16l hours will be requi1E~ f-~! 
this effort. 

2.5.2 Advance Planning Tools 

This course will cover: 

o Objective Priority Assessment. 

o Development Project Identification. 

o System Architecture Definition. 

The Basic Tools class is a pre-requisite. Sixteen ( 161 h·"1! -
of instruction will be required for this effort. 

2.6 Data Gathering 

This course will ·identify the options a·1ailable ":·:- i:. 
and requirements analysts who will be using the g:i'::!-:-~·-= 
information to develop system models. To some -=:<te:!'., rt'.:. 
class will be tool independent. The empb~'lsis wit l t-,.:;. 'JJl 

• • • • • • 



principles rather thdn details. The class will include 
instt·uctions in the following: 

0 

0 

0 

Interviewing using structured data collection 
techniques. 

The use of activity sampling and surveys. 

Document analysis. 

o Group Sessions. 

A minimum of twenty (20) hours of instruction is anticipated. 

2.7 Data Modeling 

This course is c~nsidered essential. The topics will 
include: 

0 

0 

Entity identification and definition, including the use 
of subtypes and supertypes. 

Attribute definition. 

o Domain and data type definition. 

0 

0 

0 

Relationship identification and definition. 

Identifiers and their use. 

Entity normalization. 

o Entity model partitioning using subject areas. 

The course will consist of technique explanation and practice 
The participants will include system planners, requirements 
analysts and designers. Designers who take part in 
prototyping as tHe main development activity will also be 
included. 

A minimum of forty (40) hours is required for this course. 

2.8 function Modeling 

This course will include the following areas of instruction: 

0 Use of decomposition and data flow diagrarMling 
techniques where leveling is carried out automatically 
by the tools. 

0 

0 

) ) 

Identification and definition of elementary proc•!33~s 
using event driven techniques. 

The role of data stores in models. 

o Approaches to the definition of processing logic. 

0 The integration of data models and process model in an 
overall requirements model for the project. 

The intent of this class is to re-orient existing skill~ t0 
the use of CASE. As such, it will contain a significant 
amount of case study and practice material. 

A minimum of forty (40) hours is required for this course. 

2.9 Analysis Tools (basic and advanced) 

2.9.1 Basic Analysis Tools 

The basic class will introduce the facilities that suppor~ 
data capture and representation for both the data and 
functional modeling efforts. The course will include usE c·f 
reporting and inquiry facilities. It will provide guidelir.e~ 
on: 

0 

0 

0 

The level of detail to be used. 

Management of scope and partitioning of models. 

The optimum order of work when both data and function 
are to be modeled. 

General tool management topics will also be covered. Thes~ 
include backup and restore of models, recovery facilities ~~l 
error handling, etc. 

A minimum of sixteen (161 hours of instruction and pi·ai:·r:: :.:: 
is r.equired for this course. 

2.9.2 Advanced Analysis Tools 

This course will cover the use of model analysis faciliti~s 
and model transformation functions. As a minimum, th~ t(.r-i~~ 
will include the following: 

0 The use of completeness and consistency ani :in.:Jl:,:s::· 
checks and ~eports. 

, 



o Process model to procedural model conversion facilities, 
including the conversion of process specifications to 
processing logic. 

o ER model to data structure model conversion facilities, 
including the generation of first cut data base designs. 

Model integration and the use of knowledge coordination 
facilities may also be covered in this course. 

A minimum of sixteen (16) hours of instruction will be 
required for this course. 

2.10 Applications Design 

The purpose of this course will be to present methods for the 
design and construction of balanced designs that make use of 
the Applications Progranuning Interface (API) for high 
reliability and reusability of design components. The course 
will include mod~les on both internal and external design 

2.10.1 External Design Module 

This module will concentrate on user interface design and the 
requirements of efficient manual procedures. The course will 
be formatted such that it can be used for both developers and 
users. It will be directed towards development projects 
modules for both conventional form based and GUI work space 
based designs. 

The module will require approximately twenty four (24) hours 
of instruction. 

2.10.2 Internal Design Module 

This course will concentrate on efficient data access 
modeling and application structuring based on conunon or 
reusable components. Modules for both centralized and 
distributed designs will be made available. The methods for 
supporting cooperative design efforts will be highlighted. 

This module will require approximately sixteen (161 hours of 
instruction. 

Note: Approximately eight (8) hours of additional material 
~vill be included as an introduction to user interface design 
fer ph11 s ics conununi ty developers. 

• • f • • 

2.11 Database Design 

The contents of this course will be oriented around th'? 
specific data base architecture and/or Data Base Man.;ig>::n.:n .. 
System(s), and/or API selected for the PRIDE. The coui·so::­
will identify and teach the key differences between the 
implementations of similar products as well as general desi~~ 
and design optimization principles. 

2.12 Design Tools (basic and advanced) 

2.12.1 Basic Design Tools 

This course will cover the use of selected design tools for 
the basic internal and external design tasks. Topics will 
include: 

o Screen and report design and screen data structure 
specification and processing, including the use of the 
data structures transformed from the requirements model. 

0 

0 

0 

0 

0 

Dialogue design for interactive systems. 

Batch procedure design for batch systems. 

Modularization and structure design for modules and 
programs. 

Module logic specification. 

Data structure design. 

o Access model design and performance enhancing. 

The complexity of design tools is sufficient to warrant a 
considerable emphasis. 

A minimum of twenty (201 hours of instruction may b"= e:-:p~r:t.:=:·:!. 
for each basic design tool course, however up to forty ( .t•J I 
hours may be required for more sophisticated tools. 

2.12.2 Advance Design Tools 

The advanced design tool course will extend the basic d~sign 
tool class to include topics on: 

o Data base design and Data Definition Languag~ g'?n~:·~-: i .. 
for a selected DBMSs, including access mod~l 
optimization and the use of a data API. 

• ' • • • • 



) ) 

o Interfaces to target code generation environments and 
the 

0 

use of target specific procedural specification 
languages and syntax directed editors. 

Design verification and exception analysis facilities. 

A minimum of forty 140) hours will be required to cover these 
topics in sufficient depth. 

2.13 Construction Skills 

The construction skills class will be developed as a 
framework of common principles extended by target environment 
specific modules. New modules will be added as new 
environments are introduced to the PRIDE. The basic 
construction skills class will highlight the use of code 
generation tools and the organization, as templates, macros, 
or skeletons, of design information required to drive the 
code generators. It will include the basics of the PRCD 
selected software configuration management and version 
control systems. It will also cover the use of basic 
elements of the Selected code management and testing 
environment to include compilers, linkers, editors, 
libraries, etc. 

The construction skills class will require forty (40) hours 
of instruction plus a variable amount of environment specific 
material estimated to be between sixteen (16) and eighty (80) 
hours. This would include training in a procedural 
specification language. 

2.14 Application Testing 

This course will present a structured approach to the testing 
process. As a minimum, the course will include the following 
topics: 

0 Test plan design and development. 

o Test coverage and closure issues. 

o Test case design and generation. 

0 

0 

The structure of the application testing process (unit, 
system and integration tests). 

Stress and performance testing topics. 

o Documenting the testing process and test audits. 

) ) 

0 Acceptance testing and user trials. 

This course will require approximately twenty 1201 hours cf 
instruction. 

2.15 Verification and Validation Tools 

This course will cover the application of the selected ·:&·1 
tools and the interpretation of the results. Support for 
incremental testing and the development of reusable 
components will also be covered. 

This course will require a approximately forty (8) to incl11d.;: 
approximately eight (8) hours as an introduction to 
validation, verification, and testing. 

2.16 Construction Tools (basic and advanced) 

2.16.1 Basic Construction Tools 

This course is specific to the selected coed generation t00ls 
and deals with the use of the tools to create application 
components. It may be integrated with the construction 
skills class. The content of the classlesJ will depend on 
the nature of the selected tools. 

2.16.2 Advanced Construction Tools 

This course will depend on the range and sophistication of 
the selected development tools. 

Between twenty (201 and two hundred 1200} hours may bP. 
required to explcire the full range of capabilities and (JJiu 
experience in the effective use of the tool set. Mu•:ti Gt 
this additional training will be concentrated in a rel~1ti·1t::!;· 
small group of development support staff specialists. 

2.17 Documentation Design 

This course will introduce the following topics: 

0 

0 

Usability and the identification of what sho1Jld bo: 
documented. 

Structuring document at ion for ease of -:.i-:c~ss .'tnd '°' 1 ;,.-. 

use. 

) 



0 The range of documentation that should be generated and 
how each element should be customized for its intended 
audience. 

This course is iqtended as a specialty course for the 
documentation support group. 

Approximately twenty (20) hours of instruction will be 
t·equ ired. 

2.18 Documentation Tools 

The contents of this course will depend on the range and 
sophistication of the selected documentation tools. 

Between twenty (20) and eighty (80) hours may be required to 
explore the full range of capabilities and gain experience in 
the effective use of the tool set. Much of this additional 
training will again be concentrated in documentation support 
group. 

2.19 Project Management 

This course will concentrate on development effectiveness. 
The course will include the following topics: 

0 

0 

0 

0 

Establishing achievable goals. 

Determining the appropriate scope of work. 

Planning a project to deliver the required results with 
available resources. 

Constructing a suitable workplan. 

o Establishing realistic estimates of the effort and 
resources required. 

0 

0 

0 

0 

Selecting the appropriate skill mix in the project team. 

Assignment of team roles and responsibilities. 

Implementing appropriate monitoring and control 
procedures. 

Using effective diagnostics to identify issues and 
concerns. 

:> Providing accurate and useful reports on progress, 
current status and activity remaining. 

c • f 4 • 

0 Explaining variances from expected task sch-:dul~. 

0 

0 

Managing the process of change during a project. 

Working with effective steering and problem 1·esol11t lC•n 

mechanisms. 

0 Learning from the experience of past projects. 

This class will require approximately forty (40) hours of 
instruction. Additional advanced topics may be scheduled as 
the need arises or automated support tools are acquir€d. 

2.20 Project Management Tools 

A course in the use of planning, estimating, and schedule 
management tools.will be integrated with the project 
management training. The class will cover the recording of 
actual project activity and the generation of progress and 
status reports. 

This training will require approximately twenty C201 hours of 
instruction. 

2.21 Process Management Tools 

Training in the use of process management tools will be 
tailored to the capability of the selected tools and the 
PRIDE. 

Extensive training (forty (401 hours) will be required f(•1 

the project manager who will use the process manager tools t·, 
create project structures and work plans in conjunction with 
project management tools. Project teams will require less 
detailed training (sixteen (16} hours) to make use of the 
process manager tools once a project has been established. 

2.22 Joint Applications Development Sessions 

CASE tools encourage the use of rapid development aprr0aches 
based on group sessions or workshops. It is advisabl~ r::o 
provide a short familiarization class for both the 
development staff and physics community who will tak~ p.irr:: !/, 

workshop based development projects. 

This introductory training will require appro:-::imar:ely -::!q~:~ 
18) hours. 

• 4 • • 4 • 



) ) 

2. 23 Knowledge/Repositor·y coordination 

It is anticipated that, with the development of the PRIDE, 
the software i-epository will become the central resource for 
off line computing development efforts, This course will 
concentrate on the tools/methods for managing repository 
usage in an effective fashion. This course will address the 
use of conventional data administration approaches, but will 
highlight the fact that repository based development 
environments have additional requirements and capabilities 
that must be understood if they are to be used to the fullest 
efficiency. The course will be directed towards repository 
managers and developers who will use the repository 
facilities. 

The training will require approximately eight (8) hours. 

3.0 TARGET OF TRAINING 

The following subparagraphs provide preliminary 
recommendations for training class attendees. 

3.1 Physics Research Division and Experimental Detector 
Collaboration Management 

The Physics Research Division and Experimental Detector 
Collaboration management will be presented with one (l) 
two (2) short briefings, explaining the issues to be 
addressed and the approaches to be taken. The material 
presented will be limited to two {2) to four (4) hours. 
is seen as an essential part of the expectation setting 
commitment process. 

3.2 PRCD Management 

or 

to be 
This 

and 

PRCD management will receive the full version of the overview 
classes as basic education. Specific PRCD managers will 
receive specialist training in key areas where they will be 
directly involved in working with the development approach or 
the CASE tool set. (12-20 hours of material) 

3.3 Experimental Detector Collaboration Computing 
Subsystem Group Management 

The computing subgroup managers will receive the executive 
overview classes plus specific training for those who will be 
involved in actual projects either as project team members or 
.35 li.3iscns. In general, they will receive shot·tened and 
simplified versions of skills classes 14-8 hours of 
material).. Project and process management tool training is 
considered de,sirdble but optional. 

) 

3.4 Project Managers 

The project manager will be required to be familiar v.-:th ti:--: 
techniques and tools used on the projects being mondg~d. ~3 
well as the techniques and tools appropriate to the 
management process. (typically 100 hours of core materi..113 
and up to 300 hours of additional specialized traini~gl. 

3.5 PRCD Planners Including the Experimental Computin~ 
Management Conunittee (ECMC) and CPCCCl. 

The PRCD planners will be required to attend the generdl 
education classes and the planning phase skills and tools 
courses {40 to 60 hours) . In addition. planning project 
teams must have training in data gathering and in data and 
functional modeling (up to 100 hours!. 

3.6 Requirements Analysts 

Requirements Analysts will receive the data gathering and 
joint sessions training in addition to the techniques and 
tools classes appropriate to the analysis phase (120 to 2QQ 
hours). 

3.7 Applications Designers 

Applications designers will receive general education class~3 
(16 hours) plus the applications and data base design skills 
and tools classes (120 hours). Those that will be involv42d 
in joint applications design workshops will be required to 
attend the joint sessions class (8 hours I. Selected 
designers will be required to attend the applications skills 
training. All designers will be required to be at l~dJt: 
familiar with the construction environment that wil 1 Le iJ::;i::,J 
to build their design. Where prototype development proje-:t::: 
are initiated, •development teams• will be required in b~ 
trained in both design and construction activities. 

3.8 Constructors 

Constructors will be required to attend the general ediJcat i•,!: 
classes (16 hours) plus training in construction skills !~·~ 
hours) and appropriate tools (80 - 240 hours), dependin~ .;:i 
the PRIDE subsets being used. Some consti·uctors will ols:i t-= 
required to attend training on the testing appr:.ach a.n-j : : . t · 
selected for the specific project(sJ. 

) 



3. 9 Testers 

Testers will be required to attend the general education 
classes (16 hours) plus training in the testing approach and 
tools (60 hours). Testers will also be required to have 
familiarity with the construction environment in which the 
tools will be used 140 hours) . 

3.10 Implementors 

Implementors will be required to attend the general education 
classes ( 16 hours) and should be familiar with ·the general 
approach to delivery of applications into the physics 
community. 

3.11 IS Operations Staff 

The IS Operations staff will receive the general education 
classes (16 hours) and some specialized training in the 
management of a repository-based environment (16 hours). 

3.12 IS Support Staff 

The IS support staff will receive the general education 
classes (16 hours) plus additional training in the management 
and use of a repository based development and support 
envirorunent (16 - 40 hours). 

3.13 Physics User Community 

The Physics User conununity that will be involved in any role 
with the applications development will receive the general 
education classes (16 hours) and specific training in their 
roles in the project teams. This will vary by role, but will 
be within the range of 8 - 40 hours. 

• • • • • • • • • • • 



-

CHEETAH DATA 

MANAGEMENT SYSTEM 

G. WORD 



' 
·, 

1 

I 
.-I 

I 
~· I 

' 
i 

\ 
~i 

-

Cheetah 

Paul F. Kunz 

Statrford Linear Accelerator Ct1tttr 

and 

Gary B. Word 

Superconducting Super Collidcr Laboratory 

A data structure management system based on C 

Outline 

Mo1ivation 

C structures 

Cheetah Lists 

lnpu1/0u1pu1 

How Chcc13h 1/0 Works 

Sumipary 

P.uall-""'"'"'U; . .,~111.,..,1 

Data Structures in C 

it: :''Uct :. rack 
~loat px: 
!Loat py: 
~loat p:; 

1• :.rack struco:...:re ., 

l; 
::.r•.i.c:. track ••:nc::.rack: t• track po:.nters •.' 

allocac.e array of point.ers • ! 

:ne::-;sck "malloct numbertrk•si:eott .. ·oid 

1 • <lllocae.e a track structure •' 
11u:::-.lcklit.rkl .. malloct si.zeot\struc:. :.ra;K! ; 

'• :'.ill struc::.ure •.' 
~e::-3cK\ ~t.rK]-··px s px: 

Ad\'antages .•• 

' ... , .... 

access of variable by full name 
:illows re-use of voui.::ible name space. 

Uynamic memory a.llocation is pan of language and 
operating system. 

the debugger knows structures. 

Cunclu~ion: C cltarl_\· Mi·ins O'ltr FORTR,,.\N '77 + .t. 

............. ,_,,, ......... . 

I 
I 

I 
I 

I 
I 
; 
i 
I 

' ' I 
! 

' 

Data Structures 

We think \Ve use FORTRAN .•. 
..• but \Ve use FORTRAN + X! 

Exoamples. 04 

FOR'rnAN +ADAMO 

FOR'rnAN + BOS 

MOR'rnAN + FOR'rnAN + Jazelle 

FOR'rnAN + ZEBRA 

FORTRAN + <noname> 

Reasons: 

we need to hand1e data as structured entities 

we :ilwa~s need to move data in memory, whether 
they arc 1n formal ''banks"' or not. to disk/tape stora.2e 
and back. -

But in doing so 

we may lose access to data by name 

we may lose ponability of code 

we may limit usability of a debugger 

we may invent and need to learn a big system 

Cheetah 

Goals: 

Do the data structure input/output in a general way 

Preserve type information 
(needed 10 be oble 10 do general 1/0) 

Provide cnn1·enienc~ utilities for C progr::immers 

Suppon for general purpose :ipplications 

Suppon for C++ object persistence 

Suppon for abstract data types of Fonran 90 

Suppon for transition from FORTRAN 77 

'~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
•' ..... \' ...................... _. 



' I 

I 
I 

I 

' ' ' ' 
\ 
' 

i 

Cheetah Lists 

List!i are important enities 

For example. in an event one ha., .•• 

a list of 1r:icks 

a list calorimeter clusters 

a list of vertices 

l'f1.:. 

In fact. an event can be thought or as a list of lists 

A. Cheetah list is a C structure and a set of ructions 
to use the structure 

A Cheetah list can contain 

C structures 

Cheetah I is ts 

more complex items. 1.·.g. linked lists. b·lrccs. etL·. 

simpler items. 1.·.g. ;irr.iys of floats 

Fortran Common block 

Creating Cheetah Lists 

Some nther attributes of a Cheetah list 

A n:ime 

The type infonniltion or the contents 

Create a ne\v Cheetah list and add something to it ••• 

=~-:ist. •ver:eX:.isc.: 
.;:::".;.:: ·.·er:ex •:ny_vert.ex: 

\"er:e:oc:;,.;.st • cbllew1 ••:eri:.:.:es•, '."erto!:c_~:: 

chAdd ·.·er:ext.ist.. '.?IY-·.·ert.ex ~: 

v•rtex_T 1 J is a function that returns the type 
inform:.1tion of •c:ciicc v•rc•:.: 

Type information is used for .•• 

Input and Outpu1 

General purpose applications 

Chcck.s in 1hc pmg.r:im 

,., ......... , __ ..... "'···· 

\ 
I 
i 
i 

I 

.. 
Referencing a Cheetah list 

(;iven an existing Cheeiah list ..• 

~h-~~st •:.r.ickL,st; 
~tr~ct :rack ••my_c~acks; 

my_·.:-.icK3 : chPtr•( -:.rack:..isc 1; 
~ount 1 cbCou.acc trackList ~; 

tor ~ " 0: l , count: i•• 
px "my_tracks(il-:•px; 
.. ..:ec::. -.-. 

These functions could be C macros for fast access 

Type Information Creation 

The data description language~ ... ch" file ••. 
1 • lupart. ::!'!. 

• Oef:nes ~und pa=!~::le structure 

tt.ruct Lupart. { 
float c!'!.arqe: · .. • :::ha.rge• • ! 
float. :nass; ••;nass i~ (gev1c··~1·· 

float px; ,••x c~onent of =ome~:~=·· 
• ..-ecc.;..• 

Fonnat is subset of standard C with a few extensions. very 
similar to Sun's xdr·languagc. 

Processed by chgen command ... 

gencr:ues ··.1,·· for C progr.un 

generates ... L'·· cont:i.ining ::.::par:._-:' 

chgen is normally invoked by 1nak~ 

source 

-

-

.. 

.. 

.. 

-

-



I 
I 
\ 

\ 
\ 

' i 
i 

J 
! 

-

Complete Example 

7'·-~ ~.:t ·: •ntt'l~ti!S \ ::h_l ist. • t.r.sc:kl..1st 

-n_l.:t •vertexJ..is:; 
::c:ur:t .upart ••o:.ra=ks; 
.:i:ru:::t ·i'!rtex •.1ver:ax: 
in:: •• l • .::ount: 

~t. ::~:•Li•t.Of: ::-ackL.isc, lupart._~tl 
_.pr1 .. -~1 s:.~err, '"~indVartic:es: bad i .. .., ... n•'. 
rec.u::"I rnn.:..: ........ ' • 

. ,'!:''!.'!xt..:.:o:t. ., ChN•w1 •vertices• vercex_~:l i 1 
~.:.Jc:k:i " cbPt.r•t trac:kList •. ' 
~cunt~ cbCount.: c:3 ckList ;~ 
:-,~ . : : 0; ~ '· C:C":Jnt.•l; i•• l i 

~:Jr : " ~·l: ~ ... c:oun:.: ~·· l 
-tv'!;:tex • QOodVae1 trac:Ks ( i 1. tracks; j; J; 
if d.Ve:"tex !a NULL ( 

ChAd.d. vertaxList, ~vertex); 

':'!.t ur:-. ·:oer:axt.i.s: 1 

chtat.ist.Of (I tests type information 

(!.,, .. .,.... 

Cheetah++ 1/0 

C++ example: 

•i!'1.;::l:Jde · ostre~m.h> 
• i!'l.c ! :.iae • ::heet ab.: ::he-et a.h. h • 
•i.nc:!:..,ae ··1ec:tor.h:" 
~xcerr: •-:• ; 
•inc:.L:.ide •·1ec:too_x.h• 

"!@<::':.:::: ·:~[:.,::..,;.· 

::-:;.._.:':.:eam .:u:_.::~eam .•. ..::i.ci.J.t~·. ·...:c·•; 
Jut_:: :-eam. """::. ':.;!. c•...:.: _-. -:.e:n 1 : '""r::. :.e -:::-._~':.<!Ir. 
1u:._:::-e4m.:,·r~:o!~Vl:: wo~:.e ..:.ii:e.::~y 

.. .::-. .:::at3•, •::•·; 

:::.r._.:.=::: ·::-._~-:e~; 

;:-:_;:-~::: : .::_:::·.?3:::.?.l!a..3 
"~:::::-_:·:-~ 

........ _, .............. . 

l 
' 

\ 
\ 
I 

Cheetah 110 

Example 

r:h_l ist •eventt.is:: 
~h-~i.~t •track.:..J.st: 
::h_list •vert.exL.i.st.: 
ch_st.ream •sp; 

:pa C~-•Cr• ..... 11•00ezl.!"0Ut. . .:hdat.a•,•wb"' . 
eventt.o..a:t ,. chHew1 "Event• ;h_list_\'( \ ~;' 

~rackList a LundCatEvent(); 
cb.Add{ event.List., trackList •: 

·~ertext.ist a findVert.ices t trackI.ist : . 
if I vertext.ist. '* cACount.C vert.ex:..:sr' 

chAdd.t event.Lis:.. vertexList l; 

cA_acr•amNrit.•1 sp, event.List 
•et.urn J: 

) ' 

Can also open streams for network 1/0 

C'h...,Lall '" l" ............. _,li.or• ........ 

How Cheetah Works 

Cheetah works in a fashion which is very similar to how 
Sun's xdr package works. 

Sun's xdr package works by having code which can 
transmits specific data. For example. a. function called 

xdr_:racktXCR •,scruct. track ") 

would be ca.lied to transpon a t.:-ack stt'Ucturc. 

Cheetah works by having both a pointer to the dat:i and 
a description of the d:lta. It follows. in a parallel fashion. 
the data. to be transported and the description of the 
data. Internally. a t :-acK slnlcturc would be transponed 
hy c:illing the general function 

:h_t'JpeIODct.t.a 1 :h_;ype •, .:!':._s:: re4m vold 

where the first argument would be a. pointer to a 
.::-._-:1pe structure \\lhich would describe the -- -=ac :< 

structure. 

A<.:::_: :.e~. of which a c::_~ :s:. is one c:tamplc. 
contains both the pointer to the d:ua and a pointer to a 
'.:-._··;'i'e structure iJescnhing 1hc data . 

, . ..,..,_,...,, .. , ... 



I 
I 

I 
I 
\ 

I 
I 
I 
' 

Cheetah 1/0 Features 

ChHtah 1/0 Features 

Docs 1/0 of contents of a ch_~t.em. (il ch_~ ~sr. is 
one type of ch_item). 

Cheet3h file hos 1he full 1ypc infonnotion. 

General purpose applications can read and display 
the type infonnaiion and data. 

Bin:iry format uses industry standard XOR 
thus portable to alt platforms. 

1/0 to disk or stream over network is transparent. 

" 

Summary 

Features ... 

Docs C data structure input/output in a gcncr:>.I way 

Preserves rypc informa1ion 

Provide convenienct utilities for C programmers 

Suppon for general purpose applications 

Suppon for C++ object pcrsis1ence (in developmen11 

Suppon for Fonran 90 (in planning) 

Suppon for transition from FORTRAN 77 

wriuen in ponable ANSI C 

use industry standard XOR binary format 

follows an object oriented paradigm 

Availability 

in bet:i now 

anonymous ftp from heplib.slac.sta.::.:~rd.edu 

SLAC-PUB-5930 is also in heplib 

-
-
-

.. P•l.--G·"""'' .. ' 

-
-

-
... 

... 

-



) ) ) ) ) ) ) 

SLAC·PUB-5930 
S<p<embcr 1992 

(Ell) 
The Chttlah Oa1a Managemen1 Sys1em 

·---- dclin111on whu:h m1;tu be used 10 acscnbc :t uacL: m 3 
Monte C:arlo pro:r:im: 

Poul F. Kunz 
.1::uc: :.:•c• I 

!lo•: ;i!ll: 
:lo•: ;JtO:; 

~::: :::.•:ii•; 
Stanford u .... , Aci:elerator Canler 

Slanford Universlly, Stinfonl, CA 94309, USA The keyword ttr11ct in1roduces 3 s1ruc1ure decl3rauon 
which 1s a lisl of decbr:uions enclosed in braces. The sym­
bol tract. called lhe s1ruc1urc 1a:. becomes 3 new d:mr. t)'p!: 

in lhc C lan1ua1c. The s1andatd C decl:ar;1ions wi1hin 1he 
braces name 1he variables tha1 ille members of a suuc1urc or 
lype tract.. Membc:ts of a C suucaurc Ciln be of any C d:ua 
1ype includin& poinaen 10 ocher srruc:rurcs. 

Gory B. Word 

01pa11m1nl or Phystcs and Aslronomy 
Rulgers Univ1rsily, Plsc11away, NJ 08855-0849, USA 

Chc:cull •• .1 J.11.1 ma11.11icmcn1 system bucd on the C pros~min& lan11u;r.1c. wi1h suppon. '°' Olbc:r 
bn1u.1rcs. lu m.11n _!nal u; 10 u-.uuJ'cr dau bc1wccn memory .ind UO suc2n1s in ;r. ftncr.il 111'.I)'. 1bc 
urc.un• .ire c11h.:r .woi;1.,11cd wilh Iii.st files oc .ve ac1work cbu. sucams. Cbceu.h pro11ide1 option&! 
con .. cnocn.:c lu1M:Uon1IOWlM1n !he: m;ana1cmcn1 oi C wu.;1urcs. Chee~ S&IUmS illC Kll·dcscribin1 
WI lll.11 SCftCr.d purpcu.c .lflfllic;r.m>RI .. 'aR f~lly undcn&and ;IR lllCOm1n1 IUC2m. This iniomiaaion C:ut be 
u~J 1t1 J•~rl.iy lhc .U1.11n an im:1.m11n1sut;im10 1hc vier.of .lll 1mc1;r.i:1ivc rcncr.il ;r,pplM::ation, 1;ompkac 
wuh w.uutolc n.imcs .lllll Ofllioa;il 1;ommcnu. 

The s1ruc1ure dccbndon does not allocate any mem­
ory srorage. Ra1her s1ona1e is allocated wi1h a sc;ucmcn1 
like 

•c:rue: tl'olCk ll)'CtolCk; 

More frcqucndy, one declare' a viViablc whicb is• poin1cr 
IO s1ora1c whicb is alloca1cd 11 c•cculion 1imc by callin1 
lbe C libnvy func1ion malloc:. A code rrar:mcn11h31 doc' 
lhis looks like: 

I. Tht Goal of lht Chttt.:ah Syurm 

~ b;u1c cnuucs manl&Cd by Chtcl~ illC sUUclUKS 
.u .Jtrincd in the C p1ogrJmm1ng lln&ulzc. To quote lhc 
1niroduc1ocy pm;r.lph in 1he Chlplcc on struc1urcs 1n The 
C Prnf'tlmmlllf( Lmr:uur:c by Kcm1;h:in JnJ Ri1ch1c(IJ 

\ •/fl/1/Uft 11 ,/ .11//t1 /UIR ,l,.,,f'lc' ,ir "l/lft' IUfl· 

.Jhlr1. ;"'"'"'' "' .1117rro11 /\Jltl. "'""l'"i ;,.. 
.;c/11cr 111111tr" Ufll{lt 11u1•c Jiir 111111·c111ttrf 

liu11Jl11n; I 51f111 lurt• .Jrt , ulltil ·· rt1·.,r111 · .11 

"'"'' /J11r::1u;:r1 111•1un/\ P.1aul 1 i' I Sinn· 
::..f<"l 11<"1:• I•• •"\'U'1f~t dllll/•/1t'Uttt/ JUtd. ;JUfll(· 

.,,,,,/\ ,11 ·"'~'( ,1r11i;r1011,. 'it1.i111r oll "1Ull\ 

111:.1111<1111 :ht'\ JI"""" .i ;mw11 ••/ rc~Jtc;.J 1.in· 

.JfllcrJ l(J ht frtUl(I/ .II" lllllJ 1111/cfCJU .. , ~{ •(:•u· 
llJ/t' tflllflt{ 

The: Jc:sign Ill Chec1::h 1s bJ.ic:iJ .::n inc: ?rc:m1~c: lOll l!':c: 
otr\ICIUIC:I OI IOC C iJn\:UJ~': .J/C: .,!t::;.lh ;u\IC:J :,;i •lt;:ll\ll::' 

IJU •UR1n ·w;n .:11..-1~·· ..,n., ,1,. Ji::'? -:r.1·~1::;;:i .• ac:i ~; 

\l,•nl: '· .11·1 .1mu1.:l1·'l1 'I'••. ·, .:': :.:;: .. ;~~u1.u; .. o~ 

~ '. . "·. " 

•truce :ro1ck •myc.E"ack; 
•ycrack .... 11oc1 •1z•ot l•:ruc: 'r•ck I I; 

sys1cms. C nruc1urcs :lfc clc:1rly 1hc equivalenl of the 
.. b:anks .. referred 10 by many HEP developed d:a1a where Jizto/is a compiler opcca1oc which in 1his c:asc re· 
m:an:ascment syucms based on FORTRAN. These 1urns lhc number ofby1cs needed for 1hc uxk s1ruccun:. 
FORTRAN-based sys1cms :aU suffer. 10 a gn:11er or lessee In numy c:ases. one handles a collection of s1ruc1urcs of 
dc::rec. in poor in1c:ca11on with 1hc compiler. the opcratins the SilmC rypc. There arc many w:iys 10 ruwllc 1his s11uJ1ion 
system. :ind/or 1hc iymbohc debu::er. The soaJ of lhc in C. such :as a linked lis1 or :an array or s1ruc1urcs. One 
Chcc1J11sy11cm1s 10 c.tplo111he features of 1hc C lansuage convc:niem way _is 10 alloc:11c each 51ruc1urc individuJlly :as 
An1lc Jddin; JJtl rriJnl~cmcnt tools such JS input ;ind _needed and 10 alloca1c ::in array of poin1crs 1o 1hcse 
Ju1pu1 itre:ims 10 ;1or:1;:c or 10 :i clicn1-scrvcr nc1work. srruc1ures. In the following code fragment: 

.;onnccuon. Chce1Jh 1s Jcs1gncd 10 311ow lhc code wri1cr 10 sc.a.cc crack •·crack•• 
use n:iuvc C lln:u:igc conSll'\ICIS. wi1h only J. few rtquircd cracu • ••lloclnU11Crkss cs1ieot ls true' tr•c 11 • 111 
C!lcc1Jh foncuon ~~Us ;md ~number or' op1ion:al Cheetah Cl'o1cUl;.J ~ ••lloc1 s1ieotuc.rucc. t1"1ckl 1, 

•1mvc11u1u·c luncuons. Chcct3h nuun1ains symbol u1blc 
inlorm:iuon Jbou11hc uscr'i da1:a. which is used 10 provide 11umulcs is a vuiable coma.min: the number of pointers 
mJchmc·indcpcndcm :ind ielf-descnbing d:a13 s1re:ams. desired and rraclcs{i/ is :a poinicc 101hc i-1hs1ruc1urc. These 
Chct1.lh Jlso pro11tdcs supporl ior cb1:1 siruciurcs tl( oiber s1a1cmen1s may look comple1 10 1bc beginning C 
1JnguJgcs ~ucn JS C· ... and FORTRAS. programmer. but 1hcy ue commonly used Jnd wi1h more 

lmroduction 10 C S1ruc1urcs 

experience 1hcy become qui1e familiu. One should Jlso 
note that comp:arcd 10 FORTflAN·bascd <bla man:i,::cmcnt 
sysrems. 1hcsc few lines rcpl:acc a very l:uge amouni of 

'.~ ·:i1~ • .:~::.:n. ~.non ;.nd >1n:phrii:i.J ::i:rodu..::1on 10 (' complca code 1h01111 no1 an:-- cJs1cr. Jnd ircqucml:-- much 
:: • .:::;:;~ .• .:1.:::..:1:::;.; .. :.,n,1J~r ·he: .,,,1,i·• mg c ;1ruc1urc hlr~r. 10 undcrslJnd. Thu mc1hod hJs 1hc: ld\JntJg:: of 

m:akmg more effic1cn1 use of v1nuJJ mcmoty sp:ic= b~ ""' 
rcqu1nng: 1h:a1 the nructurcs oc :onu:uous in rni=mor~ 

~)=- ... 

'';i.: 
2 c;L,lC.?IJB·59~C 

HJ\·1n1 a.llOCJIC:ll SIOrlfC i0t SllUClurcs 1n th1S ... J). olllC 
CJn JCcess members of lhc Hruciurc ;u 1Uusu:uca 1R 11\c 
followm' code frJgmcn1: 

~:=: • ::~c~si~!·•pc~:; 

The Sirin: uact1{i/->p1ot C311 be used 1n 31'1 e1pren100 
;i,nywhccc a 11ari:able c:an be used. Thll 11. u ('Jn appc.u 
ci1hcr on tht lc!1 or ngh1 side oi me cquJ.I s1:n. used J.S :lll 

u:umcn1 of :a runcuon call. ere. Thus. one ha1 clc~ W 
concise mnemonic :icccu to d:ac:i in 1he s1ruc1ures. An 
impon:an1 :i.dvanta,;:c. compared 10 FORTRAN-based 
syuems. u lhll the symbolic dcbu:gec C.lll be used .. cry 
etrcc1ivcly since 1hc synia.. is a p:i.n of the C l:m:u:a:c 

3. The Chttiah Lise 

his usu:ally lhc C:llc 1ha1 J pro:r.un will cont:ain ~y 
dift'eccm 11ruc1urc types and for cx:h rypc m.:any sU"UCiurei 
of th:i.1 1ypc. For cx:1mple, .J pro:r:im m:1y wJn1 10 
m::&nipul:uc :t lisl of u::icks. a hSI of 11cnius ~ a lisi ot 
c:alorimc1cr clusters. for CJSC of h.Jndhn1. 1he colk:cuon ol 
li11s may themselves be collcc1ed 1n10 a lu1. Lisu aic 
thcref0<e imponan1 cnuues. Chee~ defines a list suucum 
c:alled ;a chUst which one coin use ror d.:u~ ~cmcN ~ 
tbal Chcc1ilh uses 10 ma.n:a:e input :and ou1pu1 urtmu. 

A chLJ11 is cre;ucd by cJ.llins chNrw wirh :t lis1 iumc. 

a commtn1 siring. Jnd rnfonro1ion on 1hc 1ypc of dJu 
being mainiaincd in the lis1 For CJ..l.mplc. in 11\c foll.l .... mg 
coJe fr:1gmcm: 

ChLllC ·::ackL~sc:. 

tr•ckLUil a Cf\Ne .. 1·~:.1c11s· "!'!i:::J:..,s· ::&c,._:- .. , 

lr(ICil.iJt is dccl3rtd 10 be a poimcr to J Chcc1.l.h hs1 "'r11.:n 
i1sclf' is ccc:atcd by the l·iJNcw funcnon ::JIJ The llu 
:icgumcm. trud.:_T(J. 1s l func1um 1n:i1 rc1ums lhe '>J'.>C 
m!omuuion. h :and :1 u11l11y 10 creJ1c U l4!10~1clJI> ... ,11 
be descnbcd in 1he ncu ieCUon 

A s1ruc1ure is Jddcd 10 l chlut by us1n: 1hc fun;uon 
chAdd. lhus. 1( mnract isl po1nicr 10 J SU\JC1uu of l}pc 
lract. !hen ii is ;iddcd to lhe tractLJsr by· 

::V.ddl ::ack~~s:. :r.yt:•:k , . 

The \'311Jble traci:l.ist becomes 3 con11cmcn1 hll\Jle '"-hen 
m:ampullung collccuons of s1ruc1urcs. i1 .:ollec1s m.: 1~pc 
iniorm:111on Jna the pom1ers 10 1he stru:::1ur::s 1.:>~:1nc~ 
u.·h1cn is nccacd for Chc:::1.ln mpu1 :ind .Ju1pu1 

.i,, .:omplc1:: :\:lh'Ok .Jim: ... ~c .)/ C~e::::n le>;• .a.J 
.llnct Chi::1.lh lun.;uon~ 1i in.:i1o1.n 1n Fq; I ''"" 1ne C.'\e:1.:.n 
;'un:n.:>ni :u~nii~ni::: :n :lC'i.! :::s:: In:: :.\.l.:TI?lc :·un.::1v11 



. 
.:; 
f; 

. 
' ~ 
:: 

. 
' . 

:: • ;· 

" . 
·' • u 
~ .. 

- u • .. 
ii ~ ii 
• " u I 

J • . .. . . 
u 

~ • 
~ . 

~ ~ .. ~ . -,, . -
~ u " " 

~ ~ 'i 
.. 
> • •-J 

- • ., K 
..... c; v 
• J :i .. 
u -" Q .. 

n • u 
u > • 

:~ ~ ~ ~ ~ ~: • u u u u . -. ' ; i 
i~ 
• u 

• ! 
J 

ji 
u ~ 

.. . .. . 
c ~ • u . . ... 
> u • 
~ - ... .J u __ .. "' .. 
I: J ... c 

... J • 
c • > ..... 

... > .. ...... - -
• J • i . 
:it~-> !: 

u u 1- ' • u u .. ~ 
.. > .... -

=~ 
- > - ~ 
~ . ' . . 
u • . . 
" . 

~ ~ ! :; 
~ . . . .., .. -. -... , 

u • " • :I' ...... . ~ ~ 

.. 
it 

C' • e e 
~ 

" ., 
~ .• 
"' ;; 

... 

-

::• 

.; ., 

·-
u 
;.? -

-

-

-



-

-

-

-

WWW FOR 

GEM&SDC 

J. HILGART 



WWW for GEM and SOC 

The Players 

Tour of the current Implementation 

What we need for ·a proper WWW 
implementation at SSCL 

WWW and documentation 

Tips for getting started 

!q ~ gpn- ~ J!.ot:u-nl# ~ 
1>oc-ir1>&J1t11; jssc World••• 'IJleb lnf1W .. t1-

Uoc-n1URL: Ji.up ,,_.SIC.pl/ 

SSC World Wide Web Information 

-· 

J'nr.~.?(~l!t~.~!!!'!~.~ p'O'lldlll CCllll IO·-- r ... of lnillnlllllln from. a vwWtyor 
JOWeet OOlh • SSC IWld ,........_ Jnlorm•lon II ~ In the form of t!1::e!J!!! Mllcll II~ wen IO 
follow piodftS fro• QIW Item eo CMJMr Rl•ed IM•, lld 1tU to ccm lbt lrdarm•ton ltllJ tlRd 1n estmple 
lnlu111ve mll'ht. lnform•lon ii caaed w-. the TCP4P netwl 1111 ctn cnllllJN&idl ~In lhr 
lllOl'Jd • .ti~ tne IM'dOll me nees to tnow....,. ,,,. inlotm•lonco- tto.. 

Th" wrva ii tn atleea ~loft. ft~ commau wt -lcom• by lhl ~~ We r.w lnlD.nedly 
borrowed from~~ .. ~~ for mu::hof tllil m•trlll. 

SSC JnforJUd .. 

~~~!~.~!'.~ 
lnfcrmlllon pad IO thlSSC vtll&or.""' e~. ot owider.

~liM-~
fnformlllOn.tpelfJc IO $SC apertmeru.

~J~~~
Tiw SSC llbrr/1 ccN*tlon. (Sent~ ·~1o-.)

f~~-
Thi!' SSC eleclronlc pl'IDnetloot..
~~
ti~ of Jftl«s IO SSC.

~~9ffl~!':~
au.-, IO Ill aperl--U fOflher ..._, .. the SSC.

~l~\!.'!1!=!~~!~
M~!t~.P.!l~;'!~MiQ..,

01ha JIEP lnC.rm•d•n I
u

--=-
The Players

gem
~

o Ivan Chow: database whiz

o Minick Rushton: SOC collaborator from ASD. CF contact.

o Kevin Ounn: Library's interests.

o Another group from accelerator controls group

o David Liu: general expert on everything

o JH: chief WWW expert

!!* ~ gption.6 ~ ~ ~
DocU1a1nCTlll1: j0or:._t O.tuu•

DOC-MUAL: l"ttD //sc:IC!i.asc.p.1_,,.,. ... _"t•I

User's Guide for Document D:ib:J.ba.se System

lncrod.acdoa

nua 11 .. veryprellm.in..,.oocumm. d•ltl- lll!l"Wr for bib110fnPN¢ ~"'in.: ssc·s oc::
Cdo':umenr: comtol <:erUfl. Tbu!gs auc:n •OEM ~SOC tecnrw:al nxes .-e IC«!Siblr

H..., to "lake Queries to the Database

aocn sh:lrterm Wiii full~'°" of Hen ~11 '"'~Ced... n..-.
• .u(U1orl (r.1 .• mcf•lm'le)
• c:n 1r.1 . .coJJllbor•10nsoc. OEM)
• {d•rl blr!onil&tta"(r.1 .• atlef" \992)
• cSoc:!~l(r.1 .• SOT)
• 't(~) (f.J .. Caiorltntcr}
• u(tlrj (r.1 .• 1ean.c:an
• tytprl (r., .• note. lira..,,,.. memo. lllOdtl. aresencai:ioro
• find. (tlul LI •l1Wllmy ~ for SPIR.ti u:iicui

loolHn 09tt.con c:om.r It\ 11;."0 fcrrns:

• ans{&.]
• or(l)

E=mple quaies:

t1nd au 11 t"Ut •net Cl! SDC

l••~Cll •e1vll1
'"")0 'tl

THh .. OUe

.... --.. ..
QVf•TN·U·IO• JEEE lt•nd•rd lSt llMd TOU: MIU Ute cu" ... , zz l'tU

<:oeoput•I' U1er •••• to Know Atlowt 1111
rl-tlftf·l'olnt ~rn.h-tlc:'

Author1: LEE ROllllTI

..
QD'l•Tll·U•S't QDt Collpltlnq/11-latlon l'Metl"') - llct. .ltn ZO U'tl

AYtllon:

GEl'f·1'1f·'tl·ll• GDt Delector Computl"') ltudy: ltudy of
Co-t>lned Cln•Lln• l~•I J) and Off•&.lne
r1cll1ty

AYtllon:

AUtl'IOr1: tRWIN IHllll. EDI MCFA.lll..UIC

~lk' !!.-fJMr 9.Pt- ~ flw-nli ~

Doc..,.11111101: J Ct:ll lnf-uoro

DocumenlURL: lriup /t-.11C.gcH/e--/~.Plt•l

GEM Information

GEM ted'lnlcal nocis.
.....• ·.-. d'.ii. biM 0.. OEM ledWcal noc•.
~~M~~

N"4 irtk:la releYd to OEM. i.e •• p::llled lly OEM colllbormtn.
CEM tree
.....• ·A-nypenu:1 two_, or u. OEM IOftwtdlffdOry.

lldp

CEM news

l•p II l't'l

l'llr 1 l't'J

Httt nsarneypiOnl If]JOI.I ... haYlrt ll'OUble re111i,. ot pc:.llrW IO "'10f tl'al pm: GEM
~)JOI.Ive hrwcl tbolL

:.r.11ch l'..~~·.,nr<.I:

....

u

. .· ...

<Cit •<O•SOC 0.t•Ctor. b'

•"dd. <• nc•t 0 •:1a:_.1111tec::cL;i1:•,Here..;1•· 1s _. .1r.-••<1r.-i e: ~n·. :;:-·

<d:. ··.s
·da·

<r,:!>H•IP< 11'12 >
<dl .
<dc .. soc nl'Ws
<da a nre!-n_.~ "'0.1.r:cecs -c-l>H
havu1.q trc:iubl• r._,::1-;;; ~: ··• ... ere are sc:i""' .iYQ,J,.~: •~ns-

~~~~n9 tQ •n)• 0~ t::.:iae Qt"e•: St=:. n•ws9rOYCt$ Y:l\.:'Vfl!' l\eil:"; "D~\;.~ 
.. 1boe1y-. 

t.~ ~ gptlom ~ .. ~.J ~ 

O.c-cnl Tille: j C(M ln~hon 

DffUlllfnCURL: )http /t-.s&c.gcH/V--/....,__ht•l 

GEM Information 

1bc lollowq lnfDrm•lon m pnMded fotOEM eolhborllett 

X™~~~ 
A d111~ ol OEM lectwlkll mta. 

XliM~r~ 
tlnis W'hCICS relevW& •oGEM. i.c .. poMed II)' GEM eollaborllOrS. 

~qM~ 
A hypcl1tllC l:lfowser of tb:OEM toflw.-e dll'f!C!QI)'. 

Jldp 

GEMr...s 

-

-

-
-

-
-

H~t ••some ns!f!!lk:ft If )'OU ft hsvirC ~It rndirV ot poGllW to '")'Of tl'me srt• CEM 
l'lr'lo'lgroupl 1DU"Ye h9Jd lboul. -

Personal Anno111dons 

• Nw.'.'l!J!:l.n. ~y .~!'l!'J:IJIKll!'! (Wed JIA'l 30 \J.17:35 1993) -



-

-

-

·- ~~ l.Y-J ~,....,..,,,. u.-. ... ~· 

u.c_,,. l••r. j Cf .. -•II"-• 
;._~~~~~~~~~~~~~~~~~~ 

LJ.oc-•14Ulll l•u1e ,,_ ••• q..,1Qt1~0"'--' "'•' 

G E~t "~'vsi::roups 

I:. f;':IC~ 

~-"1!"~!"P. 
~G!!"!Otli 
Do.:i!!ll: !'!~ 
~S'!!".~ 
~Ir!'!"~~ 
~n!".!';f!'?fl!'!I 
~- S!!='. !'.'!-"~ 

Thu 11Siw•1nn•eotb7~ lromci-lllC'eo"onFrtJi.n 1• 16.17.S7CCTIS9l 

~· ~ gptiona ~ e---• ~ 
Docu11ttn1 flllr. jusEHn .,.ucle :ror.1 .. 1c,,.'"'-- fn•I . ..., 

Docu•rnlURL: )"- l()oh•kp,.,_."'-1 p-

Test Beam meeting ogendo 

there vtll be a test be•• DAO -•tlnq on July 1st. curr.ntly - phn 
t.> •••t Jn ttone ltld9• 4 starting at IO:lO Aft, Ttl• .,enda vtll b<I: 

lnt.oduct.ory a ... rks 
seop. of tb!a •Mttr19 
llequlr .. ents WTt. future Cat Oi\Q 
llav. of detect.or soibsyt .. l'equlr-ts 
L~"' 
.,.,,_ of 9-•ral requh••-.nta 
Pl:an• for th• nest -•ting 

paul Slau.airy 
flySelf .ad/CW ltotlo 
O.n •rlo... 
.u 
oil 

Jt• Dunlea 701-140-ZZ6J 

I~ ,.._,_.,,. flJto'-•I Nw_M,. tin.-1-1 ltlM•ldll 

., •• .,.,. ..... 11111 lu'SINll _.,,.._II: - •o••·-

11••-•nllJlll 1-· ... 00"" •• " .. _ 

• DAO t~ !~I ~.,.,JI, ...... , . V•y lh1'" ·wo,,J 

• ~~Q,lf'l•ll •• .;.:; .. " 8t111'1 ""''''~ 
• f'l'<I 8•arn m"'""1•1'1 ,.~nh • Jim 0111""• 

~~ r:!_.wlf"'" !}plion.s ~M~ ~J ~ 

Oocu.1n1 ru11: J soc lnfw .. non 

O.Cumc111utll: jttttP /,_.11c.p/-*-IU1c ltt•I 

Solenoidal Detector Collaboration (SDC) 

soc Dttcctot 
!"!~~ 11 &drtwq O( I.he SOC D«eclot. 

~9.t~~IJ.f!'!.~ 
A d•a b- ot soc 1ccm1ca1 noca. 

?R9.~irr~ 
ll"'I ..ilctes relcvn IOSOC. Le .• pxteo:t by SOC collabotalon; 

~R9.~~'!'P!-!~.~ 
lnnruclionl on now io 1et 11'1 SOC comfUa C'C"QUll 111rie SSCL I Only lV&llllCll IO members of (/'r 
SOC .:olllllot11I~ 

~R9.1m 
A llypenu1 broVIMr of thtSOC IOftWI direciory 

Hdp 



,_ ,.,_,.., 
··- ..... , , ... , 

l"lld ,,_ U( 90"/l .. _l'I~ 

sd< 

• 1.';?lllok-"' 

·~ • !!:..: 
• !!!:!L 
• r--.wir• 
d ..CCI 

·~ 
·~ 

":"-"'-· 

~di ~ 9JllloM ~- ~$ ~ 
Docu•cnlll1tc: l11rti1tlM1, llll nup ,,__uc.gov,11:•1•-"''•l'J_, 

OocullllclllUHl: jnnit /1-.SK.QOl/Hlo nt•l7l<:IWI 

M••• Phcn tull CIOlc "8;11 

AHDOIOM • .IOJUI 
IA~. JOH# J 
IU.CH.JOMX I 
llPO.JOHlf W 
IU.Jltoll.JGHll 
11.oc>olXlOO. JOIOI 
IOEDEXD.JOHll 
9USH, JOH• 
SUIM.JOHll' C: 
CARKET.JOWI 
OIEW.JOHJI 
ct.\RJl, JOIUf 
Ct.llftolf,JOHlf" 
C'Oalf.JOHH 
COfHE.JOHf\I J 
Do\SIOlfVlt.Ll, JOtOI lo 
ODOllS.JOHlf I 
Dlt.LON.JOtOI J 
OOUl,JOHM " 
OUOllG.JOllJt D 
Ulte.\RDI • JOHIC 
rtSN.H,JOHH 
n.111111G.JCHll " 
GAIBatT.Jotllf 
GARU.NO,JOHlf 
GllS, JotUI 
G 11.0WSJ: l. JOHlf I 
C:AAJl.JOHlf I 
CUatllERO. JOHN Y 
HALlMSJ:l,JOKlf 
KARAALJOll.JOJOI W 
KA?OClf, JOKlf A 
Kll..:.\llT,JOHll It 
K 1 rsos . JOKlf 
HOPPU. JOlllf 
JAJIUU.[f JR.JOHii 
JENSEN.JOHii 

~~~~~~~·!~~D!-.. A 

l•Zo er n1u. •01J
Js•s er Cl•• •ool
Stlt TIU2 ~ •010
•Otl Utt IOSCD ZllO
•6S4,... ZOii
UJfX .,,. 2011
66ZZ Pint Ntlt ZOii

toot er '''' •01 J 6l90 Siii lllr ZllO
1 ll2 Siil SZO ZJOO
66Sl n-. ZOtt
Sl41 11/A 7000
5121 SRI uzr UlO ••z• •1.1. ZOU
•SlS er DS•• 9000
6140 111• C2ZZA 1011
so10 1114 c1•1 1011
]157 111.4 Cl'I• 1013
l7Z. er FOZJ 4010
un: er u.ou. 4002
llZI SIUI 0261 ZUO
5610 .,.. sooo
••s• er .1.0•• 101•

un "'" o ZOZl II/.. ZtZO
66l6 W/A ZOU
•• ,, 111:• D2 u zoo•
6'11, GMt MDIII 6000
IJJR. II/.. ZOU
lt61 er 1111 •oo•
l•OZ er IZIZ •ooz
Z75J rllt. 155 1004
11"11 1111 0256 ZOOJ
6132 "'" ?011
6455 MIA ZOll
1251 CF !IE%% •OOI
U"IC IA.MIC l•O 1011
~~!! ~·~ 190.\ !~?~ u

~~~~~~~~~~~~~~~~~~~~-

j .. llD ,,_ llC -1'•1• "''°I 

SSC phone book 

n.., •nl-"'lll•IC'fl II provhJfd !OJ !hr ne1 .. ,~ l.MOf s.;c fmplO~ 

Ohi:cd••• 

•1..--
• fU'SI' ,_, 
• pl"on! Ulft"lllOll 

• C'UDIClf 
D llHll:nop 

-

-
ll'lml'l11 RETIJRU. ot lllM!nct ~l)'Slfm re~ttt1 loRni lhe 
ni•cl'lrs Wiii bctt11Zned. Sorr}'.Rllcai.it IOd-rna. ~· !p.Jn7 Pwu.i cnrr'" •e ~Wle All 

Docuntcnl lltlc: j ssc CXIAtot Hrvor 

Doc-enlUAl: )~,. //lnfo.s.JC.p 
101 

.. 

-
... 

... 
:; ... uch io;. .. , .... ..,,J r----------------------------
'"" 

-



.. 

l \~--' I . 
! l I 'tr 

s' ~I · s I 

•, I 

Hlu1ih1 

- WWW and Documentation 

-

o I do not endorse straight WWW for all your documentation 

needs. 

o WWW's strength is Its presentation of information 

o Current presentation formats: 
native mode: HTML - simple but very limited 
ps - need a previewer on client machine. 

Ghostview is default 
glf, tiff, jpeg - xv is default viewer 
dvi - xdvi is default 
mpeg (for movies) - mpeg_play is default 

o Future extensions will allow any presentation the client 
can handle using a negotiation algorithm. 

o The organization of information ls not addressed 

o UNIX filesystem plus a clever file-naming scheme 
is no substitute for a database 

o Continue to use and refine your document databases 

a Plug WWW into the filename attribute 

I 
! 

~ 

Wish List for a Proper WWW Service 
at the SSCL 

gem 
'6J:j' 

o A dedicated machine. www.ssc.gov = my workstation 
o Dedicated manpower >= .3FTE 
o A collaborator directory for GEM and soc 

o Interface to PhD (eletronic phone book program) 

o Electronic technical note browser 

o LANL preprint browser 

o PRO seminars for the coming week 

o Working usenet service 

o xmosaic on VAX 

Outside of PRO: 

o front-end to databases of interests to engineers 

o Trial of xmosaic on MAC and PC in September 

o front-end to PARIS - for purchase reqs 

...... l 

WWW and Test Beam gefi 

o WWW should be considered as the presentation layer 
of an electronic run log 

o WWW could even be used as a GUI builder to make 
control panels. It is 

~ 

simple to associate an action with a hypertext link. But there 
are much better GUI builders out there, e.g., TK/TCL 

o GEM will use WWW for test-beam documentation at a 
minimum ' 



Geometry Builder lnllial requiremenls 
later developmenls 

... 
·. '.''; .. ~-·~·'.' .. • ' ' . ""I 

<!fjl/JA, I 
1i. f!-·'iiF.t· . . 
- 'l.•, ·~1 I! .. ...... """''~"'iii 

• ii I IZ!i 1au.1g1;1w 

1 ,.,.,.,..,,,., SSCl 

• CAO modal {IGES tile -compatible with AuloCAO and lnlergraph) 
• E•lsUng GEANT model (GSAVE RZ lie) 
•ASCII Ille describing the geometry In some weU-dellned. human readable lormal 

• ln1eractfva geometry craalfon on the SCteen with• GUI and mouse 
• ModllicaUon and poslllonlng ol voJumo1 lnl8lacllvoly on lho screen wllh GUI 
• Polnt-and-clldi solBction olvolonnes on Ille scrun, wllh display 

of paramolora. poslUonlng. matellal' media and rolatlons. 
• Drao-and-reaoshlonlna whh mouse 
•Merge geomelties lrom various sourcea (e.g. lo add a CAO modal ol a suppoft 

slrueluto, Input trom an IGES Ille, lo a previously aeated GEANT model) 

, In 20, wllh sleet and projections 
• In 30, rotatable, hld<len liiie removal deskable 

•GEANT geomelly In a GSAVE RZ IUe 
• Fortran code (caJJ. lo GSVOLU and GSPOS) Isl ol parameters available as an e>cil 

file, must lnclude creation of malerlals. lraddng media and rotation matrix cabs. 
- wilh oplimlzaUon or GEANT geometry Ilea 
- handlino ol moonelic liolds In lrecldno media 

•ASCII file ln the defined' fotmal menfioned ab0v81or lnpul 
• IGES tile lor re-expod to a CAD system 
• CALOA89 volumes 
• MCNP volumes 
• GISMO objects (lormal 10 be determined) ~ 

Additional specifications 
I I ' 'I •• : I· 111 II .1\1 I 

The geometry builder may be, bul need not be, a cuslomizalk>n ol AutoCAO. 

SSC unix flavors (DECslalion, HP, Sun, IBM and SGI) under X 

';t 

The1e is no requirement as to whal language Iha toot should be wrillen I'\. 

'!I 1•• '·' 
The p1oduct and Its use will be sulliclentty documented 

The source code will become the Pfoperty ~I lhe SSCL with lutl righls to use and modily 

' ' 
There will be adequate implementalion support provided 

GEM and SOC need a wOfking release version by 1194 lor tesl beam geometry 
An evaluation version should be a11ailable by 9193. 

ll1cse spec1licalions have been ag1eed jointly between GEM and SOC 

• • • • --~·~~ 

J 
j 
! 
' 
11 
Ii 

r 
~ 

i 

i 
• 

• 

ID 
0 0 0 

5' :J ;:: m 
Gl 

)< ~ .. ;;; !! Ill 

:- -
Cl < !! (/) -.. .. (/) :i 
jjj ~ 

(/) co 0 
(/) 

~ tO .. :. 
c: 
ii 

:;; 0 er 

.~ 
r c Ul 

,. e: 
'7 

.. -x 0 :J ::t DI 

'7 3 I 3 
.. .. .... 

.g ~ 0 
:i: -< .. -
0 

ID ~ 
Ill 

:...:, GI :D ;:: ,, a a. 

fi' 
.. 2: m co 3 

'7 ID .. 
:: < -6 3 

.. 3 
,, 0 0 .... l 

c: ;, .. 
!' c 

~ n .. 
co 0 

'7 
.. c;· 

o n 
0 !" 0 

< c: 3 c 
-3 .. E' 

:J .. .. .. p 
.. 

:J 
n 

,, = 
rt .a .. .. c: 

co Cl 

~ !! c: :J 
;;· .. ,, 

:J §i 0 
:J 0 < 
3 

~ 

0 
3 

c: .. .. 
-0 

~ .. 
! 

csh> ~ SSC Wot Id Wide Web Jnlor11o111on 
SSC WORLD WIDE WEB INFORMAllDN 

The SSC Worlc:MldeWeb (Mo.W) service[ I} provides access to a wide ranqe of 
lnfor111atloo frOlll a variety of sources both at SSC and elsNhert. lnfori•a11on 
Is provided In the for• of hqperteMt(2} which a I lo.is users to fol ICl.I 
pointers fraa one Item to othir related Items, and thus to access t~e 
tntor•atlon the~ need In a simple Intuitive Manner. Information Is accessed 
using the TCP/IP(l] network and can actually reside an~re In the 1.1or Id, 
1ltl1ough the user does not need to know where the lnfor111atlon coaes lro•. 

This serv Ice t1 In a beta vera ton, and your coments are we lccne bij 11ie 
developers[4]. ~e have unabashedly borr°"ed frm SLAC[5) for 11ouch ol 1hl'i 
•aterta1. 

SSC Information 

Genera I SSC lnfotiaat lon[6) 
lnfotmatlon geared to the SSC visitor, 
or outsider. 

nev emp lo'Jee. 

GEH(7], SOC[6] Information specific to SSC eMperl•ents. 

1-22
1 

Up, <RETURN> for more, Quit, or Help: O 

4 • • 4 • 



-

-

Possible collaborators 

GEM (John Womersley el al.) 

University ol Washington (Toby Burnell) 

SOC (Marc Turcotte et al.) 

SSC Laboratory PACO (?) 

lntellimation Inc. (Commercial software operation) (?) 

~~~------------~ J ,. _ _,sscr.. 


-

-

-

tkWWW

(ola fdil gpuan :J.lylas 1:1tstary Jlookmartu einnatata Q.~u~n1.s·-i~~ - li'etP I
Document Pddrwss: fl\a-Jatstathena.m1t.adutcour1e/01her1cdsoa11/l'ltmlfw1lco1111.hlml

Document nu.: w11co111a to n.www

'World Wide Web System Main Menu
' Nott.: S-& vunou of t'..W'WW &rt. not coUipn.d. ti Usplt.y gr•phicl 11.pru. If tbiJ is tht. cua
'witil your YVnlll, you ri Ctt •ovc• coil& m placa ot tk.1& b.pru.
'
Th5 U,tnt.t!Jniyure -- N"•Nst=!rls Apdsmv

·eau bwto 1udi,5mu2•r1 of!hg de

Ptu1 bmtg lipk ~o !!\5nsw M!IW'WWSwy I

bu OKI

·'""====================--'~================::::;:==:

-

'1 .Iumr!!!
: '"Thu hDk ctatam1 allWLQ of Ill optrl.UD.t Tt.dimft ruvvs ilu:hadingC..
; auut&I

: • !llll1.
i '"Huaua1mpl1.0DEappii.catioauUe:-4&Yt.lopmmt
i
J • ;-'Jld~m frocusu (

1kiii;ej __] _j Goto ... J ,;.,;,a;;; Ge.._ Soiot.1 cion.1 ~-~(E;;itJ
, Message:

.!J Unldaq Control

(iit'GIH(RESUME PAUSE\ ENO\

cmdtool bangkok

?ln¥a d co••&nd
ftp> qu1t
221 Coodbva.
chow{sdc,:561 wish
wish: sourca pdaq. ta'Ct
couldn't rtad f1le '"pdaQ.t1xt": rta such ftla or dt rectory
wt sh: sourc1 odaq. test
wtsh: cat pdaq.test
111 atnstza . t t
•• aaxs1ze • 500 500
•• CJ•o•etry • 300M300
•• t1t1e • ·un1daq Control·
set butcolor green
l'rue .control
place .control -width 500 -he19ht 20
button .ex1t -ttMt ·EM1t" -co••and "destroy

button .control.bel)in -t•Mt "BECIH" -foreqround green -state\
noreal '"'Co1eand \
·.contro1.beg1n conf1q -relief sunken -state disabled: \

1
.. control.resuae conf1g -re11ef ra1std -state noraal:\

.control.and contig -relief raised -state noreal;\

.control.Dause config -relief raised -state norea1·

button .control.resuae -teMt ·RESUI'£" -foreground Sbutcolor
-state disabled -relief sunken -coeeand • \

.control.rtsuea conf1g -relief sunken -state d1sabled•

I button .control.Dause -teMt "PAUSE" -foreqround green\
-stat• d1sabl1d -relief sunken -coa•and "\

I
·~

.control.resuee conf1g •r111ef raised -state nor1al"

button .control.end -teMt "ENO" -fore9round green \
-state disabled -relief sunken -coeeancl • \

-
GEMC++

PILOT PROJECT

I. SHEER

-

-

-

lrwta. Sheu

C++ Pilot Project
Status

• Project Goals

• Project Overview

• Current Status

• Future Plans

:•1p~onducun~ :upcr :ollidcr !..lbor':J.tory
~~s :?.000 • .?SSO B«klcymc.ll.1c ,\\'Cnuc
L!.1ll.n. Tcx.u 75115-3.:'lcr;
1cl: 1 21-'1 :'OR· 1050: f.1.,: 1 .!14• 70S-(,354
· ln\1n_Sh._,_.,...,,...., .. l!ll\"·

Project Overview

• SSCgen:

"A Monte Carlo Generator Package
for the SSC"

• resgen:

"A Code Generator for Application
Resources"

1rwm. Sbe@f"
:upcrconducun~ ::.:upcr :ollii.icr !..J.bur;uorv
'15 .!000 . .!550 ikx'klc,·ml'.uic .\\'cnul.' ·
t:JJl.;a. Tc:u.s 75 l l5-3?C1:-
tcl: L!l41 ;"OR·\050:la.x: t!l4•"'.'0~·{ij5.f
ir.,'ULShl.~r" \\(".~O\'

Project Goals

•evaluate C++ language

•evaluate OOP methodology

• produce a useful HEP tool

1'wtn Sheer
:upen:onducuni; ~uper :.allider Ubcr.:uo~
'.\IS 2000. 2550 BccKlc~·mc:idc Avenue
DJ.l.L;u. TeX.l.s iS l 15·39C)i
tel: 12141 708-IOSO: f.:i....: 121-'l 70R-U3S-'
dn\tn._:>bc..-cr" 'iSC .2n,··

(SSCgen J

• Unify several different Monte Carlo
interaction generators into a
coherent package.

• Merge interactions into events in order
to simulate minimum bias pileup.

• Merge events into a pipeline in order
to realistically simulate pileup from
out of time bunch crossings.

lrwt.D Sheezo
:uperconduct1ng Super :ollider Ubor:uory
MS :?.000. 25 50 Becklevme.u1c Avenue
Dall.is. Te:us. 751I5-.i·Qt)7
rct: 1.::1.01 70R·!050: t;i.'C: 1.::1-1.i ;nR·6J5-+
·;lf'\lll_~ht.'Cr" ~~ .l!O\ •.

Prerequisites

•HERWIG

• ISAJET

• PYTHIA I JETSET

• CERNLIB

• STDHEP

• CLHEP (HepRandom class only)

• libg++ (String class only)

• g++/gcc

• gmake

• gdb

\:win Sheer
.:upen:onducuni; :upcr :olUcJcr i-1.boratc-ry
~IS 2000. 2550 Becklcymcadc A\·cnue
Dallas. Tc;gs 73115-J')C')i
1eh C:!l·H 708-1050: fa.x: 1.!l""170~-i135..&

··ln\'ULSht"l"t'" '~t· .::n,-·

Persistent Classes

Particle kinematics, creation and
decay.

List of simulated particles that
correspond to one interaction.

SimEvent: ~:::-,ulated ~·r~L'l1l

List of simulated interactions that
correspond to one bunch crossing.

SimPline: ~'.:::ulated Event '."ipe:lr~.~

List of simulated events that
correspond to the sensitive time
of the detector.

lnorin Sheer
:upcrronducuni; .;:uper :<Jlltder I..iborator:,.·
~IS 2000. !550 Beckkymc.idc _\,·cnue
0.111.is, Tcu~ 71115·.'\')CJ-
lt•I: c.!l-'l 70K·l05C•: !.l\: 1.!l-L 708·(,J'.>4
· il"\\ln_:-hl":'r'•~\C.;:!>\'·

Object Model

• Persistent classes

• XDRstream classes

• Generator classes

•Other classes

ltwiJl Shea'
S11pen:ond.ucung Super :::oUider U.boratory
MS 2000. 2SSO Beckle)'mcadc A\·cnue
0.1.llas. Texas 75115-3997
tel: 121..&1 708-1050: f:ix: 12141 708-6354
<iri,,.va...~necr~ s\C.goV>

...

-

-

..

...

gem::::

~-

Persistent Classes

Simlnteract

SimEvent

SimPline

LnYiD Sheer
~uperconducrmg Super ::ollidcr Ubor;itory
~IS 2000. 2550 Sc<"kleyrnc;idc Avenue
D;iJl:u. Tc:u.s 75115-31)<J7
tel: !21-H ;'OR-1050: fJ..-..;: t214l 70A-&3_:;-1
<.IJ'\\ULShe<!r" ~SC .~n\-·

..

..

-

-

-

XDRstream Classes

XORstream:

Base class for all XOR streams.

XORfstream: ::::·-;:_ Jle ;:··~;;.':..::-_

Base class for all XOR file streams.

XORifstream: ·:::•. -.nput .'ile ·"·--

XOR input file stream.

XORofstream: : ~:-;:_ · utput ·"ile • "'.:· :<•:~:

XOR output file stream.

lzwUl Sheer
:uperconducun~ Z:upcr :oUidcr WborJ.tory
\lS zooo. !SSO Ik.>c~lcymeadc ,\\'Cnue
D.UW. Tc:gs 75115-.tC)'l7
tel: 1:\•U 708-1050: f,\.X'. 1.!141 70S·U354
• \l'\\11\..~ih('('l'""\\C'.CO\"·

Generator Classes

SimGen: .:: : :::.ulated Interaction :'.:' : .. erator

Base class for MC generators.

HERWIG MC interaction generator.

lsajetGen: "~J.,-~~"':" ~·~:i:erator

ISAJET MC interaction generator.

Pyth- G • -.,,- =·.r· ·~)-..o,··erator 1a en .. __ , ____ ""---

PYTHIA MC interaction generator.

SP _Gen: ~"ingle -article :~ ~ :cerator

JETSET based single particle I jet
MC generator.

llWU1 Sheer
:upcrconducttn1t Super :olhdcr !..ahor.l1ory
'.\\$ zooo. :!SSO !Jc,·~leymcadc _.\\'COUC
l")..1Uas. Tex.ls. 75 \ 15·31ll'J7
td: 1.!14170~-1050: lil.-.:: <.!14· "OR·(d')4

r..,,1-.::-i\\t.'('I"''' \\{" .'.!• ,,

XDRstream Classes

XOR stream

XO Rf stream

XORifstream XORofstream

lrMA Sheer
:upcreonducUnR :upcr :.OUidcr i..J.bora.1ory
,.ts 2000, !SSO BerklevmC'.ldc A\'enue
O~ Tex:is 75115-3997
tel: 12141 701!.·lOSO: fa": <Zl41 :'OS-<>35-i
· !n\1n_ShC.'Cf'"'S~.J:O\">

gem.::..
~-;

Generator Classes

Sim Gen

HerwigGen lsajetGen PythiaGen \sP _Gei

lrw1.D Sheer
~uperconducun~ .:uper :.ollidcr L.Jbor.l.cor.·
~IS :!:000. !SSO Beck.lcvmc:J.cJc ,\venue .
D.1 • .ll.J.s. Te~s 75 l 15·3ll'l7
!Cl: 1:!:141 701'.·1050: f.Lx: 1.!l-H 70,'t-(._\)4
il"\\~~h'-"Cr"\\C".CO\"•

Other Classes

SimGenApp: _:_.ulated Interaction
';;.f.:cerator }:.:2 · ·fication

Application which generates
simulated interactions.

SimFltr<class T>: j'. '. ::c, ~L;e: class

Sim{lnteract,Event,Pline} fliters.

I.twill Sheer
!uperconducun~ ~upcr :olllder Ubor:uory
~IS :'.000 . .!SSO 8t.'Cklc~'mc.ldc ,\\'CRUC'
D.lllas. Tl..'x;i.s 75115·3'>'17
!CL t!l41 70S-1050: I.\.\;: 1.!J..ll '."OR-1d:;..;
-o.it"\'1.ln_Shc.."'l'r' SSC ,s:,m··

MOdule: SSCgen Sheet. 1: Object Model P•net. (0.0l Time: Fn Jun 25 14:28:51 1993

--
i-• '-

lT1
1-1

1-11-1

--
I

\ s•.a..!

--

..
Other Classes

..
\ SimGenApp \

-
SimFltr<Simlnteract> SimFltr<SimPline~

SimFltr<SimEvent>

ltwi.a Sheer
:upcrconduc:t1ng Super :oUWcr l.J.boratory
~ts 2000. 2550 B«kl'°'mc.J.de Avenue
0.1llas. Tcx.:is TS 115-39():"
1cl: f2l-11 708-1050: f.i.x: l.!141 ';'01\·<:d5.&
~ 1r.,1n...Shccro-ssc .i:.n,

•

gem:::

~-

Mooute: SSCgen Sheet 2. Pers1st1tr1t e1assas Panel'. CO.OJ Tim•_ Fri .Jun 25 i.: 2s·s1 199

---· - - -- -- - - -- -- -- -·-- - --· -· ~ - -- --- - - ·-
~ - - ---~ =-~ --- -·- - -· - -· - --- - - ·-· - ... __.... - • ' • •• r - -· -· - r r 1-· --· 1-,·-~ ls.1--I 1~,1-l
"""' -.ft I _,,_ .. I \:"..:- I _, --· -----..... -· --"' ----· ...,_,
:;:: .. ,
"
,_
~-· -'" " "' "'
""",, ., ·-\~' ,_,_,
·~· -

-

-

-

-

-

-

... _
·--•·•OA-. ·-·

;...

·----... Fl.I"

.UMlll-) -·-r
' lDll•- -.l(oa. ... -1 olOltol•-1

--~· .,_, ··.aA.1-1 --·

Mociu1e: SSC99n Sheet: 5: SimGen4oo class Pan.I: \0.01 Twne: Fri J~ 25 14:28:51 1993

---------... ,~ -T!..!t· II)

-----"'"'-""""' -· ---· -· ... ,_, -· .(

I - - I - I
.. _

1-- -- 1= .. ·--- ..,._ ,_ - -I='" -- -- --- -- -·--- --·--· - --· ~·-1-----1 -- -· --·--· -- _,., --,_,., -" -· -" -·--1 --·-· -----------P_~I
-sP.G.oll -·

i "'a.,,,,, __ ------·---

MOClule: SSC9911 Sh-t: 6: S.mFtir Classes Plll"leJ: (0.0l Time· Fri Jun 25 14.28.51 199~

·--
..,..._b
''"'~ -­.-:?• --·--· -· -

Functional Model

• Interaction Level Generator Study

• Event Level Generator Study

• Pipeline Level Generator Study

• Full Detector Simulation Front End

1.twt.n Sheu
!upcrconducuna :.:upcr ::ollider Wbor.;itor.·
~lS :!000 . .!550 Becklt"\·mcadc ,\\"cnue .
D~J.u. Tex.is 75115·:-i)IJ7
tel: 1:?1-P ':"OR-1050: l.i.'i: t .!141 ";'OR-Id~~
. '""'Ul_:-il11.."-T" "i\{" .!:{)\"•

Interaction Level
Generator Study

(?imGenAp13

•
Simi nteractFltr

ltwlD Sheet
:uperrondurnng ruper :olliUcr Llhor.:uory
\IS 2000. 1350 81?<1.:le,·mt•;u.1~ _-\\·L•nuc

ll.JU.:u. Tcx.:is i"5I13·3<l')7
tel: 1:?.l4l '70R·l050: f.Lx: c~\41 :-n1'-h.i~..i

· lr.\ln_SllL~r" \~(.!:fl\'•

Processes
• Interaction Generators

... lsajetGenApp
HerwigGenApp
PythiaGenApp
SP_GenApp

} SimGenApp

•Builders

SimEventBldr
SimPIBldr

• Filters

SimlnteractFltr
SimEventFltr
SimPlineFltr

• Translator

SimToKine

1rwU1 Shec
:::upCf'C'onducung Super :oUide' Lahr.1ator)'
~IS :?000. :?5_?0·Beckleymeadc ,\venue
D.llbs, Teus 75115·3997
tel: t!l-'l 70R·I050: fa.-.:: L!l4l ':"OA-<>354
·.ln''ULSh~ S\C .grn:>

Event Level
Generator Study

SimGenAp13 SimGenAp13

SimEventBldr

SimEventFltr

1rwi.D. Sheer
:upcrconducung super :ollitler :..a.b<1ra1ory
~IS 2000 . .!550 Beckle\mc;idc ,\venue
OoiU.u. Tc:as 75l15·31JIJ7
rel: t!l-'l "':'01'·1050: f.J..x: t.!l-'• 70~-r,_f'i-'
..-[f'\,m_Slv~'<'r"" \\C .i;:o,· ·

-
..

..

..

-
...

..

gem=

~

-

-

-

-

-

Pipeline Level
Generator Study

SimGenApfJ SimGenApfJ

SimEventBldr

SimPIBldr

SimPlineFltr

lrwm Sheer
:uperronducun~ :upcr :ollidcr i.:lboro:nor.·
'.I-IS :?:000. 2550 ik.'<'klt•ymcadc ,\\·cnue •
D.111.U. TC""1!1. ';'5115·JC)f);
tel: !!141 ';"OR-1050: l.i...:: !!1-11 :'OR-6354
·· lr.'""-Sht.'t'I"'" \o;C ,1?,cn.•.

Sim Gen App

MOduLe: SSC;en Sneet: 7: Func1ion•I M~ Panel: (0,0) Tme: Fri Jun 2S 1':28:51 1993

·--<E"W-3> ,._, _ .. , ----~-_, _ _ __.

1---

•

.. _. __
-

E'-·' 3

-- sinoa .. •""

Full Detector Simulation
Front End

SimGenApp SimGenApfJ

SimEventBldr

SimPIBldr

lrwtn Sheer
5uperconducting Super ::::olli..i.t.r l.3.bor:uor'\"
~lS 2000. 2550 Beckleymc.J.11e .~\'CDUC .
D.lll:as. TclQS iS 115·399~
rel: 1?1-&1708·1050: ra. .. : 1?1.i1 708-635..a
~.lr.\'UL Sht."CI"" 'UC.gm.~

SimGenApp

SimEventBidr

gem==

~

MOdute: SSCQ9C"! Sheet: 8: Func:ucnal Moclet 2 Paner {0.0) Tim•· Fri Jun 25 14 28:5 1 1993

--
-

~l\--
== I_ .,., __ ----------

MOdu•e: SSCQ9n Sheet: 11: Pyttt1aG9"Apo Panel: to.OJ Time; Fn Jun 25 14.2B:S11993

ill~­-·- I -----------
--

--...... --c-.. -----· .. ---------__
... , __
-··--·--·- -_,_ -------~

-- -
-

-
Moau .. : SSCgan ShMI: 12: SP _G..,Aoo Panet: (0.0) Time· Fn Jun 25 14.28:St 1993

-......... ----· 4 -_,_
=-----. ··•·• ---------... _., ---·----~-

-

...

-

-
-

-

--·- --·-
-----------......,_ ---- ------------~--·--.z.----·-..i.-

Moc:1u19:. SSCgen ShHt 15: SimFllr aopbcallQnt. Pane&: 10.0) Time: Fr1 Jun 25 1•:28:51 1993

==~ = ---- --

---·
-·-~ =- ----­---=-~ --

--
--~ ~ ~---~ ---

MOOule: SSC9911 Shftt \G; 5ornToKln9 Panel: (0,0l Tme; FnJun 2S 1•.28:511993

res gen

Application :· '· ource code erator

Resgen is a simple tool which
solves the problem of passing
initialization information to an

application.

lrWUl Sheer
.:S:upcft'onductm.: Super :::olllder Ll.boronory
~IS 2000. :!SSO Bcckl~mc~c .•\\'Cnue
D~. Tcxois ";"511S-3CJ'l7
tel: t.:!141 7011-IOSO~f;i.'(~ 1:!.141 70S-635..i
·Jn,in_~llct.•l'""-uc.i.:o\">

test.rdf

!
! example resource definition file
!

t type name
!-

int mylnt
long mylong
float myFloat
double myDouble
string myString

default

n
123456789
99.9
3.1415926
This is a string.

! end of resource definition file

Irwul Sheer
:uperconducun~ .:uper ::ollitJcr ~.1borato~·
\\S 2000 . .!550 lkckle,·ml'.11..lc ,\\l.'nU('

U.1..Uas. Texas 751 l.i-JCJ'l'."
t...•I: ,.!14• 70R-I050·.1.1.,: i.;J-+• -os-u3.:;...:
· II'\\ln_Shl'l'l""\\(.J!O\"·

description

example integer res •••
example long res ...
example float res •..
example double res •••
example string res ••.

-
Resgen Example

-
• resource definition file (.rdf}

• C header {.h) -
• C source (.c)

•example resource file (.res)

-
-

llWill Sheer
Superconducnng Super :::ouid.cr Llbor;uory
!I-IS 2000. 2550 Beck.le~'me::ide A..-enue
Da.Uas. Texas i5 l l:S-39<J'7

gem-

60 rel: 121..i.1 i08·10SO: fa .. x: (2141 ":'0:\..(135-1.
<lr"\'1."UL.Shccr•-ssc .CO\"> ...

test.h

t• This file was created by resgen. */

typedef char• string;

/* Test resource structure •t
struct Test {
/* example integer resource*/
int mylnt; /* <77> •t
t• example long resource */
long myLong; /* <123456789> */
/* example float resource */
float myFloat; t• <99.9> */
/* example double resource */
double myDouble; /* <3.1415926> */
I* example string resource*/

...

-

-
string myString; /* <This is a string.> */

}; -
1rwiD Sheu
5uperconducung .:uper :ollider Ubor;].tory
'.\IS 2000. 2550 Bttklevmi:aae ,\venue
D.Ubs.. Tex.1.s. i5 l 15·J':><'Ji
tel: 1214\ 70R-10:::0·. f.1.-.:: r:n..i.1-;nit-(d54
..Jr\'1n_Shl"Ct"'".~'l.C .l!n\ • ·

-

-

-

test.c
t• This file \Vas created by resgen. '/

static Test r = {
n,
123456789,
99.9,
3.1415926,
"This is a string.",

);

int
TestSet(string name, string dval) {

<code deleted>
)

Test•
Testload(int argc, string argvO, FILE 'Ip) {

<code deleted>
)

void
Tes!Dump(FILE 'Ip) {

<code deleted>
)

lrwin Sb.ea
:upcrconducun; Super :ollidcr :..ibol'.:uor..­
~tS ::!000 . .!SSO Bcc:klc..-mcauc .\\"l'RUC •

O.;ill.is.. Te:i.:;is 751 IS-J•J'>i
tel: 1214\ 703-1050-. f.i..x; 1.!.l-'I 708-&35-'
<\T'\\'U'LSlU,"Cl"" '\'<:' .i:,m··

Example Application

/* resgen test program */

#include <stdio.h>
#include "test.h"

static Test* res;

main(int argc, char* argv[]) {
res= TestLoad(argc,argv,stdin);
TestDump(stdout);
/* do something that requires resources */

}

Irwin Sheer
3uperconaucung :::uper :ollidcr Ubor:aton·
~IS 2000. 2550 Becklevmcadc Avenue
Dallas. Tes.;is iS 115-Jt)<);
ICI: L?l-'1 708-1050: f.\.'>;: 12141 70~-(,,;5..;
··lrn'ULSh(..'C"f""'M:' .~O\"·

test.res

! This file was created by resgen.

I
I Example Test resource file.
I (change Test resource by modifying value field and
! un-commenting line)
I

!mylnt: n
lmylong: 123456789

1 example integer resource
1 example long resource

!myFloat: 99.9 1 example float resource
!myDouble: 3.1415926
!myString: This is a string.

1 example double resource
1 example string resource

! end of Test resource file

l:win Sheer
:uperconducung Super :oUider U.bor;uory
~ts 2000. !SSO Bcckleyme.:ide ,\venue
D.:ilbs. Tes.:is 75l15·39'li
1e1: 1!l·O 708-1050: r.i...:: 121-n 70R-U3S-'
-..lr\"U1....Sh~'5C.~O\'='

Future Plans

• physics study

• container classes, etc.

• improved object persistence solution

• transport object via sockets.

• process control

lrwlD. Sheer
Superconducung Super Collider l..J.bor:1.1ory
~IS 2000. ?SSO Bec~leymc3d.e Avenue
D;iil.u. Tex.:is iS l l5·3'l<J7
tel: t214l 'iO!\·lOSO: f.:>..": !!141 70~·6354
<lrwm_ ~lU.'Cr'l'SSC .~O\'>

gem

6e

-

SURVEY OF C++

CLASS LIBRARIES

A. HARVEY
J. PAN

-

-

A Survey of C++ Class Libraries

Alici-' £. Han-r,

IBP.1 FSC lli@.h Pcrfonn:ancc Sohniaru. ln1csr:anon

Jin!lPan

Compu1cr En!:incering. PRCD. SSC Lab

Criteria for Choosing Class Libraries

Chou5ing a c librurf requires t:U"eful consider.uion.
priontit:llion. :u\d cvaluillion of many cri1erla.

A number of possible concerns an::
• price

• execution speed

• compilation speed

• undent3nd.3bility I c:isc of use

• functioruili1y

• extensibility

• memory uso.gc

• suppon

• pon.:ibili1y

• 1s full source provuled or is the Ubr.uy compiler specific

• on wh:n J'll:11fonns is the library :ivailablc

• Jocs the Ii~· have dcpendcnc:1cs on :iny other softwure

• par:illelizabilhy

• compa11hlli1y wuh other products

m:my. m:iny mote!

Goal of the Survey

The goal of this version of the survey is to iden1ify and <lcscribe a
vanc:ty of C++ cl:iss Jibrartcs. running on UNIX platfonns. in a
fonnat that supports c:isy identification of potentially useful
librn.ncs.

lnfonnauon is provided in 1wo different formats:

I. Tabular form grouped by application domain.
Includes:

• library name

• vendor

• brief description of library

2.Alphabetical listing of more detailed descriptions.
Includes:

• lihr:&ry nu.me

• applic:ition dom:.iin

• vendor

• pncc
• suppon

• description

Nute: Octailcd suppll..:r 1n1ormat1on is also provided.

Application Domains

I. ~ncral and Collection Classes

• Booch Component

•COOL
• Classix

• Extended c...,. Standard Component 1.0

• libg~

• Meijin++

• Meijin++ Pro

• McmSL
• NIHCL
•OATH

• Pl:ufomv I

• Tools.h++

• USL c Sland3rd Componenl

Application Domains •••

:?.. Math Libraries

• Linpack.h++

• M-

• Malh.h++

• Mauix.h..,.

3. GUI Libraries
• Common View 3

• Fresco
• lnu:rViews
• Motif C++ Bindin!S

• 01/UIB
• StarView

• Vicw.h++

Application Domains •••

~. Database Libraries

• CommonBase

5. Communications Libraries

• NctCluses

6. Miscellaneous Libraries

•LEDA

• Objcctkil/C++

• Text Managcmcnc Library

-

-

-

..

-

...

-

-

-

)))))

A Survey of C++ Class Libraries

Alicia E. Harvey

IBM FSC High Performance Solutions Integration

Jing Pan
Computer Engineering, PRCD, SSC Laboratory

..... -~-------------------

)))))

1.0 Introduction.. ~

2.0 lnformarion Summary .. J

3.0 Descriptions of Ct+ Class Libraries.. 5

4.0

).1 Booch Components C++ Class Library
3.2 C++ Objccl Oricn1cll Library (COOL).. 1

J,J Ci..six,.. l
l4
J.S
J.6
J.7
J.8
).9

J :o
).It
).IZ
3.13
3.14
3.U
3.16
3.17
3.18
3.19
J.20
3.21
3.22
3.23
3.24
3.2S
3.26
3.27
J.28
3.29

ComrnonBase
Common View]
Ex1endcd C++ Standard Components 1.0

')

.,
fresco ... ······-·······-· •1

ln1erVii;ws 1.1 .. llJ
libg++ ... ·············-······-.I~
Library of Eflicicnl Data cypes and AJgori1hms (LEDA) .. 1 l
Linpack.htt .. I j
M++.. 16
Malh.h++ ... 16
tvtallix.h++ J 7
Mcijin++ ... 17
Meijin++ Pro.. 17

McmSL ... Iii

MolifC++ Binding ... ·············-···· .lg
Nlllional lns01U1c ol Hcallh (NllO ci... Library ... 10
NetClasscs ... , j .. ! I
Object ln1eiface Libr:u-y .. !:?
The Object-oriented Absuacc Type Hicr.uchy (OATIO .. !J
Objcctkia'C++ ... :'j
l'blfonn/I :1
StarView !t)

Texl Manageinenl Library.. ~6

Tools.h++:6

USL C++ Sl3ni.13rd Components !1
View.h++...111

Supplier Information.. ..311

-----·------------------·--

)

TABLE I.

TABLE 2.
TABLE 3.
TABLE 4.

TABLE 5.
TABLE 6.

•

Libraries of General and Collection Classcs .. 3

Math Librarics .. 4

Graphical User Interface (GUI) Libraries .. 4

Database Libraries ... 5
Communications Librarics ... 5
Miscellaneous Libraries ... 5

f 14 "I l'l<ll f f f

Acknowledgments

This survey relics very helvily on information supplied to the authors. \Vhcrc ..:ommcn1s
or opinions arc founded in the direct C;(pcricnce of one of 1hc authors. that will be indi·
cated. Otherwise. we cannot vouch for the accuracy of the conunents given.

We lr)' to give our experience in using some of the libraries Listed in this do~umc:ntJlion. It
is only based on limited and sometimes brief personal experience. and is by no mean i:om·
plete and unbiased.

Sources of information for this document include. but arc not limited to the following:

A great deal of the information on the public domain libraries came from Jn Jrticle
posted to hepnct.lang.c++ by Leif Locnnblad whi~h Uu.:luded an E~·alu'1tio11 tJn1I

Comparison ofC++ Class Libraries (Draft. March 1992) by Ma.rco Pace.
mpacc@csoc.bltnct

A good deal more information on both public don1ain and commcrciaJly avJilablc
libraries was obtained as the result of people sending "sruff they found on the nc1
somewhere .. .'' in response to private correspondences. h is impossible to properly
acknowledge the original sources of this information. But. we give them 1hc best
recognition we arc able in this forum. Special thanks to Dr. Ira Pohl of the University of
California, Stanta Cruz and Gary Word with GEM/SSC Lab for providing this type of
infonnation.

The C ++ Booch Componenrs ClaJS Caralog. Version 1.4.7, copyright 1990-1992 by
Rational. 1

The C ++ Objecr-Orienred library User's Manual, copyright 1990, 1991 by Ten<
Instruments Incofl)orated.

The INFO file included with the LEDA package.

lnfor,nadon on the maintenance of LEDA was gained via priva1e correspondence -.i. ith
Stefan !'°~Jchcr of lv1ax-Planck-lnstirut fuer lnformarik.

Consumer Report On C++ Class Libraries. Versio11 J .0. June 1993. The Objc:c1-0ri·
ented Technology Center, copyright 1993 by IBM Corp. (Unpublished.)

A draft of the NIH Class library Reference Manual. Revision 3.10. April 1990. by
Keith E. Gorlen. National Institutes of Health. Bethesda. !\ilaryland.

C ++ Produc1s Li.JtS and Descriprion, June 1992. by Saumen K. Duna.

Tutorial notes on Fresco by Dr. Mark Lin1on.

Documentation on libg++ contained in the libg++ disaibution.

Light weight technical and pricing information that Rogue Wave was good enough to
furnish us with upon our request.

f
fluoc !?. !'I'll

4 f f

))) ~)

l.0 Introduction

This document identities and describes a large number and variety of C++ class libraries.
Our focus, in this iniEial version of the document, is on libraries that arc available for at
least one Havor of UNIX. While some may be available for multiple ftavors of UNIX or
other operating systems, they were targeted for 1his document because they were available
under UN'lX. Also. this list of libraries makes no pretension of being complete. There arc
a staggering number of C++ class libraries available and the list prcsenrcd here has been
bounded by available research rime not by available products.

The information is provided in two different formats. First. the libraries arc provided in
tabular form grouped by application domain. The libr:iry name, vendor. and a brief
description of each library arc given. h is hoped that this will allow the reader to home in
easily on libraries of the appropriale type that may be potentiaUy useful.

The section following that provides more detailed information (where more information
was available). In most cases, the information provided in this section consists of: the
library name, the name of the company that produces the library (or an indication of Pub­
lic Domain where that is appropriate), the site from which the library may be obtained, in
the case of public domain software, and whether it is available in source and I or object
fonnat, price, whether the Hbrary is supponed and, if so, how, and finally, a detailed
description of the lib~ary.

It should be no1ed that not all libraries are covered in the same amount detail. Nor, arc all
ca1cgories of information available for each library. Each is covered as completely and in
as much detail as was available to the authors and this varied greatly from library to
library.

Choosing a C++ library requires che careful consideration. prioritization, and evaluacion of
many criteria. This documcn1 docs not attempt to address many of rhese concerns. It is
imponant. however, that the reader determine which of these criteria arc most imponant to
her and keep these concerns in mind when she is choosing a library. So, a number of pos­
sible concerns are listed below:

price

execution speed

compila1ion speed

undcrstandabiliry I case of use

functionality

cxtensibiliry

memory usage

suppon

portability

is full source available or is the library compiler specific

J,.nc l'J. l')'ll

)))

on what placforms is 1he library available

does the library have depcndcm.:ics on any 01her software

parallelizability

compadbilhy with other products

many. many more

)

2.0 Information Summary

. The libraries are listed below in 1abular form grouped by application domain. A very
short overview of each of the libraries is given.

TABLE l. Libraries of General and Collection Classes

Libnry Company Abnract

Booch Components Rational Inc. EA tensive collc:cbon of Jom:ain indcpenJcnl J:ua stn1.:1urcs
and algorilhms.

C ++ Objecl Oriented Publi; Euension to the C++ language maJe upol ac0Ucc11on ol
Libnlry (COOL) Domain classes. objects. templarCli. and macros. Buie dau 1)-pes J.re

providc:d.

ClassiA Emparhy, Basic data types. math cl;uscs, lnd cl3.Sses similat to Sm.111-
Inc. tllk.

ExtcndcdC++ Stan<brd Sie1nens USL Stan.Jard Components 2.0 plus UnprovcJ .:ollecuon ,
Compoocnis 1.0 classes. I

libg++ Public Gem:-ral pwpoSc: abstracl tbla types. collecuon classes. JnJ
Domain conlll.incr classes.

Meijin•+ Network Supports modeling anJ sUnufaUon: Jiscrc1c e~·.:n1 sunul:!.·
lmcgr.ucd tioo. queuing systems. etc.
Services.
Inc.

Meijin++ Pro NclwOfk A iupersel of ~lcijin++. Supporu moJc:lling anJ ~imul;ieion:
lntcgr.ucd disc~IC evcn1 simulalion. queueing sys1ems. etc.
Services,
Inc.

MemSl Windbasc Colkctton or data SU\ICllUC5.
Software

National Institute of Public Collci;1ion of abstrJt:I Ja1:11ypcs s1milat 10 lh.: SmaJll;Uk 'iO

Heahh Class Libnlry Domain collctLion classes.
(NIHCL)

The Obj«1-0ricntcJ Public Collec1ion of abslr.ICt heiero!lcncous conuUier classes.
Abstr:act Type Hicrar- Domain.
chy(OATH)

Plalfonn/I Objcc1 ~fan- lnduJes collt:c1ion classes plus Cl3.Sscs 101 (OnlJl)IJing -,.111·

agcm.:nt ware processes. managing ixrs1s1cn1 ohJC(IS . .uiJ :iupp.irt1111t

Laborntory Jismbu1eJ processing.

Juuc ~·) l'Nl

TABL.E I. Libcaries llr General and Collection Clwes

Library Company Abstract TABLE 4. Database Libr.&rics
Tools.h Rogue Gi:neral classes including collcc1K>ns mod.:lled lln Small-

Wave. Inc. lalk. Includes support for persistcncy and includes mulliplc Library Company Abstract

implementadons for abstrac1 classes. CommonBase lmagcSofl. CWses to supp.in SQL and ISA.\I.

USL Ctt S""<l..-d UNIX Sys- Conlaincr and commonly used utility classes. Includes com. Inc.

Components terns Labo-- mon UNIX func1ions such lll5 rcaubr ci.pressions, path
r.110<)' name handlina. e1c.

TABLES. Communicalioos libn.rits

TABLE 2. Math Libraries Library Company Abstract

Library Company Abslcact NetClasses Pos1~todcm Class library for distnbu1cJ objcct·orii=nt.cJ ~·01111num~·.i·

Linpack.hT+ Rogue Object-Oriented C++ Vi!rsion ol lhc Fortran Linpact library.
Wave. lnc.

M++ Dryad Soft· Supports matrices. 311'ays. and numeric dal.a 1ypcs.

Comptnina lions.
Ti::chnologics,
Inc.

ware or
Oasis

~lath.h++ Rogue Supporu arr.:ays (including 1hosc of higher Jimenstons). TABLE 6. :>.UsctUaoeous Libraries
Wave, Inc. matrices. vec1on. swistics. and numeric daia types.

~lairix.h++ Rogue A superse1 of ~lalh.h++.Addi1ionally, specialized maoU. Library Compao1 Abstract

Wave. Inc. classes such as banded. symmclric, e1c. Library or Erficieni M<IA-Planc- Data types and algorithms for comblnawri:tl compuung.
Data Types and Algo- lns1i1u~
rilhms (LEDA)

TABLE 3. Graphical User Interface (GUI) Libraries
ObjcclkiU:++ ParcPlace Collection of clas.s libraries. Includes NlHCL .ll"ld Inter·\

Sys1ems. Views libraries.

Libcary Company Abstract

Cllmmon View J lmageSofl. Support for building GU l's on lop of Prcscniation Manager.
Inc. Windows. HP NewWave. and OSF I Motif (plus the Mac).

Inc.

Text Manngemem Hewlett Supports building inter.:acU:vc leAI oriented applk;1uuns
Libr.uy PackordCo.

Fresco Public API ex1ending lmerViews IO provide the fonclionalily of i. LEDA is 001 public domain but. you can use il and distribulc i1 fredy fo1 rc~a11..:h and tcachm~

Domain Xlib and XI in a disaibu1ed objcc1-oriented environment

ln1crViews J.I Public Supplies abslr.IClions for building and using interactive soft-
Domain ware. Runs on 1op of X Windows. 3.0 Descriptions of C++ Class Libraries

~1ocif C++ Bindings Public A wrapper library 1hat encapsulates Motif widgc1s in C++
Domain. classes.

Obj1:e1 Inccrface Pare Place Classes fot building GUI applications under X 11. Allows
3.1 Booch Components C++ Class Library

Library Sys1ems. for runtime swhching bc1wecn Openloot and Mo1if.
Inc.

Domain:

SwVicw SwDivi- ~fultiplatfonn GUI programming 1<>01 providing classes 1ha1
Collections.

sion. Inc. work without change on Windows, OS/2. NT. Macintosh.
and Mo1if sys1ems.

View.h++ Rogue Classes which eocapsulalc 100% of the functionaHcy or

Company:

Rational Inc. 1

Wave. Inc. both OSF/?w-lolir and lhe X-Inuinsics.
AvaiJabil'i"i·

The Booch Componcn1s arc disbibutcd in source formal.

I. RationaJ is :i regis1en:d uaJc:mark of RalionaJ.

• 4 e'·•oc !'l. 1•nl • • • f f Jun~ ~'l l 'l'H
f ' f

))

Licensing:

Licensed produce.

Price:

$695 (worksrations)

$2,500 (server license)

Support/ l\lainten:1nce:

Yes.

Description::

)))

The C++ Booch Components3 are a carefully designed collection of domain-indcpcn­
dcn1 data suuctures and algorithms. This class library was designed with several goals
in mind:

Comp/ece11ess: the library provides classes for many of the basic data struccures and
aJgorichms required in production quality software; additionally, for each kind of struc-
1ure. the library offers a family of classes. uniced by a shared interface but employing a
different represenration. so that a developer can select the one with the time and space
semantics most appropriate to a given application.

Adaptability: the library's environment-specific aspccls arc clearly identified and arc
isolated using template arguments, so that local substitutions may be made; in particu­
lar. a developer has concrol over the storage management policy used by each structure,
as well as the semantics of process synchronization. for those fonns of a class designed
for use in the presence of more than one thread of control (such as with !he AT & T' wk
library).

Efficiency: our goal was 10 provide easily assembled components (efficient in compila­
tion resources) that impose minimal run time and memory overhead (efficient in execu­
tion resources) and that arc more reliable than hand-built mechanisms (efficient in
developer resources).

Safety: each class is designed to be type·safe. so that static assumptions about the
behavior of a class may be enforced by 1he compilation syStem; additionally, excep­
tions are used to identify conditions under which a class's dynamic semantics arc vio­
lated, but wi1hout corrupting the s1a1c of the object thal threw the exception.

Ease of11se: a clear and consisrent organization makes ii easy to identify and select
appropria1e forms of each suucturc and tool.

E:rte11sibiliry: it is possible for developers to independently add new data scructures and
algori1hms. yet at the same time preserve the design in1cgricy of the library.

~. This jj uken from the lnuoJu..:1ion 10 Tile C-..+ Booch Cumpo11enti l-l'rsio11 I 4.7 Cftu; C.italor. Cl>py·
righr 1990-199~ by- Ra1ionaJ.

3. Booch (llmpooc:nis.is a re~is1ered uaJc:ma1k of GraJy Boo..:h.

4. AT&T is a registered 1raJema1k 11f ATl:T.

lune~'>. l'J'Jl

)))))

The C.:++ Booch Components represent an applic:uion of 800..:h's objc'"·r-or1en1cd
design (000) method, which was used to both design and do..:umcn1 rhe librJry

This library is carefully organized and precisely defined; as a resuh, there is Jn opporlu·
niry to fonnaHy specify che behavior of all classes in the library.

The C++ Booch Components are a mature library, having evolved from Jn Ada version
first released in 1984, and now in use in over 300 different organizations in lhe U.S ..
Europe, and 1hc Pacific Rim. The C++ version is more lhan a simple port of !he AdJ
version, but rather was designed 10 1ake advantage of C++ 's unique features. ini:luding
classes, multiple inheritance, polymorphism, templates, and exccp1ions. The C -..+

Booch Components have undergone over a year of internal use since 1helr first publi..:
exposure at the 1990 OOPSLA/ECOOP conference. and in so doing ha'i'e evolved 10

take advantage of experiences gained in using Booch 's 000 method on several l:llge
commercial C ++ projects.

Our Experience:

Executables incorporating this library require a very big swap space (we ordered a e·•ll·
uadon copy. but couldn '1 find a machine with enough swap space to run it}. ln addition.
it has a long s1art up time.

3.2 C++ Object Orienled Library (COOL)

Domain:

General, Collections.

Company:

Public domain available from Texas Instruments Jnc.

AvailabUity:

Available via anonymous FfP from csc.ti.com in tile /pub/COOL.lar.Z.

COOL is provided in source format.

Licensing:

None.

rrlce:

Free.

Support I l\.laintenance:

The rnain READ~fE file disuibutcd with the package offers 1hc following warning:

No activ~ development has been done on COOL since cJI!y 1990 and none is pl:.inni:d
The authors have aU moved on 10 new projecLS so even if 1hey tind time 10 ansv.c1 que~­
tions 1hey may no1 remember enough 10 be of much help.

Oesalplinn:

loln< !') 1•NI

)

COOL is an extension of the C++ language. This means that programs written using
COOL arc not compiled using a Standard C++ compiler but, using the COOL C++
Control Program, which is iUI extension of the standard C++ compiler. his made up of
a collection of classes, objects, templates, and macros for use by C++ progranuners
writing complex applications.

A wide variel)I of classes is provided including: Pair, Range, Rational, Complex,
Generic, Vector. Lis~ Date_timc, Ttmer, Bit_Sct, Exception, Hash_ Table, Matrix,
Queue, Random, Stack, Symbol, Binary and AVL tree.

The COOL class library hierarchy implements a rather flat inheritance uee. All com­
plex classes arc derived from the Generic class, to facilitate run-time type checking
and object query. Simple classes are not derived from the Generic class due to space
efficiency concerns. The parameterized container classes inheric from a base class that
results in shared type-independent code. This reduces replication when a particular cype
of container is parameterized several times for different objects in an application.

COOL provides exception handling in the form of a raise, handle, and proceed mecha­
nism. The exception handling facility provides an exception class, an exception handler
class, a set of predefined subclasses of the exception class, and a set of predefined
exception handler functions.

COOL docs nor seem to provide multiple inherirancc.

3.3 Classix

Domain:

General.

Company:

Empathy, Inc.

Otscription:

Basic data types, marh classes, and classes similar to Smalltalk.

3.4 CommonBase

Domain:

Database.

Company:

lmageSoft, Inc.

Description:

Classes to suppon SQL and ISAM.

• 4
lunj ~?. J9•n

4 •

3.5 Common View 3

Domain:

GUI.

Company:

lmageSoft, Inc.

Dtscripdoo:

Support for building GUl's on top of Prcscntarion Manager, Windows, HP New\VJ1,e.
and OSF I Motif (plus the Macintosh}.

3.6 Exlel!ded C++ Standard Components 1.0

Domain:

General, Collections.

Company:

Siemens

Descrlpdoo:

USL SC 2.0 plus improved collection classes.

3.7 Fresco

Domaia:

GUI.

Company:

Public Domain 10 be available with the standard disrribution of X 11 R6.

AvaUabilicy:

Not currently available.

Lktasiog:

None.

Price:

Free.

Suppor1·/ ~lainttnance:

Unknown.

Dtscriprion:

4
1,.n~ !? l'l'll • • • f f

)))))

Fresco is an object-oricnled application programming interface (API) for graphical user
interfaces, covering the functionalhy in Xlib and Xt, and adding sttucturcd graphics
and application cnibcdding.

Fresco is under development by the X Consortium as an open, multi-vendor standard.

Fresco is built on three fundamental concepts:

- Standard objecr model

· Resolution independence

- Graphical emhedding

The srandard objecr model is based on OMG's CORBA. It utilizes CORBA's IDL for
defining object inlcrfaccs which allows a choice of implementation languages. By vir·
tuc of it':i CORBA base Fresco provides suppon for disbibution of objects.

Resolution independence allows a dcvicc·indcpcndcnt graphics state.

Graphical emhedding provides structured graphics, application objecr emhedding,
glyphs (objecrs rhat draw), viewers (objecrs thar inreracr wilh user), and frames (lop­
level viewer).

3.8 Inter Views5 3.1

Domain:

GUI.

Company:

Public Domain available from Sranford Universiry

Commercial versions available from HP (lnrcrViews Plus) and Quesr (ObjecrViews).

Availability:

Anonymous FfP from intervicws.stanford.edu in /pub/3. l.tar.Z.

Licensing:

None.

Price:

Free.

Support I Main1enance':

i. Cupyrigh1 1991} SL'.ltl(ord University.

i. From copyrigh1ed unpublished docwnen1 (18~1 IUO) ·- Cunsumer Repon 011 C ++ Cfass Libraries. Ver­
wn 1.0, ObJCCl·Oriented Technology Ct"Oler. 1993.

lunt ~'l. 1?91 '"

))))

ln1crviews is a research project wi1h partii.:ipatioo fro1n bo1h S1anford Jlld .'i1Ji(1l11

Graphics. Thc researchers fix bugs, generate new releases. writeJoi.:ume111.:.1uo11. ~i\e
tutorials. and uy to answer questions as best they can.

There is an lnccrnet newsgroup devoced 10 lnterViews called
comp. windows.interviews. It is "dual paned" with a mailing list; the alias is
"interviews@interviews.standord.edu". An archive of messages is pcriodica.lly made
available via FTP from in1erviews.stanford.edu in file lpub/mailing.Z. ~lailing lis1
drop/add requests should be sent to interviews-rcqucs1s@intcrvicws.sunford.edu.

Descriprion7:

lnterViews is a system for building and using inreractivc softwJie. Wriucn in(++,

lntcrVie\'JS provides a set of C++ class libraries with high·level absrrac1ions for implc·
mcnring ioueractive programs. lnterVicws includes specific support for resolurion·indc·
pendent graphics. sophisticated document formatting, and graphical connectivity.
IntcrViews currently runs on cop of the X window system.

Key lnterViews fearures:

Native C++

Glyphs - ligh1weigh1, shareable objecrs

Sophisricared layout objects

Resolution-independent graphics. printing, overlays

lncremenral updare. double-buffering

Applications: class browser, drawing editor, WYSIWYG document cdi1or.
interface builder

Graphical editing framework (Unidraw)

Unidraw is a class library that sits on top of lnterViews and provides a framework for
creating object-oriented graphical editors in domains such as technica.I and anistic
drawing. music composition, and circuit design. Unidraw defines four basic Jbstr:i..:·
tions: Components encapsulate the appearance and semantics or objec15 in a domain.
tools suppon direct manipulation of components. commands define operations on
components and other objects. and e1ternal representations define the mapping
hetween componems and rhe file format generared by rhe ediror. UnidrJw Jim rnppom
multiP,:le views, graphical connecrivily and confinement, and da1atlow between 1.:ompo·
ncnts.8

There are also commercial implementation and ex1ension of Interviews.

Please sec the section on Fresco, an object-orien1ed API based on Interviews unJ~r
development by the X Consonium as an open standard.

7. From copyrigh1ed unpublished docwneru ((B~I ruOI ·- Cunsum(r R(purt on C Ct.iss L1.'ir.Jrlf1 1..-r
sion IO. Objt-c1-0rien1ed Tc:chnulogy Cc:n1er. 1993.

8. This is taken from lhe Abstcill:l Uf G<!n<!rali:(d <Jraphical Ob/(t·1 £JmnJ(. John \I. Vlis~1,ks. Tc:'h
Repon: CSL· TR-90-l'.!7. 1990. Sunford Universi1y.

I.me~·) l'l'll "

,

Our Experience:

lnterviews/Unidraw is a very powerful and elegantly designed class library that offers a
crue object-oriented way of constructing GU ls. However, it has a steep learning curve,
and is not weU documented.

The examples provided arc not adequate (either too small or too big).

Alrhough 1here is a news group 1ha1 discuss various issues and problems, 1hcrc is no
real suppon.

3.9 libg++

Domain:

General.

Comp;1oy:

Public domain.

Availability:

Available via anonymous FfP from prep.ai.mh.edu in file

/pub/gnu/Jibg++-<version>.rar.gz. (Note that this tile was compressed using gnu's
version of compress; hence the ".gz" extension.)

Provided in source!' format.

Price:

Free.

Support I ,...laiotenance:

Yes. The FSF may reply to bug repons. Also, corrunercial support is available from
Cygnus Suppon, Hundred Acre Consulting, xpTI Compu1cr, and olhers.

Description':

C++ supports two, panially incompatible, styles of object-oriented progranuning --The
"forest" approach, involving a collection of free-sranding classes that can be mixed and
matched. versus the comple1ely hierarchical (smalltalk style) approach. in which all
classes arc derived from a common ances1or. Of course, bo1h styles have advan1ages
and disadvantages. So far, libg++ has adopted the "forest" approach.

Currently (and/or in 1he near future) libg++ provides support for a few basic kinds of
classes:

The first kind of support provides an interface between C++ programs and C libraries.
This includes basi~ header files (likc@filc(Sldio.hl) as well as lhings like 1he File and
stream classes. Other classes that interface to other aspects of C libraries (like chose that

9. Thls infonnarioo was Ulk.en from the teuinfo files that are distnbutel.J wilh the library.

• 4 •1 :!?, l?Q1 • c "

maintain environmental infonnation) arc in various s1agcs of devdopmeni: ;ill ill
undergo implementation modificacions when the forthcoming GNU liD.: librJ.ry is
released.

The second kind of support contains generill·purpose basic classes 1ha1 trJnspJ.Ccntly
manage variable-sized objects on the frecstorc. This includes Obstacks. multiple-prc:Li·
sion ln1cgcrs and Rationals, arbiirary leng1h Strings. Bi1Scis, and Bi1Sttings.

Third. several classes and utilities of common interest (e.g .. Complex nun1bcrs) arc pro·
vidcd.

Founh, a set of pseudo-generic prototype files arc available as a mcchJnism for gener­
ating common container classes. These are described in more dcuil in the introduction
to con1aincr prototypes. Cwtenlly, only a tcxrual substitution mechanism is available
for generic class cieacion.

3.10 Library or Efficient Data types and Algorithms (LEDA)

Domain:

Miscellaneous.

Company:

Max-Planck-lnstitut fucr lnformalik

A<tailabillty:

Available via anonymous FTP from ftp.uni-sb.de in lhc directory /pub/LEDA or fro 1rn
frp.lh-darmsladtde in lhe dircclory /pub/programmingllanguagcs/C++/class-librarics/
LEDA,.

The flies :ire:

LEDA-<version>.tar.Z

LEDA-N-<version>.tar.Z

template version

non-template version

Licensing:

LEDA is not in the public domain. but you can use it and disoibu1c i1 freely for r~sc:.irLh
and teaching. A commercial license is available from the au1hor:

Price:

Stefan Naeher
Max-Planck·lnstitut fuer lnformatik

Im S1ad1Wald, 6600 Saarbrucckcn, FRG
(s1efan@mpi-sb.mpg.de)

A commercial license is available for 2000 Df'vl.

Sapporl I Main1enance:

4 c f'"'' l'l.l'l'll • ~ " f

)))))

There is no real support. However, 1here are two mailing lists established by Andy Fin­
gerhut (jaf@wusc I .wusd.cdu) to deal with LEDA issues. ExccrptS from Andy Fingcr­
hur's announceme!1t of the lists foUow.

The first is called LEDA, and will be unmodcrared, at least until ttaffic warrants
Otherwise. It will be:: for anyone who wants to discuss any and all of 1hc topics
below (this is 001 meant to be an exhaustive list):

Hints on using LEDA effcccivcly.

New data type implementations.

New algorithm implemen1arions.

Low level derails of the "built-in" types and algorichms.

fltlistakes in the software, preferably with corrections.

The other is called LEDA-ANNOUNCE, and it will contain "major" announcc­
menrs, such as when a new version of LEDA comes out. LEDA-ANNOUNCE will
be moderated by Andy Fingerhut

As soon as I determine how, I will set up the mailing list software (liscserv version
5.5) so that all messages which appear on LEDA-ANNOUNCE will automatically
appear on LEDA as well. Therefore. 1hosc who only want major announcements
need only join LEDA-ANNOUNCE, and those who want every message need
only join LEDA.

To join the mailing lists, send an electronic message to:

listscrv@dworkin. wusd.cdu

with an arbiuary subjci.:t and one of the following lines as 1hc body of the message.

subscribe LEDA login_name@host

OR

subscribe LEDA-ANNOUNCE login_name@host

You should receive co_nfirma1ion that you have been added to the appropriate list
not long afterwards.

l plan to collect additional data type and algorithm implcmcntati.ons and make
them available on either an FfP si1c. a mail server. or both.

Description:

LEDA is a library of data types and algori1hms of combinatorial computing.

The following description comes in large part from the INFO file discributed with 1he
package.

LEDA provides a :>izable collection of da1a 1ypes and algorithms. In the current version.
this collt:ction includes mos1 oi rhe data cypes and algorilhms described in the text
books of the!: area -- stacks. queues, lists. sets, dh.:1ionaries. ordered sequences, parti­
tions, priority queues. directed. undirected, and planar graphs. lines. points. planes, and
basic algorithms in graph and network theory and computational geometry.

l<1oc ~'>. \')')! "

)))

LEDA gives a precise and readable specific:uion for each of 1he dau types and Jlgo·
rithms mcncioncd above.The specifications are short (typically, not more 1han a p:1ge1.
general (so as to allow severaJ implementations), and absaacc (so as 10 hide Jll dc1.11/s
of 1he implementation).

For many efficient data suuctures access by position is imporunt. Jn LEDA, wc usc Jn
ilem concept to cast positions into an absuact fonn. We mention that mos1 of the speci­
fications given in the LEDA manual use this concept. i.e., the concep1 is adequa1e for
the description of many data types.

LEDA contains efficient implementations for each of the dara types. e.g .. Fibonac1.:i
heaps for priority queues. red-black trees and dynamic perfect hashing for dictionaries.
etc.

LEDA contains a ~omfortable data type graph. It offers 1he standard i1era1ions such JS

"for all nodes v of a graph G do" or "for all neighbors w of v do'', it allow'i 10 add and
delete vertices and edges and it offers arrays and mattices indexed by nodes and edges.
etc. The data type graph allows to write programs for graph problems in a fonn close 10

the rypical 1cxt book presentation.

LEDA is- implemented by a C++ class library. It can be used with a.Jmost any C++ com­
piler (cfront2.1. cfronll.O, g++, borland, zonech).

3.11 Llnpack.h++

Domain:

Math.

Company:

Rogue Wave Software Inc.

Availability:

Provided in source format. (Includes Matrix.h++ and Malh.h++.)

Price:

$595 "per sear" (Includes Matrix.h++ and Marh.h++.)

Support I Mainleoanc:e:

Yes. 90 days Of free support and upda1es arc included with f.ach purchase. Option:il
continuing cus1omer support is also available.

Description:

Linpack.h++ is an objcct-orienled C ++ version of 1hc Fortran Linpack library which
includes 100% of the functionaJity of the Forrran version. The C-r+ v~rsion is not, hu\~.
ever, a srraight pan of the Fortran version. It takes full advantage of C++ ·s capabilities
of operator-overloading. object-orientation, and speed to produce libraries of highly·
optimized low-level assembly routines that arc equally JS fast as and fre4uenlly tJ~1er
1han the equivalent Fortran.

)UM~<) j<)•ll

"

,

•

Linpack.h++ includes all of Mattix.h++ and Math.h++ and is compatible with Rogue
Wave's other class libraries.

3.12 M++

Domain:

Math.

Company:

Dryad Software or

Oasis

Dtscriplion:

Suppons maoices, arrays, and numeric data types.

3.13 Math.h++

Domain:

Math.

Company:

Rogue Wave Software Inc.

Availability:

Provided in source format

Price:

$395 '"per seat'"

Support I Mainteoanct:

Yes. 90 days of free support and updates are included with each purchase. Optional
concinuing cuscomer suppon is also available.

Dtscriplion:

The Math.h++ library includes the basic nun1cricaJ vector, matrix, and array types. It
will also work with 3 and higher dimension arrays and their data-view paradigm allows
you to access any plane of a 3 (or more) dimensional array and treat it as a maoix.
Details of dimensions and dope vectors arc completely encapsula1cd.

Their linear algebra classes arc based on the BLAS.

Also included arc ~ignal processing -- DComplcxFFTSeivcr. DComplecFFT2DServer.
DoubclFFfScrver. etc. and statistics classes -- Histogram, LeasrSqFit. RandExp, R:ind­
Ganuna, RandPoisson. etc.

f
• JWK ~9. J')')J

f f " •

3.14 Matrix.h++10

Domain:

Math.

Comp1ay:

Rogue Wave Sofiwarc Inc.

AuUabUlty:

Provided in source format

Price:

$495 '"per scat'"

Support I Mainlenance:

Yes. 90 days of free suppon and updates arc included with each purchase. Optional
continuing customer suppon is also available.

Description:

Mauix.h++ includes all the functionality of Math.h++, for example, genera.I mauir.:es.
vectors, statistics, complex numbers, Fast Forier Transfonns, e1c. Additionally.
Mattix.h++ provides specialized maaix classes such as banded, syrruncuic. positivc­
definite, Hermitian, aidiagonal, etc.

3.15 Meijin++

Domain:

General.

Company:

Network Integrated Services. Inc.

Description:

Suppons modeling and simulation: disCrcte cven1 simulation. queuing system,. el(

3.16 Meijin++ Pro

Domain:

Gencr~I.

Company:

10. While infonn:uion is provi1kd here as 1hough Mauh.h++ is a sund alunc protlu1.:1. i1 i'i nol de:U' 1h..11
this is bllt:. The Linpack.h++ pock.age: is a uio of libraries: Mach.h++. ~tatrix.h-t>+. anJ Linpai.:k h- It m.o
be: lha1 Maoix.h++ is availabk only as p:ui of lhat uio.

• f l111>e ~I) 1•1<11

f • f

)))))

Nccwork lntegrated Services, Inc.

Descriprion:

A superset of Mcijin++. Supports modelling and simulation: discrete event simulation,
queueing systems, elc.

3.17 MemSL

Domain:

General.

Company:

Windbase Software

Availability:

Source code is included.

Price:

$190

Descripdon:

Library for programming data struclllres such as queues, hash tables, linked lists.
binary rrees, AVL balanced and threaded rrees, circular lists, dynamic arrays, etc.
Includes over 60 functions.

3.18 Motif C++ Binding

Domain:

GUI.

Cumpaoy:

Public domain. Developed at The University of Lowell. (This is an antiquated and
buggy version.) La1es1 (and much improved) release by Ronald van Loon, Urrecht

AYailabilily:

The Ronald van Loon version is available via an_onymous FrP from decuac.dec.com in
file /pub/XI l/moiif++.07.apr.93.tar.Z.

Licensing:

None.

Pdce:

Free.

Support f l\laintenalice:

luoci ~9. l"'ll "

))))

As dona1ed by author.

Description:

A wrapper library which encapsulates Motif in C ++classes. All resoun:cs of 1hc)c: wid­
gets can now be set through member functions. while objects c:i.n be used in ..::lllbai..:k­
functions.

The following is the announcement for the: R. van Loon version of the bindings and
includes a history of Lowell's and his involvement with 1hem. Please note that the mo·H
recent version referenced in this aniclc is not the currenr most recent version availlble

Announcement of lhe new (2 l-jul-92) gamma-release of the 1\-totif++ bindings.

HISTORY
The Universily of Lowell, supponed by a grant of the Open Sof1.,.,.uc Founda1ion.
has developed a wrapper-library. that encapsulates ~lotif widgets in C ++ classes.
AU resources of these Widgets can now be sci through mcmbcr-fun..:t.io11'i hile
objects can be used in callback-funcrions. The library was made available for free
or nominal cost for anonymous ftp al 129.63.1.J. However. the librJ.ry i..:oncained J

large number of bugs and oversights, and only worked under .'(11 RJ. Due 10 lack
of subsequent fundings, the bindings are no longer aciively supponcd by 1hc l:ni·
versi1y of LowcU.

I, Ronald van Loon, at a certain point last year. have 1ak.en the Lav.ell bindings ..
fixing the bugs (came across, adding missing member-functions, and enhani..:ing
functionaliry and made the bug-fixed library available for the general publii: fof
anonymous ftp (made possible by Rick Murphy a1 DEC). '

NEW RELEASE

I am now pleased to announce a new and upda1ed release of 1he ~lo1if++ binding-;

This release offers:

- Full Motif I.I and X 1 IR4 support

- Support for Xbae widget set

··Two addi.tionaJ widgets, wriuen by myself. that can be used to indit.:atc pro~rc-;-;
in an applicadon.

· Imake suppon. NB: 1his release relics heavily on the existen1.:e of iinake Jnd il'i
config files on your site. I have ttied 10 provide 1he bindings wi1h a s1andard ~f;ikf!·
6Je, tweakable for those unforrunares without imake. I have no1severely1es1ed 1he
standard Makefile though. Conracr me if you have problems. The reason for ..:all·
ing this a gamma release lies in the fact that I do not have a muhi1ude of platforms
to :es1 the lmake-files on.

·Lots of test files (even somewhat useful programs)

- An article I wro1e on 1he usage of ~lotif. X and C++. previously pos1ed on
Usenet

WHERE TO GET THE NEW MOTIF BINDINGS

Ftp:

}"n< ~·I l'J•/ I

)

Anonymous ftp at de<uac.dec.com (192.5.214.1), direciory /pub/XII. file
morif++.21.jul.92.mr.Z (855293 bytes).

Note:

Please be patil:nt as the network link is quite slow. Please do not FTP large tiles
during working hours.

Also no1c I.hat there is also a motif++.3 l.jan.92.lar.Z Ale at lhis site; this is an old
version of the bindings.

E·mail:

Those who don't have ftp can send me e-mail, and f will send the bindings by e­
mail.

REQUEST
Those who use the bindings and find bugs. or sec: room for improvcmenc, please
contact me. and I will tty to incorporate them in a furore release (in case of bugs, a
bug-fix of course ;-).

MORE INFORMATION

Contact me at "rvloon@cv.ruu.nl", "rloon@cs.ruu.nl'' or "rvanloon@nyx.cs.d­
u.edu". If you are desperaie, then you can call me al + 31 30 506711 (that is Utre­
cht, the Netherlands; those within the Netherlands call 030-506711).

Enjoy!

3.19 National Institute of Health (NIH) Class Library

Domain:

Collections.

Company:

Public Domain

Availability:

Available via anonymous FfP from alw.nih.gov in file pub/nihcl.tar.Z.

A modification to work with the ObjectStore OODBMS is also available via anony­
mous FfP from alw.nih.gov in file MartinNihcl3-IOl.tar.Z.

Source code is provided.

Licensiog:

None.

Price:

Free.

Support I l\laio1enance:

c c 'ti ,~ 1'11)1 • c '" 4

None.

Description:

The Nm Class Library is a ponable collection of classes similar to those of Smllhllk-
80 that has been developed using the C++ progranuning language under the UNLX
operating sys1em. The NlH Class Library includes generally useful data types such ls
String, Date, and Time, and most of the Sma.lhalk-80 container classes such as
OrderedChn (indexed arrays). LinkedList (singly-linked lists), Set (hash tables!. Jnd
Dictionary (associative arrays). Arbitrarily complex dam structures comprised of NIU
Lib~~· and user-defined objects can be stored on disk. files or moved bcrwecn UNLX
proc!:so:~s by means of an object 110 facilil)'. Classes Process, Scheduler. Scmapho,e.
and SharedQucuc provide multiprogrammjng whh coroutines. 11

The set of Vector classes and a handful of others such as Random (random num~r l!en·
erator) and Range

0

(range of integers) assist in 'v'arious kinds of arithn1c1ic and math~·
matical problems.

The hierarchy provided by NnlCL is that of a tree.

Multiple inheritance is optionaUy supported.

No templates arc provided, although they can be implcmcnrcd using ma1..Tos.

Our Experience:

Because NIHCL uses a completely hierarchical (Smallmll: style) approach, in which lll
classes are derived from a common ancestor, any class derived from chc NlH cla.ss~s
tends to be heavily weigh1cd. The programmer carries the entire library a.round on her
back.

3.20 NetClasses

Domain:

Communications. Distribu1cd Processing.

Company:

PostModcm Computing Technologies.

Description 12:

The focus of 1hc NetClasscs architecture has been 10 P'ovide the tools ne~cs";.ny for
programmers 10 develop complex distributed applications without having 10 deal wi1h
lhc esoteric details of low-level communications.

II. This is from 1h.: lnuoJuc1ion to l Dra!1 of th.: .VIII CluJ1 L1br.Jn: R<']Utnft \funu.Jf. Rt'-iswn .1 Ill
April 1990. by Kc:ith E. Gorkn. Na1ional lns1i1u1c:s o(Hc:alch. Bc:tht'sd.:L :\-larylanJ.

12. This information is Lakcn from lhe lntroduc1ion 10 C + + Produos Lui .ind Dt1crip11un. .:ornp1kJ h\ S.1u
men K. Ouna. June 1992.(skduua@cS.lalllu.c:dul. The: original infonnauun was pro~1Jt'J h~ Th:uk: E. Pl.uu·
beck (pbmbeck@cs.sianfonJ.c:du).

• • c • 4

))))

Nc:tClasses is a set of C++ class libraries 1hat is organized as a sofrware toolkit. The
'YPkal user of the Ne1Classes libraries will be a discributcd systems application devel­
oper who requires an objec1-oricnted framework for distributed, message-passing based
prograrruning. By linking die appropriate NctClasscs libraries. application program­
mers arc then abfc·ta:

+Transport objects over a network.

Currently, there arc 1hrcc object variedes that NctClasses can transpon:

I. Arbitrary CH objects--·once derived from PostModem 's TransObject class

2. arbitrary NIH-derived objects: and provide an objec1-oricntcd data nansport in
which the structure and organization of network nansportablc objects is specified
ex1emally in configurable files using a simple, programming language indcpcndcnr
absrract syntax nororion, the Ne1Classcs Absrracr Syntax Notation (NASN).

+ Pedonn remote method invocations (RA-II). Using RMI, an application on machine B
can invoke a method on machine A. RMI insulates distribuled applications from rhe
complexity inherent in traditional, RPC-based distributed systems development tools
such as prorocol compilers, TCP/IP code writing, and derailed socket handling. RMI
makes fault tolerance and connection management ttansparen1 to the application pro­
grammer. The RMI layer is builr on top of rhe distributed services package that is
described below.

+ Build complex information discribution systems on top of Disbibuted Services, Post·
~1odc:m Computing's object-oriented approach to client-server connection manage­
ment and fault tolerance.

+ Use the NetClasses application programmer interface in order to create, manipulate,
and destroy typed objects given NetClasses Typed Object data type definitions.
(NIH-derived and native C++ objects are created. manipulaced and destroyed from
Ct+ irselO.

+ Read and write all three varieties of NetClasses transportable objecrs on streams
using machine-independent exremal representations. All three varieties of objects
can be srored to and read from 6les.

3.21 Object Interface Library

DomaiD:

GUI.

Company:

Pare Place Systems. Inc.

Support/ l\.lainrenance:

Yes.

Email and phone support are available.

Descdption11:

lune !'J 1'1'11

))) ,)

Set of classes for building GUI applications using C ++. Developed by Sourbournt:.
now sold by Pare Place. Allows runtime switching between Opcnlook & \.lo1if. Runs
under X 11 and has a Mo1if ''look. and feel" (docs nol include tvtotif widgets). FeJtures
include:

16 bit internationalization (NlS)

Built-in context sensitive hpyene:\t help

Allows objects to overlap their paren1s

Stores tex1 in X resource files

Also, allows runtime switching between Openlook and tvfotif.

Additionally, a graphical GUI builder called UIB is provided 10 simplif» 1hc prol.'ess of
development using the 01 library.

3.22 The Object-oriented Abstract Type Hierarchy (OATH)

Domain:

Collections.

Company:

Public domain. (Developed by Brian M. Kennedy, Compurer Sysrems LlborJ1ory. ,
Computer Science Center, Texas Instruments.) '

AvailabUity:

Available via anonymous FTP from csc.ri.com in 1he file /pub/oath.tar.Z.

OATII is provided in source fonnat.

Licensing:

None.

Price:

Free.

Support/ l\lainlenaace:

None.

DescrlplionH:

11. From copyrigh1cd unpublisheJ documem flBfl.t fUO) ·· Cunsum(r R(port on C .. • ClaH L1hr1Jrct J I tr·
sion J .0. Objccl·Oricmcd Technology Cemcr. 199].

14. This inronn:uion is taken from an Evalua1ion and Comp11ruon of C ++Class Librano I Dr:i11. ~l:uch
1992) by Marco Pace.

. "! '"'''

)

OATI-1 instantiates an approach 10 C++ class hieran;hy design that exploits subtyping
polymorphism. provides greater implementation independence, and suppons implicit
memory management of i1s objects.

It is implemented via parallel hierarchies of internal types and accessors (a concept
similar 10 that of 1be "smart pointers", but improved compared to them).

The internal types conWn the object representation (the data members) and the virtual
functions.

The accessor types contain all of the externally accessible functions of the absuact
types.

Two were lhc main design goals of OATH:

-- to provide a meaningful absttact type hierarchy that is consistent with the concepts
being modelled by utilizing a strict subtyping approach to hierarchy design.

Starting from the idea that a type hierarchy should be designed to reflect the behavior of
the objects being modelled and not to reflect the most convenient computer representa­
tion of objects, the designer of OATH gave priority to the subtyping (inheriting func·
cionality) aspect over the code reuse (inheriting implementation) aspect

Given a consistent absuact type hierarchy, implementalion classes can be added at the
leaves of the hierarchy (see figure later on) to implemenr the behavior of the absuact
(}'pes. Code reuse can be exploited at this phase, but should not enter in10 the design of
the abstract type hierarchy.

·· to provide robust garbage collection (GC) of OATH objects, fully implemented
within a portable<;++ class library.

The garbage collection mechanism is a hybrid reference counting and marking algo­
rithm capable of collecting all garbage (including circular references).

The programmer can select one of four garbage collection modes at compile rime:

noGC

incremental GC

stop-and· collect

combined

OAIB's main features arc the following:

· it provides heterogeneous container classes

. it provides dynamic type determination in the fonn of .. safe casts"

. it provides accessors to access 0A1ll objects.

For each OATH type there is a corresponding accessor class (an accessor lies between a
C++ pointer and a C++ reference).

The accessors can·bc initialized and assigned OATI-1 objects to access. However. any
other operation on a~ accessor is applied directly to the absuact object it accesses.

--. -----.-- ~" -.-- ---·--- ---···~: f

OA1lt docs not provide:

- parameterized types (lcmplates)

3.23 Objectkit\C++

Dom ala:

Miscellaneous.

Company:

ParcPlace Systems. Inc.

Descripdon 15:

Object.kit\C++ 01 is based on technology licensed horn Solbourne. 01 is a(++ dass
Ubrary for rapid development of graphical user-interfaces thal allow runtime selection
of OSF/Morif or OPENLOOK look-and-feel.

It features the AT&T standard Library Extensions:

- variable length bit slrings

- adjustable 1-d vectors o_f pa.ramecerized cype (implemented via macros)

- classes for date, time-of-day. timezone and time dwation arithmetic

- firUr-; !'U.te machine classes

- sin•t,le exception handling using Objection classes

- paramererized linked lists (parameterization via macros)

. associative arrays li.e .. keys/value associations)

- fast memory allocation class: Pool

- program execution time measurement class: Stopwatch

- String class and specializations of iostream and Stteambuf for Siring

As a convenience for purchasers, Objectkit\C ++ 1.0 also includes the NIH CL and
lnterViews class libraries as unsupported free software.

3.24 Platform/I

Domain:

Collections. Distributed Processing .

Company:

Object Management Laboratory

Dtscriptinn:

lS. Information originally proYidl!Li by Mike Kh:1w !khaw@paICpl:i.cc_i:om). I rci.:ciYcJ II YIJ J i.:Orrt\p.in.
dcncc wi1h Ira Pohl.

~-- -- - -----.- • -------.- - •

))))

Includes collection classes plus classes for controlling software processes, managing
persistent objects, and supporting distribu1cd processing.

3.25 SlarView

Domain:

GUI.

Company:

Star Division, Inc.

Availability:

Standard product is in object format. Source format can be purchased for an additional
fee of $30,000.

Price:

$1495 (workstation)

$2000 per plarform + $250 per programmer (site)

Description:

Multiplalform GUI programming tool providing classes that work without change on
Windows, OS/2, NT, Macintosh and Motif systems.

3.26 Text Management Library

Domain:

~liscellaneous.

Company:

Hewlell Packard Co.

Descriprion:

Supports building interactive text oricn1ed applications.

3.27 Tools.h++

Domain:

General. Collections.

Company:

Rogue \Vave Software Inc.

Availability:

Source code is included.

tun~ !'I l')'ll "

)

Price:

$395

Support I Maintenance:

)))

Yes. 90 days of free support and updates arc included with each purchase. Option31
continuing customer suppon is also available.

Descrlpdoa:

Rogue Wave advertises Tools.h++ as follows:

Tools.h++ is a complete toolbox of over 97 C++ classes. his a sec of efficienc and .. er·
satile C++ foundation classes that will make virtually any programming job easier. It
provides:

- lime and Date handling and manipulacion classes.

- String and Character manipulation classes.

• Singly and Doubly linked lists, Stacks, Queues and Vectors classes.

- Smalltall:"'-like Collection classes: Se~ Bag. SonedCollection. OrderedCollcction.
Dictionary, Stack, Queue, cu:.

- Regular Expression Class for search and replace.

- Tokenizer Class for easy suing parsing.

- File Cius to handle file nianipulation with read, write. seek. erase, cu:.

- B·tree Class to handle efficient keyed access of disk records.

- file Space Manager Class to allocate, deallocate and coaJcscc space whhin tiles.

- VU111al and Buffered Page Heap 10 manage objects bigger than 64k.

- Other classes include: Bit vectors. VutuaJ VO sueams. Cache managers. Error han·
dling. and more.

- All objects fully persistent. The Persistent Score facilicy allows complc.-.; to be s1ored
and rettievcd on heterogeneous networks.

3.28 USL C++ Standard Components

Domain:

General, Collections.

Company:

UNIX Systems Laboratory

Descrlpdon:

)

•

The USL C++ Standard Components are a collection of container and conunonly used
utility classes sw.::h as lists, graphs, sets, strings, dynamic arrays, etc. This collection
also contains classes for often used UNIX 16 functions like regular expressions, argu·
ment parsing, and path name handling. It has been ex1ensively used and optimized
within AT&T and USL throughou1 the development of the C++ language ilselt. 17

The following information was conttibutcd by Paul Fillinich (paulf@usl.com) and
came to me by way of a correspondence from Ira Pohl.

Components:

The classes provided by the library arc several. and they arc listed here:

Included in the C++ Standard Components arc the foUowing components:

Args · :i set of fadli1ies providing more na1ural and convenient access to UNIX
command line options and arguments than typical command line parsers.

Bits - extends built-in support for bit manipulation to arbitrary· length bitstrings. h
also allows easy access to individual bits and provides additional operations such
as concatenation.

Blocks - arc like built-in arrays, except 1hat their size can be adjusted dynamically.
Using Blocks eliminates many of the errors programmers make when working
with adjustable-size data structures.

Block Algori1hms - 90 highly efficien1 algori1hms for operating on contiguously
stored data (can be used with either arrays or Blocks) including algorithms for
searching, sorting, insening, partitioning, gcnera1ion, copying, and removing.

Fsm · offers a method of specifying program conttol How that is useful in a wide
variety of applications. Progranuncrs define "states" and .. transitions" among
states that are "fired" by specific "inputs."

Graphs. three classes that can be used to mainrain arbitrary relationships between
arbitrary entities. Useful for semantic modeling and other ''network" applications.

Graph Algorithms · Several of the most fundamental algorithms for operating on
Graphs. including breadth-first and depth·first searching, cycle and component
detection.

ipcsrream · specializes the standard VO architecture (iosueam) to interprocess
communication between clients and servers. Clients and servers communicate by
writing 10 or reading from srreams.

Lists· arc doubly·linked lis1s. Since pointer manipulation and node allocation arc
handled automatically, using Lists eliminates another major source of program­
ming errors.

~laps · arc like arrays. except that the subscripts can be non-integral types such as
character snings (similar to associative mays in AWK).

16. UNIX is a n:gis1aed'\raJi:mark of AT&T.

l7. From coppigh1i:d unpublished IJocumenl (Wr..-1 nJO) -- Consumer Rtpon on C ++ C/au librurics. Vir­
sion I 0. Objl!ct-Orii:med Technology Ci:mer. 199).

f • lun.: !? 1•J'll • f
,,

f

Objections · are a kind of "(rtor object" that can be: "taiscd .. by one:: piece of code::
and "handled" by another (like UNIX "software signals"). Library componc:nu use

Objections to inform clients of errors.

Path - a set of facilities for manipulating UNlX path names and UNLX seJrch
paths. Facilhies include au1omalic path canonicalization. path reladviz:uion. wild·
card and tilde expansion. path completion, and searching in search paths.

Pools - improve lhe runtime performance of programs which allocaie and deJllO·
cate many objects of the same type (for example. Lists use Pools in1c:mJll}' for

obtaining nodes).

Rcgex - a set of facilities providing a consistent and enhanced interface: 10 1hc: Si:~·
tion 3 regular c:\prcssion compilation and matching routines (rc:(31. regcmpl JI.
regex(3). or rcgexp(3), depending on 1he version of UND< runningJ.

Sets - three unordered homogeneous collection classes: Sets, Bags. and poin1c:r
sets. Provides the usual inscnion. removal, membership. algebraic and relational

operators and.iterators.

Stopwatch - can be used for timing critical sections of code during the "pcrfor·
mance tuning" phase of development.

Soings ·arc variable-length characcer saings. Suings offer an c:fficic:nt a.ltc:mati\e
to null-terminated character arrays and their associated C library functions {sucpy.
strcmp, etc.). Strings have natural syntax and semantics; for example. to concate­

nate strings x and y, write x+y.

SttsU'eam - specialize the standard 1/0 architccrwe (iostteaml 10 in-core fonnari
ting. where rhe sowce or mrgc:t is a Suing. Symbol • unique identifiers based on
character strings with efficient tests for equality and ordering.

Ttme - consists of three related absttactions for dealing with time: in (01npu1er pro·
grams: 1imc (absolute time), Duration (time difference) and Place (geogrlphi1.:al

loca1ion).

Tools:
In addition to rhe above components. the following tools arc also made available: J\

pan of !his release:
dcmanglc - Demanglc demangles all lhc various names SU'ewn th.roughou1 c:a!.'.h uf
the object files in the argument list. This enables the various C tools such as nm111.
dl,1(I). gprof(I), and olhers ro produce resuhs with plcasan1 idcnciricr na1ncs.

~-rce~tore - Frccs1ore is JC++ symbolic frcestore manager which (On1ains rou1inc"i
rh.u 1ct the progranuncr view 1he conlcnts of 1he freestore symbolit.:ally during C'-C ·

cution of a C++ program. They arc nonnaUy called "by hand" by the: programnicr
from within a debugger but since they are linked in as part of the lpplkJlion (Gdc.

they can also be called from the program itself.

G2++ - 02++ provides a method for scructuring records for messages used tor
interprocess communica1ion or records used for Jong-le rm da1a storage:. I. 0 rou·
tines arc available for reading and weiring G2++ records from a c-... progrln1
G2++ typed VO routines. These routines are generated by 1hc: G~++ ..:ompilcr.

luoc ~·I. l'J'l\

f f • f " f

)))

hier - Hier produces the inheritance hierarchy for the C++ source code contained in
the given collection of files. The output language can be any of "ps" (postscript),
"'dag", "pie", ·•1ex", or "dvi".

publik · Publik printS the public ponions of all class definitions contained, dircctiy
or indirccdy, in the list of input tiles.

3.29 View.h++

Domain:

GUI.

Company:

Rogue Wave

A vaUabillty:

Provided in objccr or source fonnar.

P.-ice:

$795 "per scat" (object code version)

$2995 "per scat" (source code version)

Suppocl I Mainlenance:

Yes. 90 days of free support and updates arc included with each purchase. Optional
continuing custom~r suppon is also available.

Descriprion:

View.h++ encapsulates both 100% of the functionality of the industry standard OSF/
Morif. It also 100% of 1hc X-lnainsics allowing the progranuncr to extend Vicw.h++ 10

new types quickly and easily. At it's lowest level, Vicw.h++ offers a C++ binding to
Morif with the same naming convenlions and data structures as Motif. In addition. the
package includes a f-.-todel-Vicw-Conttoller architecture. a mouse management sys1em,
a virrual canvas, and full obJect persis1encc.

4.0 Supplier Information

The following is list provides information on a number of the C ++class library suppliers
lisccd in this document.

Dryad Software

AJdress:

Tekphooc:

FAX:

DryaJ Sof1ware

13103 Travis View Loop

Auslin. TX 78732

1-512-]4]·5037

I ·l 12·ll8·ll99

June 2'1 l'il'll)0

Empathy, Inc.
Address:

Telephone:

FAX:

Hewlell Packard Co.
Address:

Telephone:

FAX:

ImageSofl, Inc.
Address:

Telephone:

FAX:

)

Empa1hy, Inc.

P.O. 801 632

Cambridge. MA 02142

1-611-187-3089

1·611·182-1395

)

Hcwlcn Pacbrd Co.

CuslOmer lnfonn:uion Ct:mer

19310 Pruncridge Ave.

Cupenino. CA 9l0t4

1·800-7l2-0900

J-408-nJ-ns2

lmageSof1, Inc.

2 Haven Avenue

Pon Washington. NY 11050

l·l16-167-22ll

l-l16-161-9()61

Network Integrated Services, Inc.
Ac;Jress: Ne1w01k Jmegr:ucd Services. lnc.

221 Wts1 Oyer Roat.I

Telephone:

FAX:

lun• "I l')'ll

Santi Ana. CA 9270).)416

1·114-1ll4l'i9l

1-714-'ll-2341

"

•

Oasis
Adds<ss: Oasis

One Cranbcny HiU

Lexing1on. MA 02173

Telephone: 1-617-862-2002

FAX: 1-617-863-2633

Object Management Laboratory
Addtco5: Objcc1 Managemenl Laborawry

2666 Counuy Lane

Telephone:

FAX:

Pare Place Systems, Inc.

Address:

Telephone:

FAX:

W.:stlake VaUaae. CA 91361

1-818-879-9620

1-818-879-1860

Pare Place Systems, Inc.

ISSO Plymolllh Sueet

Mountain View, CA 94043

l-41!-691-6700

1-41S-691-671l

PostModern Computing Technologies, Inc.

Address:

Telephone::

FAX:

• •

PostModem Computing Technologies. Inc.

1032 Elwell CoW1. Suire 240

Palo Alla. CA 94303

1-41S-967-6169

l-41!-967-6212

June ~9. l')'ll

f " • •

Rational
Addn:ss:

"!'elephonc:

FAX:

Rogue Wave Sortware, Inc.

Addras:

Telephone:

FAX:

Star Division, Inc.

Addrcu:

Telephone:

FAX:

• •

R.11.ional

3320 Scou Boulevard

Sont1 Clara. CA 9S0l4-Jl97

1-llll-496-llllll

l-41l!-496-l6J6

Rogue Wa.ve Software. Inc.

P.O. Box 2328

Corvallis. OR 97339

l-SOJ-7'4-JOIO

l·l0l-7S7-66SO

SW Division. Inc.

2180 Sand Hill Rd. mo
Menlo P:uk. CA 'l402S

1-41S-2JJ-0140

l-41S-2JJ-0142

J~nc :?_ 1·1•J1

• • f

-

-
WHAT IS CASE

J. BURTON

-

)))))

! What is CASE . ·~

•t. Superconducting Super Collider Laboratory Altoi J'fJ '~~fl

r CASE Activities . ~
• Hequirements Modeling Using Diagrams

• Model Validation

• Specification Development

• Design Validation

• Code Generation

• Testing and Animation

• Project Management

• Documentation Production

• Heview/Re-Engineer Existing Applications

:t. S11perco11d11ct111g Super Col/id er Laboratory Jd~~0.1,•11 .. ~'''

)))

~ Upper & Lower CASE

• Planning and Analysis

• Design and Construction

• lnlegraled Case
- Enterprise-Wide Object Oelinitions

- Phase Integration
- Re-Use

• Component Case

" Superconducting Super Co//ider Laboratory ·'. "·

I ·: H C~;~~omponenls~ ~II
• Underlying Model

• Hepository

• Common User Interface

• Activity/Task Framework

• Verification of Correctness/Consistency

• Access Control

• Multiple User Access to Common Information

• Management of Composite Components whirh
change in varying and conflicting ways.

• Document Generation

'" Supercond11cti11g Super Colliderl abor,1/on·

)

11

f j_
Types--of CAS~-~ool~------. - . . I

• Workbenches
• Integrated Product Support Environments

• Application Generation Environment

• Specialized Application Area Oriented
Tools

• Redevelopment Tools

• V&V Tools

• Project Management

• Process Management

• Misc. and Specialized Tools

•f. Superconducting Super Colllder Laboratory ;tHU JJ JJ (-1.'H

~ Workb:t~hes (Features)

• Underlying Model

• Hepository

• User Interface

• Validation Hules
• Consistency and Completeness Checking

• Heporting Capability

• Consolidation of Partial Models

• Automatic Import
• Documentation Generation

•f. Superconducting Super Cotlider Laboratory JilbUJJtJ nSll

• • f f f f

---------------·------ ------

Workbenches (Criteria)
II

• Models and Approaches

• nichness of Life Cycle Model

• Apps Areas Supported

• Ranges of Techniques Supported

• Approach to Multi-user Support

":!. Superconducting Super Collider Laboratory 1:01 · .• 1. • ,i

' --·-·'
Integrated Project Support

Environ111ents (Characteristics)

• Define Project Framework

• Provide Role and Responsibility Definition

• Provicde CM & Version Control

• Provide Library Management, V&V and
Tesling Tools

•'. Superconducting Super Col/ider Laboratory

• f •
', .

f •

))))

Typical IPSE Facilities

• User Interface

• Object Modeling

• Activity Management

''· Superconducting Super Collider Laboratory JBH,JIJUC~Slf

Application Generation
Environments

• Very High Level Programming Language(s)

• Prototyping and Rapid Development Tools

• End User Computing Support

• Automatic Code Generation from Design Specs.

'' S11perconduct111g Super Col/ider Laboratory Jllt~i }<) ,J (H/11

))

~ Integration of 1PSE Tools · 11·

• Closed IPSE

• Public Tool Interface (l'TIJ

• Open Tool Interface (OTI)

i'. Superconducting Super Co/lider laboratory

Age Cl1aracteristics --11
Specification Tools for:

• Target Environment

• Applicalion Design
- IJala Slructure and Ele111ent IJefinilio11
- User Interface Definilions

- Transaclion lnlernal Defi11ilions

- Applicalion Structure Definition

• Development Procedure

lt. Soperco11duct111g Super Collider Labo1.1101J1

•

Application Area Specific Tools
(Characteristics)

• Database Template

• Data Element Customization Facility

• Library of Function Templates

• User Interface Customization Facility

• Apps Generator

• Documentation Generator

"· Superconducting Super Collider Labora/ol)'

V&V & Testing Tools
(Types of Tools)

• Test Harness

• Test Data Set Generators

• Static Code Analyzed

• Dynamic Code Analyzers

• Sensitivity Analyzers

" Superonductmg Super Ci//ider Laboratol)' f

;Bi••J.•nc~stu

111106JJ9J r~>111

• 4

i-- lled~vei~pn;~;;t-f~Ois
(Characteristics)

• Extraction Facility

• Program/Data Structure Analyzer

• Restructuring Facility

• Re-generation Facility

• Documentation Generator

>:, Si1perconduct111g Super Collider LaborafOI)'

!
.. ---· ----- ---· - .

V & V & Testing Tools
(Characteristics)

• Stand-Alone

• Not Integrated

• Some V&V to IPSE Interfaces

"''. . ' .

• Some AGE Codegenerator to Test Harness/Test
Data Set Generation

·i~. .)1~ "rrnnr111rflfln Sf!nPf "nlfitfPr I 1h11r1r'1'1'f f 4

))))

Project Manage1nent Tools
(Support Rqts.)

• Workplan Generation

• Resource Planning

• Quality Management
Specification

• Risk Management Plan

• Project Budge!
• Actual Resource Expenditure

• Report Generation
• Recording of Significant Events

• Indexing and Crossreferencing

• Open Issue Tracking
"· Supercanducling Super Co/lider Laboratory AIJ.116-JOfJ CASlll

~ Misc. CASE Tools ~
• Mela-Tools

• Network Management tools

• Hyperlex Management Tools

• Performance Monitoring Tools

• Capacity Planning Tolls

• Expert System Development and Integration
Tools

=~ S11rwrr:ond11ct1110 Super Coflider LalJoralo1y
•a to~ ,... 91 ,-A,/,~

)))))

Process Manag-en1~;~t Tooi~s---1·
(Desirable)

1

• Task Tracking

• Technical necommendation

• Tool Invocation/Support

• Progress Tracking

• Standards Enforcement

• Interface lo Project Management Tools

•r. Superconducting Super Col/ider laboratory

r Where is CASE Today? JI
• Many Similar Tools

• Market Highly Diversified

• Emphasis on Workbenches

:f C:"nnrr•,,,,./,.,,,,,.., ('.,,,..,~ f'nlfil/"r I ,1,,,, 1r '"'

I W;rnt are CASE'S Problems ~

• Insufficient Coverage of Life Cycle

• Insufficient User Training
• Tool Capability Does Not Match Claims

• Few Tool lnternetworking Standards

·,' Superconducting Super Collider Laboratory JIUiXIDC~SUI

Future Directions of CASE -
Later

• End User Tools

• Intelligent Tools

• I SUN & Exception Handling

~·(c;,,,.,,.,,.,.,,,.,"""';,,,, r.,,,,.,,. rnllirln,,. I ..,n,,.-i,,,,..,,

• • • • •

Future Dir~~to1·s-~f-CAS E---1·
(Near Tenn) I

• Repository

• Version Control for Models

• Roule Maps for Tools

• Novice/Expert Mode

• Automatic Code Generation

,,
It

g

• Redevelopment Tools

• Prototyping

• Hypertext

'·" Superconducting Super Cottider laboratory

I (. -~~ 11 ·. : '.: ': : : : 1+1 H
~ +-+ {i . -. u - • • • • .. _/ 11! ID
~ -- --1 I I ~
.. 2 ., j i - ·11 10 I , .. :~·1;11-'.·: ~~~::~~:·~-~-t~-~~-1 .. Ill
¥ -71 , --- i. I'' 1-r1-1, j -r::1-1, 1i- if
Oj 1·· 111 ·1 11 11. - .. I . I -. I •O·•••···r··~

~ 1·1' 1~1 "1111
1
. <_ ····<··-····. I lb

~ J l!l/i'J//11: f!ib - H ~~ ilf
.. ·-,,
~

• 4 f f

;i> ,... -,....n
0 0 ·mg 3

::i ,.... '"O
< ro o
-· 0.. >; ::i
0 0 It
::i ro ::i
13 < (7.
ro ~ o
·::i 0

-i ~Ii
,.... I

4 •

))

11-Typical Workbench Components

Wmlstation llasrd Elements 11011 llmtl Coni1•1uc:111s

"
~~·:· ·-·---
v.~~-

1 .. 1 Anni

r-"'
~I

'-----' j\'MY
v,.,,_ ,_.

. ' . ..,,

. :)
i 'L:· . \\

c ... ,; ... ""
-L. n..,.

1,-... ,,;, ..
•1

Rcpusllmy

LJ : 11·. ::::;:;,
1""' ' ..
i .. ;;;:·1

~--.··1·~J{
" >: ~~~-

G·.·· 1~;.~
~-~ ~LL ·-·-··

:t Superconducting Super Col/Ider Laboratory

---- -·---- - . - - .

611,U.JllfJ f•Sfll

Typical Process Manage1nent
Tool Co1nvonents

... I1···
/1 ,.:-.:11

~Mr1i. ... 1w&o•11• tJ ~'"''.""""•''"
- IJ ----~

.,- i'i -;u-- -, - -- - I

I ""''~'" n I n·
~:~: - ---r .

'-----· \ I ,-..... ,. .. "'"' .. l I ,.,,,, .. , . .,., ••"""'"" I """' 1, ... ~., I I -··-
'""''• OHJ '-._ -- ·- " "
1!111dH1h

lhllu111.1n

•.t. S11µerco11duct111g Super Co/lider l abomtory .!/IM>6Jol91Ul/U

/1

11

~
)

l'ypical Appllcailon
Generation Con!eo!!~~!!~.

I
. -·

fl.I/a
Ek111c111

-~~~-i~·~:
Pwrcn

IJcliniliuu

llJIJlu•.r

l>.-J111itu•11
c:rm:1:11111

" - --·· 1
I "'"' - ---- i
c lu1uf~1c • ·

' ._j lkfm<1lo<1 ll:n~immucnl ~
I I lkfoolll"I '
l' ·-- - - -- -
<

l"••k
lic11c1J1iun

ll1N< li111c
C"t~ll1uh

lir11r1J1iuo

.\t Superco11duc/i11g Super Co//ider laboratory
f!' • ·' ·'" I,•

----------- - - ---· --

Typical Iie-Develop1nenl
Tool Co1noonents

l>11111111t11Ulim1 . /'' . 1 I IHflJlllUI Ill:

.J jj t . . --, .'ilJ11l:a11h
I i1;11al;j\(- -- • -

• . __ _ _ (1311 S11uo111r 11'"'~""' I I -_ I_ J '"'11 "' I """'" . f/I - t -l•lu11& ,.,,,.,., .
• I UlllhUllS ~I

...... , "'"'' 1· ~ I'.'""''" -.1 Mcmhc1s I·-_ - __

I Ur~11m1111me I
luJ:H:

t , .. , ... ,
J,I. S11perco11d11ct111g Super Col/ider lab0tatorv

.,,,_'·'"'"I '

/1

1i·

!

fi

•

Typical VVT Tool Co111ponents

r S1alic I Tc:SI rnh IJcnllllcallon
Amalysis

Cumj~Ciiif"j
A11alysls .

__ J _____ _
ln1t1umcnt1don J

Cu111plc•ity Mcuin
1'111giam Sl111c:1u1c Rcpc111s
I 111H.lim1 Vr1Uiu1io11
l';alll Analylis
·1 C.\I C11¥CUGC llc1iu11s
QA S~mm~ry
lldcre11cc l.htiucs

~-L-1 / - Test /

;:::.. ~I'~""',. . ·~
Jtcsulu T<'I I

•,1. Superconducting Super Collider Laboratory .fl MI JIHJ 0<11,

Typical IPSE Co1nponents

/
: ~- ;~;--!

l'11111C*Dlk

_ K•mdf.,oK11M1 _

A11•lr1i1
WooUOf'1Kh

1,t. Supercor1ducli11g Super Collider labotatory

• • •
J/l~l'JOjl (.4<tJI

• •

------·-----~--- ----- - ---

Typical IPSE Co1nponenls

/- -···---
{"'""l'ilc

101

-- ---1 - ---- r ... ,....,

/
'"'"'"'' ._ .. ·~--·
- ··-"·~·-· 1-

.. ,, , ' - -
r. - -- -,-, I "'·•·'"' ' ,-.. :::::_::.: .. _ I

'

l , J ~

.. ~~~---- ·1-~'<<c·-............ i ---,,...----1 ' "·-·"""' f:',,,,,-- , "o11wm111J.o1w1 .. 1

\,. -:-1 ' f -~) •. '.':.::. -.. . ~ . ' -
t;., .. 11

l,Y. Superconducting Super Col/Ider Laboratory .fi.nl '"'••I''

• • • •

11'

•

-

•

PARALLEL PROGRAMMING

LANGUAGES

'~
'~

'I:""~ .,

ll ...

l
-

-
l
l

l

1 .-

1

j

J.
...

-J

Parallel Programming Languages
SIGPLAN PLDI '93 Tutorial

James R. Larus
Computer Sciences Department

University of Wisconsin-Madison

•What is a parallel language?

• Language for programming parallel computers

'·.

.··_

• Computer exposes capability to execute several operations simultaneously

• Language need not expose parallelism

• Wide range of approaches
• Adapt sequential languages
• Design new "parallel" languages

•Why parallel languages?

• Exploit parallel hardware

• Express parallel algorithms

• Facilitate programming parallel computers

• P•ntll•I Programming Unguage• •
Copyright o Jam•• R. Larue

SIGPLAN PLDI '93 1\ltorlal. June 1H3

Parallelism

• Why are parallel machines different?

• Simultaneity
• Find several operations to 8erform concurrently

• Indeterminacy
• Data races
• Non-reproducible results

• Performance
• Exploit parallelism without incurring large costs
• Wider range of costs than uniprocessors

• P•r•"•' Progr•mm1ng ~•f19uav•• •
Copyrtghl ,Q James R. Larus

SIGPLAN Pl.DI '93 Tutorial, June 1993

•

Slit'•
1

Sllde
2

r
Parallel Language Design

• No consensus on parallel languages or lan_guage constructs

• Many parallel machine models

• Too little experience

• Many design choices

• Sequential language concensus took many years
• Still many different approaches

• · P•rallel Pragnmmlng Ungu•'1•• •
Copyrtght Cl J•rnea R. Larua

SIGPLAN PLDI '13 1\ltor&ll, Jun• 1993

Design Choices

• Sequential vs. parallel semantics

' ...

• Does language semantics allow simultaneous operations?

• Explicit vs. implicit parallelism

• Does programmer specify and coordinate parallel operations?

• Imperative vs. single assignment vs. functional vs. logic programming

• Does language allow side-effects?

• Is basic computation step function application or rule deduction?

• Deterministic vs. indeterminate

• Will program always produce same result?

• P•T•ll•I Programming 1.anguagas •
Copyright..., James R. Larus

SIGPLAN Pl.01 '93 Tu1orlal, Jun• 1993

Slide
3

Sllde

•

-

-
...

...

...

" -
I ...

l"
I

l
-I
I -
I

• -

- Overview

• Parallel computers (review)

• Sequential imperative languages

• Parallel imperative languages

• Functional languages

• Logic programming languages

• P•,.11•1 Programming Unguag•11· •
Copyright o JamH R. Larua

SIGPLAN PLDI '13 "nltor .. l. June 1993

Parallel Computer Review

• Typical parallel computer:
Processor O Processor N-1

• Variants:
• No cache
• Memory separate from processors
• Shared-memory hardware
• Other parallel units (e-g. vector units)
• Centralized processor logic (SIMD)

• P•'•"•' P'ognmmlng l..anguag•s •
Copyrtght ·<l Jam•s R. Larus

SIGPLAN PLDI '93 Tutorial, Jun• 1993

.:.

SllCI•
7

Sllele

•

-

-

I -
I
' r
I
r
I
i
I -
I

I
II •

I

.. ..
I
I

I -
I

l

l
f
I
J

f
l

...

Parallel Computer Attributes

• Communication mechanisms:

• Shared address space

• Message passing

• Network latency and bandwidth

• Synchronization mechanisms:

• Hardware/software locks and barriers

• Empty/full bits on memory locations

•SIMD/MIMD execution

• Parallel Progtwmmlng U119U11gff •
Copyrtghl o James R. Laru•

SIGPLAN PLOl '93 Ti.ltor&al, Juna 1113

Parallel Computer Families

• Message-passing

• No shared address space

• Communication and synchronization through explicit messages

• MIMD, 10-1000 processors

• e.g., Intel Paragon, TMC CM-5

• Shared-memory

• Shared address space

• Communication (and synchronization) through reads and writes

• MIMD, 2-100 processors

• e.g., Sequent Symmetry, Kendall Square KSR-1

•SIMD

• SIMD, 1000-10000 small processors

• Message-passing

• e.g., CM-2, MasPar MP-2

• P•nllel Programming Langu•g•s •
Capyrtgnt ro James R. Larus

SIGPLAN Pl.DI ·93 Tutorl•l, June 1993

•.

Slld•
9

Sllde
10

Overview

• Parallel computers (review)

• Sequential imperative languages

• Explicit parallelism

• Implicit parallelism

• Parallel imperative languages

• Functional languages

• Logic programming languages

'--~~~~~~~~~~~~~~~~~~~~~~~~~~~~-

r

• htall•I Prog,.mmlng L.anQU.Q•• • !>Ude .
Copyrtghl o .J•mn R. Larua :i

SIGPUN PLDI '93 TUtortlil, June 1193

Explicitly-Parallel Sequential Language Overview

• Not an oxymoron!

• Explicitly-parallel
·• programmer specifies parallel tasks and synchronizes execution

• Sequential language
·• programmer writes in conventional language with sequential semantics

• Typically, library callable from C or Fortran

• P•r•ll•I Programming Languag11s •
Copyright u:1 James A. Larus

SIGPLAN Pl.DI '93 Tutorial, June 1993

Sllda
12

-
I

·1
'P'

I
r
I
r
I -
I

• -
J
• ,

r
I " ...
I
I -
I
I ...

)
•

1
" 1

t
,...

l
1
1
I

l
,..
j

l
l

i

I

1
1

1

j

Sequent Shared-Memory Library

• Process creation

m_fork create child processes
m_kill_procs kill child processes

• Synchronization

m_lock acquire a lock
m_unlock release a lock
m_wait_barrier wait at a barrier

• Memory allo9ation

shmalloc .allocate shared memory
shf ree free shared memory

Reference: [40]

• Pllral,.I Programnnng Unguafl•• •
Copyrtallt CJ Jam .. A. L.arua

SIGPLAN PLDI '13 Tutorial, June 1913

Intel Message-Passing Library

• Message passing

crecv
cs end
irecv
is end

• Global reductions

gdsum
gihigh

Reference: (27]

synchronous message receive
synchronous message send
asynchronous message receive
asynchronous message send

global double-precision add
global integer max

• P•rallel Programming t.anguag•s •
Copyright o Jam•s R. Larus

SIGPLAN PLDI "93 Tutarlat, June 1993

•

·and•
13

Sllde
14

r

Explicitly-Parallel Sequential Language Summary

• Libraries added to sequential languages --

• Programmer breaks program into parallel tasks and synchronizes them
• Language only supports sequential execution

+Don't need to learn new language

+Adapt existing programs

- Low-level access to machine features
• Abstractions below problem domain
• Machine-specific• not portable
• Programmer must understand hardware characteristics

- Large-grain parallelism
• Cost of calling routines
• Complexity of inserting by hand

- No semantic checking
• Not part of language

• P•,.llel Prog,.mmlng L•ngu.g•• •
Copyright o Jamu R. Larue

SIGPLAN PLDI '131\ltartal. June 1113

Implicitly-Parallel Sequential Language Overview

• Implicit parallelism
, .. programmer does NOT specify parallel tasks or synchronization

• Sequential language
,. programmer writes in conventional language with sequential semantics

• Write in language with sequential semantics

• Compiler finds parallelism

• Programmer may help by annotating potential parallelism

• Hides parallelism

• Parallel Programming t..angu~•• •
Copyright ~ James R. Larus

SIGPLAN Pl.DI '93 Tulotlal, June 1993

Sllde
15

Sllde
16

.

-

r
...
I

I
t
I
r
I
-I
I ·-

' !.
I

• ...

I

1
,.,

I
i
1
l ,.

l

1

l
l
l

I

l

r

Restructuring Compilers

• Find parallelism in sequential language (e~g. Fortran)

+Program iri familiar language

+Run existing programs without modification

+Machine-independent programs

- Program is compiler-dependent

- Difficult to express parallel algorithms & data structures

• Mildly successful

+Many compiler algorithms [50,52]

- Fails on "dusty decks" [43]
. • Lack of par~lelism in programs [35]
• Need int~rprocedura) analysis

+Successful a~ programming tool
• Programmers use negative feedback to parallelize program - M. Wolfe, OGI

.... ; -
. --~ ..

. -••. J , .•.

. ., ., . •, .. ~ . '

• Patwllel Pmg,.,,,mlng ungu.,,•• •
Copyright o Jamn R. Larua

SIGPUN PLDI '13 1\ltor .. I. June 1tl3

Fortran 77

• Compile Fortran n programs for parallel computers

• Identify code that can execute in parallel

.. •.Transformation.increase parallelism by reducing control and data
dependences

• Produce parallel code and synchronization

DO 10 I=l,100
DO 10 J = l. 100

A(I, J) = (A(I-1, J) + A(I+l, J) + A(I, J-1) + A(I, J_;·l)
+ A(I, J)) I 5

• Many projects:

• Univ. Illinois's Parafrase [31,41,42]

• Rice's PFC and Parascope [3,9,22,30]

• IBM's PTran [2, 14]

• Parall•I Programming r..nou•a•• •
Copyright ·o Jam•s A. Latus

SIGPl.AN Pl.DI •93 Tutorial, June 1993

Sllde
17

Slldo
18

Fortran 90

• Latest revision of Fortran introduced whole:£.rray operations

REAL A(N,Nl

A = (CSHIFT (A, DIM=l, SHIFT=-1)
+ CSHIFT (A, DIM=2, SHIFT=-1)
+ CSHIFT (A, DIM=l, SHIFT=+l)
+ CSHIFT (A, DIM=2, SHIFT=+l)) I 4

•Operations have parallel (simultaneous) semantics

• Right-hand side evaluated before updates

• Inherently parallel operations
• Reduce need for program analysis
~ Source of dependence-free operations

• Limited parallelism (vector processing)

• Straight-line operations on array elements

•' ··-

---, \- \ f'•""" '-?l='or~c.\: "'J. I 1:...c.I _,_,,\(J •iJ
F-•'}" f- ~ ...

• Parallel operations not extensible

Reference: [6]

• P•nll•I Prcgnmmlng Z...11gwg u •
Copyrtgllt c Jamu A::.:-oi•

SIGPLAH PLDI '93 Tutartlll. June 1993

High Performance Fortran (HPF)

• Extends Fortran 90 with data-distribution directives and parallel loops

• Programmer partitions data for non-shared-memory computer. ~

Sllde ,.

'

~ .seJ-1.,.., a hef"r'""~
• Compiler produces message-passing program ~'\:> :- ~i.. ,,..,._.,..,,- .

...J.(........ !>,.~ ... , .
REAL A(lOOO), 8(1000), C(l000), X(500), Yl0:501)

!HPF$ PROCESSORS procs(l0)
!HPFS DISTRIBUTE (BLOCK) ONTO procs:: A, 8
!HPFS DISTRIBUTE (CYCLIC) ONTO procs:: c
!HPFS ALIGN X(il WITH Yli+ll

FORALL Ii = 2:999) A(i) = IAli-1) + A(i) +

• Directives partition data and (implicitly) computation

• Programmer must understand: problem, compiler, and computer

• Anticipate effect al compiler algorithms (e.g., owner computes)

• Parallel loops assert absence of sequential dependencies

Reference: (37]

• Parall•I Programming t..anguagas •
Copyrt;nt -"James R. l.arus

SIGPLIN PlDI '93 Tutorlal. June 1993

Sllde
20

l
I
I-­

I
r
I
f
I ...
I
l
I
r
I
r
.J -•
' -I

~ "'·

I
1
I
,..

l
l
l
l
I
~ ,.

1
,...,

'
i
~

I
I

J

~

I

1

-

Implicitly-Parallel Summary

• What is implicit parallelism?

• Compiler discovers parallelism in •sequential" code

• Programmer uses parallel operators

• Programmer specifies statement has no sequential dependences

• Programmer partitions data and computation to fit parallel computer

• Two dimensions

• Language semantics: do multiple operations occur simultaneously?
c

• Programmer intent: do programmers consider parallelism?

--~~~--,-~~~~~~~~~~~~-~~~~~~~~~~~~~~~~~
• Patallfll l'rogta111tnlng l..altf•g•• • Slid•

Copyrlgtlt G Jamff R. Lan.i• 21
SIGPLAN PLDI '93 TUtorlal. June 1193

Overview

• Parallel computers (review)

• Sequential imperative languages

• Parallel imperative languages

• Distributed-system

• Control-parallel
• Message passing
·• Speculative
• Coordination
• Object-oriented

• Data-parallel

• Functional languages

• Logic programming languages

• P•r•ll•I Programming Lanouao•• •
Capynaru <C Jam11 R. t.arus

SIGPLAN PLDI '93 Tu1arlal, June 1993

•.

Sllda
22

Distributed-System Language Overview

• Distributed systems

• Multiple autonomous processors communicating via messages

• Originally computers on a local or wide-area netWork
• Slow, unreliable communication

• Also, networks within parallel computers
• Fast, reliable point-to-point links

• Special requirements: reliability, wide-area, hardware

• Programming models

• Sequential processes exchanging messages ("hardware")

• Distributed objects

• Logic programming and functional

Reference: [7J

• DoD language of choice

• p.,.,,., Prognmmlng L.angu•o•• •
Copyright o J•mu A. Larua

SIOPLAN PLCI "13 Tutartlll, June 1193

Ada

• Tasks are sequential processes

• Statically and dynamically created

• No mapping to processors

• Simple static priorities

• Communication via rendezvous mechanism

• Accept statements look like procedure entries
• Receiver has little control over which message is processed

• Entry call statement looks like a procedure call

• Select statement allows asynchrony and indeterminacy

• Updates to shared variables only need be visible at rendezvous
•

• Simple, large-grain parallelism

+Tightly integrated in language

- Limited application domain

• P•'•"•' Prog,..mmlng Langu•o•s •
Copyright .:i Jamea A. Larus

SIGPLAN PLDI '93 Tulortal. Jun• 1993

Sllde
23

Sllda
24

J -
I
I ..
J

' r

I
r
I ...
j

l
I
~

I
t
I
i
I -
I
!

"

l
k
I

]

I

L
1

I

I
l
I -

l

l

/

• Synchronizing Resources (SR)

• Program consists of resources
• Dynamically created

• Resources contain processes

SR

• Processes synchronize with semaphores

• Processes communicate with operations (messages)

• Receiver is either static or dynamically created upon receipt

• Sender may invoke operation synchronously or asynchronously

• Guarded commands introduce indeterminacy
• Receiver may S'ete~t_next message to process

' ;

• Well thought-out language for message-passing communication

References: [4,5]

• l'•rallel l'l'Ofltwnmlng UngPfl•• •
Copyl1gftt 0 .IMIU R. LJIR19

SIGPUN PLDI "93 lUtortal. June 199:1

Emerald

• Distributed object-oriented language

• Strongly-typed

• All data are objects
• Access through messages, not direct reference
• Communicate by invoking each other's operations

• Active objects have associated process
• Passive objects run when invoked

• Pr.ogrammer can control placement of objects

• Concurrency between objects

• Concurrency within object
• Monitor to synchronize access to shared variables

References: [8]

• P•r•ll•I Programming l.angu•o•• •
COpyrtgn1 <O Jamu R. Llru1

SIGPLAN PLDI ·93 Tutorl•I. June 1993

Sllde

••

Sllde
25

r

Distributed-System Summary

• Machine, but not system, independent

• Coarse-grain parallelism
• High communication cost

• Message passing (no shared address space)
• Common denominator

• Little attention to numeric computation

• Fault tolerance and error recovery

• Languages span wide range of machines

• Programs may be system-dependent because of communication costs
··~~~ · ..

\lV(._.rt': (.,.I" . {"'. ,c ~ ("~
'J" J o' r'

J ~.;.

• ,,.,.,,., l'rog,.mmlng L•nflU•fl•• •
Copyright c Jamea R. Urua

SIGPLAN PLDI '93 Tutortal • .June 1193

Control-Parallel Language Overview

• .Control parallelism

• Multiple, independent computation execute simultaneously

• Threads synchronize as necessary

• Communication is either message passing or shared memory

• Common model is Single Program Multiple Data (SPMD)

• Differ from distributed system languages

• More tightly coupled with cheaper communication

• Correspondence to MIMD hardware model

+ High degree of programmer control

- May not reflect true costs of operations (communication)

• Difficult to manage independent tasks

- Data races

- Poor speedups

\.

• Parall•I Progn1mm1ng t.anguaga5 •
Copyrtghl >()James R. Larus

SIGPLAN PLOI '93 Tu1orlal, June 1993

Sllda
27

Slide
28

-

..

I
! ...

L
I
I ,..

l
r
I ...
I
I ..
I

I

l

• .. _

I
I

1
I
l -.
l

I
1
I

J
1

1

'

Control-Parallel Languages Taxonomy

• Message passing

•CSP & Occam

• Speculative

• Multilisp & Qlisp

• Coordination

• Linda, Strand, & PCN

• Object-oriented

• Actors, COOL, & Concurrent Smalltalk

•Other

•Jade

• hnll•I Programming Ungu•t1•• •
Copyrtgbt o Jamee A. Larua

SIGPLAN PLDI '93 Tutarlal, June 1113

Message Passing: CSP

• Hoare's Communicating Sequential Processes (CSP}

• Influential paper design

• Message-passing sequential processes

• Fixed number of parallel processes

• Communication and synchronization only via messages
• Emphasized inpu1/output statements. --
• Synchronous communication (no buffering)
• Pattern matching on message types

• Nondeterniinistic guards determine next operation

_• Static naming
• ~low arrays of processes
• Not practical: i.e. libraries

Reference: (23]

• P•raU•I Programming L.anguao•s •
Copyrignt 'O Jame• R. Larue

SIGPl.AN Pl.DI '93 Tutarlal, Jun• 1993

•

Slld•

••

Slld•
30

,

CSP Example j

• Systolic matrix multiplication
(M (i: 1. .3, 0) .• WEST

I IM Ii: 1. .3, 4) .. EAST
I I M (0 , j : l .. 3) . . NORTH
I I M (4 , j : l. . 3) . . SOUTH

1Nort&1

'1~8
I South I I IM (i: 1. .3, j: 1. .3) : : CENTER]

NORTH= *(true-> M (i, j) ! O]
EAST= •[x:real; M(i, 3) ? .x ->skip]
CENTER= •[x:real; M(i, j-1) ? x ->

M(i, j + 1) !x;
sum:real;
M(i l, j)
M(i+l,j)

? sum;
(A(i. j) • x + sum) J

• Ptuall-' l'rog,."'l:mln 1 LanguagN •
Copyrtgllt o .lemn R. Lmru• -

SIGPLAN PLDI '93 Tutorial. .lune 1913

Occam2

• Language inspired by CSP

• System programming language for lnmos's Transputer

• Extended CSP

• Channels provide unbuffered, unidirectional communication
• Values that can be passed around
• Strongly typed

• Dynamic arrays of processes

• Datatypes and functions

• Placement of processes on processors

• Minimal, message-passing language

• Close to hardware

Reference: (36];

• P•,.11•1 Programming Langu•g•• •
Copyrlgtu o Jam•• A. Latus

SIGPt.AN PLDI '93 Tutorlal, Jun• 1993

Sllde
31

$Ilda
32

L -
l

I

I
r
I -
I
l
I
s.
I
r
I
i
I
I
l

1
. f

I
'i... .
••

J

I
~

I
l

'
l
l

J

I
r

J

l

Speculative Computation Overview

• Use parallelism to perform computations that are likely to be useful

• Reduce latency in programs with dynamic behavior (symbolic)
• Cannot predict in advance which values will be necessary

• Needs mechanism to manage excess parallelism
• Schedule computations
• Terminate useless computations

• ,,.,.,,., Proa,.,,,m1ng UntCMI•• •
Copyrtght Cl J•mn A. Larua

SIOPLAN PLDI '93 1Utorlal, June 1113

Multilisp

• Parallel Lisp dialect based on Scheme

• Introduced futures

• Combined process creation and synchronization for (mostly) functional
languages
future (f (xi I

• Creates process to evaluate f(x)

• Return a token that represents the result

• Token can be passed around

• Process attempting to examine token stops until f(x) computed

• Dynamic parallelism in shared address space

• Futures appropriate for functional language

• Side-effects requlre other synchronization mechanism

Reference: [21 ,28]

• Parallel Prog,.mm1ng r.angu•Q•• •
Copyright o Jam•• A. Larua

SIGPLAN PLDI '93 Tutorial, Jun• 1993

Sllele
33

Slide
34

,

,

/

Multilisp, cont'd

• Multilisp program may have too much, fine:grain parallelism

• Future can (usually) be ignored and code executed sequentially

• System should choose whether to create parallel task
• Difficult to decide if parallelism will be useful later

• Lazy-task creation allows decision to be revised (39]
• Convert sequential future into a parallel task to produce more parallelism

• Quicksort

• P•taJl•I Progtammlno Langllafln •
Copyrtghl o Jam•• R. Laru•

SIGPLAN PLDI '13 l'Utorlal. June 1113 .,.

Multilisp Example

(define qsort (1) (qs 1 nilll

(define qs (1 rest)
(if (null ll

rest
(let ((parts (partition (car ll (cdr ll l) l

(qs (left-part parts!
(future (cons (car 11

(qs (right-part parts) rest)))))))

(define partition (elt lstl
(if (null 1st)

(bundle-parts nil nil)
(let ((cdrparts (future (par~ition elt (cdr lstl))))

(if (> elt (car lstl)
(bundle-parts (cons (car lstl

(future left-part cdrpartsl I I
(future (right-part cdrparts)))

(bundle-parts (future (left-part cdrparts) I
(cons (car lstl

(future right-part cd=partsl I]

• ,..,.,,., P~orammlno L•ngu•o•s •
Copyright 'i:I Jam•• A. Larus

SIGPLAN Pt.DI ·93 Tu1orta1. June 1993

Slld•
35

SU de

••

'

L ...
I

I-
1
1-
I , ...

I -
I

t
...
I
t
I

...
I
I -
I
ll

I

I

.
J ,
I
·1

J

I

J

J

l

1

Qlisp

• Parallel version of Common Lisp

• Programmer controls parallelism explicitly

• Parallel constructs contain predicate controlling parallel execution

+Flexible and powerful annotation

- Requires knowledge of execution costs and target machine

- Complicates program logic

• Parallel factorial

• 1'9181191 Ptog,.,,,,,Jng Unguag.. •
Copyright C Jamu A. Larue

SIGPLAN PLDI "93 Tutorial, Jun• 1193

Qlisp Example

(defun pfact (n depth)
(labels ((prod (rn n depth)

(if (= rn nl
rn
(let ((h (floor (+ rn n) 2)))
(qlet (> depth 0)
((x (prod m h (--depth 1)))

(y (prod (+ h 1) n (- depth 1))))
(. x y))))))

(prod 1 n depth! I I

• P•,•11•1 Prog,.,,,mlng t.•ngu•g•• •
Copyright 'C J1me1 A. Larus

SIGPLAN PLDI '93 Tutorl•I, June 1993

..

Sllde
37

SU de
38

'

Coordination Language Overview

• Manage synchronization and communications among sequential code

• Large-grain parallelism

• Distributes data and schedules routines

+Reuse existing code ·•

+Large-grain parallelism suits machines

• Mainly for loosely-interacting problems

• Underlying assumptions

• Parallel problems can be broken into large chunks

• Parallelism described non-imperatively

Reference: [19,38]

• Panll•I Prog,.mmlng Unguag•• •
Capyrlght io Jame• R. Uni•

SIGPLAN PLDI '13 Tutar .. t. June 1113'

• Embedded coordination language

• Added to l~nguage as library

Linda

• Processes communicate through a tuple space

.

out ! fl, f2, ...) Adds tuple (f1, 12, ...)to tuple space

'

in (kv:L, kv2, ...) Removes tuple matching (kv1, kv2, ...) from space
rd (kvl, kv2, ...) Reads tuple matching (kv1, kv2, ...)

eval (El, E2, •.• > Creates new process to-produce tuple

• Structure and order of tuple space left to program

• Flexible and general communication mechanism
• Non-imperative specification

• Associative lookup is powerful, but expensive language feature

References: [11, 19]

- :• P•,..11•1 Programming t.angu11ges •
Copyright e James A. L..arus

SIGPLAN Pt.DI "93. Tutorial, Jun• 1993

Sllde
39

Sllde
40

-
-

.,.
I

l

l

r , .

l
I
l ...

I
I

r

I
r
I -I
I -

j

J
l

1

l

l
1

l

l
1

I

I

l
1

Linda Example

• Finding prime numbers
main ()
{

for (i = 2; i < LIMIT; i++)
eval ("primes", i, is_prime (i)) ;

for (i = 2; i <= LIMIT; i++)
rd {"primes", i, ?ok);
if (ok) print ("%d\n•, il;

)

is_prime (int me)
{

for (i ~ 2; i <sqrt((double) me); i++r
rd ("primes", i, ?ck);
if (ok && (me % i == 0)) return O;
}

return l;
}

• ,,.,.,,., Prog,.,,,mlng L.angu_,n •
Copyrtgbt 0 J•raea R. Larua

SIGPLAN PLDI '13 Tutorial, June 1113

.

Slide .,

'

.,.---,
Strand

• Simple logic programming language coordinates sequential routines

• Single-assignment variables are communication channels
• Reader blocks until value is produced

• Call executes concurrently when inputs are available
• Routines can be "foreign code"
• Routines must have functional interface

• Calls protected by non-deterministic guards

References: [16, 17]

• P•,..tl•I Prog,.mmlng t.angu•g•s •
Copyrlgnt Cl James R. Larus

SIGPL.AN PLOI '93 Tutortal, June 1993

•.

Sllde
42

Delirium

• Embedding coordination language

• Sequential code invoked by Del]rium

• Single-assignment functional language

• All computation written in C or Fortran

• Coordination and dataflow is expressed in Delirium

• Enforces determinism by preventing concurrent modification

Reference: (38]

• 8 Queens
main ()

• l'•,..llw1 Pt011,.,,,,,,1ng UIJfllMflff •
COp.;.·r1f".iil 0 J•m .. R. Uru.

SIGPLAN PLDI '13 1\ltor .. I, June tH3

Delirium Example

let board= empty_board ()
in show_solutions (do_it \board, l))

do_it (board, queen)
let hl = try (board, queen, 11

h2 = try (board, queen, 2)

h8 = try (board, queen, 8)
in merge (hl, h2, ... h8)

try !board, queen, location!
let new_board = add_queen (board, queen, location)
in if is_valid (new_board)

then if is_equal (queen, 81
then new_board
else do_it lnew_board, incr (queen) I

else NULL

• P•,.11•1 l'rogr•mmtng Ungu•g•s •
Copyrtght <I Jam•• R. LaN•

SIGPLAN PLDI '93 Tutorlal, June 1993

Sllde
43

Slide
44

,

'

L
I
L ,..

I
'
• r
I
r
I -
I

l
I

I
r
I
-I
I -
I
!

I
~

I
i
I
I
I
I
~

I

I
,...,

I
I
""

I

1

Object-Oriented Language Overview

• Objects are autonomous entities that communicate via messages

• Similar to message-passing machine model

• Parallelism
• Separating request and response
• Sending multiple messages

• Object maintains internal constancy

• Issues

• Global addresses for objects

• Handling multiple messages in object

• Inter-object consistency

• ,..,..,,_, Ptaf,.,,,mlng Langu~N •
Copyright o Jam•• R. Larua

SIGPUN PLDI '13 1\rtor&al, June 1113

Actors

• Actor consists of a "mail address" and a "behavior"

• Address is location-independent

• Communication is asynchronous, reliable"and buffered

• Executes sequentially
• Determines its replacement behavior

• Can be dynamically created

References: [1]

• P•nll., Progr.,,,mlng L•ngu•g•• •
Copyrtght <O Jam•• R. Larus

SIGPl.AN Pt.DI '93 Tutorl•I, Jun• 1993

•.

SllCle

••

Sllde

••

'

,

Actors Example

• Bank account
(define !Account (with Balance =bi I

(Is-Request (a Balance) do (reply bi)

(Is-Request la Deposit (with Amount =al) do
(become (Account (with Balance (+ b a))))
(reply (a Deposit-Receipt (with Amount a))))

(Is~Request (a Withdrawal (with Amount =al) do
(if (> a b)

(then do (complain.- (an Overdraft)))
(else do -

(become (Account (with Balance (- b a))))
(reply (a Withdrawal-Receipt (with Amount a))))))))

• ,,.,.11., Programming unou~•• •
COpyrtgftt c Jamea R. Larue

SIGPLAN PLDI "t:S TUton.1 • .lune 1193

·COOL

• Parallel language based on C++

• Parallel functions execute asynchronously

• Specified by either caller or callee - ~,-\'\-'r
• Mutex member functions have exclusive access to object

• Futures (cf Multilisp) support functional parallelism

Reference: (12]

• P•rall•I Programming '-•nou•o•• •
Copyright C Jamea R. Larus

S
0

IGPLAN PLDI •93 Tu1orlal. Jun• 1993

Slld•
47

Sllde
48

'

,

.
l ..
l
1 ..
I
'
•
T

I
T
I ...
I
I
T ;,

I
I
r

I
I

I
i
I ..
I
I

l

I
~
...

l
.....

A

l
~

1
i
I
~

J
,..
,.i

J
-
J

J ,...

1
I '

I
J. ..

COOL Example

•Merge sort
class array

·-.- .

inc counc, *aptr;

parallel int# sort (J;

parallel .int$ array:: sort I l
(

array left (count I 2, aptr);
array right (count - coun~/2,

int$ done= left.sort ();

parallel- right.sort ();
waitset (done);

merge

c

aptr+count/2);

• P•nl'-1 Programming Ungu•11•• •
-Copyrtght c Jam .. A. Lllru•

SIGPLAN PLDI •93 TUtor .. I. June 11113

Concurrent Smalltalk ·• ·.

• Extension ta· smalltalk sci (201
• Asynchronous message passing

• Receiver object can execute after sending reply
• Sender can continue executing before receiving reply

• Atomic objects
• Messages serially processed in FIFO O!_der

Reference: [51]

• ,,.,.,,., Prooramm,no unou•O•!I •
Cqpyrtgft:t .o Jam•• A. L.arus

SIGPLAN PLDI ·93 Tutortal. Jun• 1993

•.

Sllde

••

Sllde
50

'

Other Control Parallel Languages: Jade

• C with annotations to declare data accesses

• Programmer specifies which locations code accesses
• Describe spec<ific location~. not interactions
• Annotations indirectly specify potential parallelism and execution order

•,System ·runs program in parallel and preserves serial dependences
~- Seriaiizes. declared dependences
• Also, helps system ship data among processors
• Checks correctness of annotations

+No explicit synchronization

- Still may need to rewrite program

References: [32,45]

• l'•t8llel Prooremmlno L•11t1uao•• •
Copyrtgftt o Jame• R. Larua

SIGPLAN PLDI ·n TUtor .. I, June 1H3

Sllde
51

., . Jade Example , I-" ,_ ,:,;~µ
l ;. .. ~,. "' ~ ""

· . C"-- .,.. ~ •"",P-1- .,.\.cl-._'-~
• Sparse Cholesky factorization -;> r.,1\.,.• ~ L "'~ t

fac.tor. (column_vector c, row_indices r, int nl
(

int i I j;

for (i = O; i < n; i++)
withonly (

rd_wr lc[i] .column); rd (cl; rd lrl;
do(c,r,il(
InternalUpdate (c, r, i);

for Ii = c[i] .start_row; J < c[i+l] .start_row: j++) {
withonly (

rd_wr lc[r[j] J .column!:
rd (c[ij .column!; rd (cl; rd Ir):
do(c,r,i,j){ ~

ExternalUpdate (c, r, i, r[j]):

• P•rall•I Programming l.•nguagrn •
Copyrtgnt 'O James A. Larus

SIGPLAN PLDI '93 Tutorial. Jun• 1993

Sllda
52

-

...

...

...

...

...

I -
I

L ..
I
l .,.

L

J

l

J

l
1
l

I

I
l

1 -
j

l
l
j

Control-Parallel Languages Summary

• Programmer specifies program for each pr_~cessor

• Each program runs independently •
• Two-edge sword: understanding and coordinating
• Is generality necessary?

• Processors synchronize and communicate
• What are mechanisms

• Difficult to program
• Races and performance -

• Difficult to reason about

'

• P•t•ll• Prog,.,,,mlng LMflUa§ff •
Copyright o Jam .. R. Larue

SIGPLAN PLDI "93 TUtoNil. June 1H3

Data-Parallel Language Overview

• Simultaneous application of operation to collection of data

• Parallelism from applications of operation

• Interactions among applications
• Synchronous operation is SIMD
• Asynchronous operation is SPMD
• What is middle ground?

• Discussion

+Single thread of control aids reasoning

+Can have determinate semantics

+Clean specification of parallelism

- Cannot express all parallelism

• P•r•ll91 Programming Unguag•• •
Copyright o James R. Larus

SIGPLAN PLDI ·93 Tutortal. June 1993

•.

Sllde
53

,

Sllde

••

C*

• Data-parallel extension of C by Thinking Machines Corporation

• Two languages: "old" and "new" c·
• Strong SIMD influence from CM-2

• Shape is a template for parallel data

• Specify dimensions

• Parallel variable has a shape

• Parallel oper.?tions on variables of current shape

Reference: [48, 18] .
shape [2] [2] ShapeA;

int:ShapeA x;

with (ShapeAI x += l;
x

..

• .,,, .. ,,., l'rogtammlng Unguag.. •
Copyrtar1t o Jamu R. Larue

SIGPLAN PLDI "h 1\rtorllll. Jun• 1113

Paralation Lisp

• Data parallel extension to Common Lisp

• Added new datatype and operators

• Paralations are ordered collections of values

• Apply any function simultaneously to all values

• Data dependences between operations are "illegal"

• Strong Lisp influence

Reference: (46]

• P•r•ll•I Programming t..•ngu•g•• •
Copyrtght '-Jam•• R. L•rus

SIGPLAN Pt.DI '93 Tutorlal. June 1993

Slld• ..

Sllde

••

..

...

1•

I

...
i
I ...
J

·-

I

I
f

• -
' l
I

I
-•
I
I
I
I
• w

I
I

1
I
I
I
I

1

Paralation Example

• Finding primes
(defun.find-primes In)

(let• ((sieve (make-paralation n))
(candidate-p (elwise (sieve) (if > sieve ll. t nil)))
(prime-p (elwise (sieve) nil)))

(do ((next-prime 2 (position t candidate-pl))
((null next-prime)
(<- sieve :by (choose prime-p)))

(setf (elt prill!-e-P next-prime) t)
(elwise (sieve ·candidate-pl

(when (and candidate-p "(zerop (mod (sieve next-prime)))
(setq candidate-p nil))))))

• ,,.,.ue1 Proo,..,,,m1ng un1won •
Copyright o J•mff R. Lllru•

SIGPLAN PLDI '13 TUtar .. &. June 1113

c-
•_ Large grain data parallelism

• New model of data parallelism

• Parallel functions are applied simultaneously and instantaneously
• Simultaneous ,,. start with same state
• Instantaneously - do not see others' c':i_anges

• Based on C++

Reference: (34]

• P•r•ll•I Prognimmlng L•nguage• •
Copyr1gn1 o Jam•• R. Larus

SIGPLAN PLDI ·93 TUtortal, June 1993

..

Sllde
57

Slide

••

,

)

C** Example

• Matrix multiplication
struct mat,;rix (

double val;
matrix operator• (matrix &B) parallel;
(512] [512];

struct column : matrix [J [. J { } ;

struct row: matrix [.] [] {
double operator•(colurnn &B) parallel{

return%+ (val• B[#OJ .val);
}

} ;

matrix matrix: :operator• (matrix &B) parallel
·return { vali('this)[#OJ[J • B[][#l]) };

}

matrix A, B;

(A * B)

• P•,,.11•1 Programming Unguag•• •
Copyrlgllt Cl Jamu R. Larus

SIGPUN PLDI "t3 TU1on.1. June 1993

Data-Parallel Language Summary

• Attractive, though restrictive programming model

• Close to SIMD machine model
• Can be generalized so tasks are control independent

• Semantics bt sharing data among tasks
• SIMD - determinate
• SPMD ,. indeterminate
• Large grain data parallel ,_ determinate

• P•r•ll•I Programming l.anou•o•s •
Copyr1gnt ·O James R. Larus

SIGPLAN PLOI '93 Tu1or1a1. Juna 1993

Sllde ..

Sllda

••

l
I
1 ..

I

I
I

L
I

I
r
I -I
I ...
I
l

l

I
..._

I

l

I

I
l
L

I
J...
l

l
,,...
I

[
-

I
' ,. -
I ,,.,

I""
I

Single-Assignment Language Overview

• Only one assignment to location (variable, array element, etc.)

• Repeated assignment requires new copies of object
• Compiler sometimes eliminates copy

• Advantages of functional languages
• Clearer programming style

• Simplify compiler analysis
+No anti- or output dependences
+Easier to find parallelism
- Efficiency depends on copy elimination

.

• 1'111'91,_, P~rantmllffl Ungu.gn •
Copyright o Jam .. A. Urua

. SIGPLAN PLDI 't:S TUtorl•I. June 1113

·Sisal

• Restricted functional language with Pascal-like syntax

• Originally, limited higher-order functions

• Static type-checking

• Restrictions facilitate compiler analysis

• Semantic goals:

• Functional: functions have no side-effects

• Referentially transparent: names bound to values, not locations

• Single-assignment: name assigned once

• Competitive with Fortran on Cray YMP for small kernels (1 OJ
References: [15]

• P•,.11•1 Prag,.mmlng t.•ngu•g•s •
Copyrlgnt IQ Jame1 R. Larus

SIGPLAN PlDI '93 Tutorial, June 1993

Sllde
11

SU de
62

,

Sisal Example

• Gaussian Elimination
type OneI =array [..] of integer;
type OneD =array [..] of double;
type TwoD =array [..] of OneD;
function Reduce (piv : integer, A .. TwoD, B

returns TwoD, OneD)
let

mults .- A[.. , piv] I A[piv, piv];
in

for row in A at (i] do
nz:-ow1 na :=

.- .if i=piv then
raw I A[piv, pivl,
~[i] I A(piv, piv]

else
row - mults(i] • A(piv],
B[if - mults[i] • B(piv]

end if
returns array of nrow, array of nB

end for
end let

-

...
OneD

-

end function •

• p.,.,,., Prog,.,,.mtng u,,,,,,.~ •
Copyrtght c J•m•• R. Urua

SIGPLAN PLOI '13 Tutorial, June 1113

Overview

• Parallel computers (review)

• Sequential imperative languages

• Parallel imperative languages

• Functional languages

• Logic programming languages

• Parallel Programming t.•nguag•• •
Copyrtant .o J•m•• A. t.aru•

SIGPLAN PLOI '93 Tutarl•I, Jun• 1993

Sllde
13

Slld•

••

I

I

I

r
I -
I

l
I

I
j

1

I
I
I
I ...

I
...
I

I
J
I -
J
I

J

]

l

Functia·nal Language Overview

• Computation is entirely expressions evaluation

• Expressions are functions (not relations)

• No side-effects
+Program are more concise and high-level
+Easier to analyzer and reason about programs
- Less efficient

• Small grain computation

• Different language features

• Higher-order functions

• Lazy evaluation

• Pattern matching

• Key: referential transparency

• Substitute function application for use of value without changing result
let x = f a

in x + x

'-~~~~~~~~~~~~~~~~~~~~~~~~~~~-~·

• P•,.11•1 Prot1tammltttl Ungwg•• •
Copyright 0 JlllllM R. LalU8

SIGPLAN PLDI '111\ltorlail. June 1H3

Slide ..

Parallel Function Languages • ~
(-~ .. le-~~

• Mostly compiler-detected parallelis~ v..J. .. (' ~ O, ·

• Also parafunctional parallelism with programmer-supplied annotations

• Not much language design for explicit parallelism [24]

• Also, lots of work in nearly-functional languages

• Scheme [28,33,26]

• ML [25,44]

• P•nll•I Progr•mmlng L.•nguag•!J •
Copyrtont <0 Jam•• R. Larus

SIGPLAN PLOI '93 Tulartal, June 1993

Slld•

••

Parallel Graph Reduction

• Different model of parallel computation [29[

• Program is represented as graph showing function calls

• Call whose arguments are available can evaluate

• Many calls can evaluate in parallel

• Order of evaluation does not matter (except termination)
par_sum n = dsum 1 n

dsum lo hi = if (lo = hi) then hi
else (dsum lo mid) + (dsum (mid+l) hi)
where n.id = (low + hi) /2

d~lO

. ctsum.--rS ~o ..
dsum ~ 4 5 cts"d!!i6 8 ~

seq_sum n = if (n=l)
then 1
else n + seq_sum (n - 1)

• ,,,,,..,,., l'rogrammlnf Ungu•g•• •
Copyright o Jama A. Larua

SIGPLAN PLDI "13 1\ltortat. June 1H3

Overview

• Parallel computers (review)

• Sequential imperative languages

• Parallel imperative languages

• Functional languages

• Logic programming languages

• Parall•I Pt0gramm1ng t.anguagas •
Copyrtght O James R. Larus

SIGPLAN PLDI '93 Tutotlal, June 1993

9 10

Sil de
07

Sllde

••

..

..

I -
l
' r
I
r
I
i

• ..
I
!
I

I
I
J -
I
J

I

I
"" •
I
I
J

i

J
-

Logic Programming Language Overview 1

• Logic programming is a different programming paradigm

• Program is declarative collection of assertions and inference rules .

• System attempts to prove new assertions

• Languages restrict paradigm for efficiency

• Two potential sources of parallelism

• OR-parallelism
Al :- Ell, . . . , En .
A2 :- Cl, ... , Cm.
A3 : - Dl, •.• , Dp.

• Try clauses in parallel

• AND-parallelism
a (X, ZI :- b(X, YI, c(Y,

• Try goals in body in parallel

References: (13,47)

Z I •

1. Thanks to Brad Richards for his aaistance in preparing tbis .section.

• l'.nllel Prog,.,,,rnlng La"-_,.. •
Copyrtght o Jamu R. Larue

SIGPU.N PLDI '93 Tutottal. June 1113

Concurrent Logic Programming

• Particular approach to parallel logic programming

• Don't care non-determinism
~ AND-parallelism
• Commit to a clause and never backtrack
• At most one binding per variable, never undone

• Flat language
• Guard contains only primitive predicates
• Simpler, easier to implement

• Nonflat
• Guard may be arbitrarily complex

• Variable instantiation
• Input matching
• Read-only unification
• Determinacy conditions

• p.,.,,., Proo,.,,,mlng Unguag•• •
Copyrtght :O Jam•• R. Larus

SIGPLAN PLDI '93 Tutorial. June 1993

Sllde -..

Sllde
70

,

Concurrent Logic Languages

After (47]

CSP PROLOG

PARALOG83

Strand

FCP(:,?)

• P•,.11111 Prog,.,,,mlng lAnflWfl•• "'
Copyright o J•m" A. Lllru.:

SIGPL.AN PLDI •93 n.ttona1. June 103

FCP(I)

• Flat Concurrent Prolog (Commit)

• Simple language related to Flat GHC and Oc

• Match on heads and guards

Goal Clause Head Result

p(a) p(X) X :=a

p(X) p(a) suspend

p(a) p(b) fail

sum(ln, Out) sum([XIXs], S) suspend

sum([], Out) sum([XIXsJ, S) fail

• Fixed set of guard predicates
x != Y,
wait(X)

integer(XJ, X<Y, X<=Y, X=:=Y,

• P•t11Uel Pl'Ognmmtng Languages •
Copyrtgtu .l) Jam•• R. Larua

SIGPLAN PLDI '93 Tu1orlal. June 1993

X..\=:=Y,

·', -.::: : :

'

var(X)

Slide
71

Sllde
72

'

...

...

...

...

-
l

l
I
J ,.
I
r
I
r
I -
I

..
_:~

I

~

I
i . -

I -.
I
I
l

• _,

I
""' •
I
J

I -
I
L

!

FCP(I) Example­

• Summing leaves of a binary tree
tree_sum (T, S) <-

tree_sum• (T, o, S).

tree_sum• (tree (L,· R)' P S) ' <-
tree_sum' (L, P, P'),
tree_sum' {R, p•, S).

tree_sum• (leaf (X), P, S) <­
plus (X, l?, S) .

-

• P•,.,lal Prognmmlnf u;,-; . .,.=:::,.:::.-:.:----------_,I
Ca11yrl;h.t o Jamu R. u.ru• Sllde

SIGPLAN PLDI "13 l\d:or .. I, June 1993 73

- I,# l. J- ;.; r fJ;:; s ,; <J Y'-1 e, t.:._
tJ ~C, ;-. 4 /".,__ ~0 ed--i t;G ~I -V~

CJ~, f-t;l'"q r/""' .Y . J"'1 r j .e !J
_ 1,,__ c. /r" o f IC,, _,_, ;,,__ ~ / y- /t? -=:::.J

C o//'"\f"' /:..), v~ {._t).../ 6 'fl s ""'c, - i _ / I /l/o v'

if 5 ~sf &r.s Fv)v.;.......,
A -J 4...5 < i/"k,;:. .:-£,. M - Co/

~

